Design Principles for Matrix Adaptation Evolution Strategies

Hans-Georg Beyer

Hans-Georg.Beyer@fhv.at
https://homepages.fhv.at/hgb/

Research Center Business Informatics Vorarlberg University of Applied Sciences

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

1/67

- **1** A Short Recap of Evolution Strategies
- **2** The Matrix Adaptation Idea
- **3** How to Get the Most Out of It
- **4** Design Principles for MA-ES on Constrained Problems
- **5** Summary
- **6** Related Publications

A Short Recap of Evolution Strategies¹

Evolution Strategies (ESs) are a class of Evolutionary Algorithms that use:

- mutation and recombination to generate λ offspring from μ parents
- 2 perform truncation (aka breeding) selection denoted by
 - (μ, λ) : only the μ best offspring individuals are selected as parents of the next generation, or
- $(\mu + \lambda)$: both the λ offspring and the μ parent are together are object of selection to determine the parents of the next generation

Remark:

Application domains (search spaces):

- discrete, combinatorial, real-valued optimization and mixtures
- however, predominantly used in real-valued un-constrained optimization
- popularized by the Covariance Matrix Adaptation (CMA) ES²

¹See H.-G. Beyer: Scholarpedia: *Evolution Strategies*. And H.-G. Beyer & H.-P. Schwefel: *Evolution Strategies: A Comprehensive Introduction*. Natural Computing 1(1):3–52, 2002.

²See N. Hansen, S.D. Müller, and P. Koumoutsakos. *Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES)*. Evolutionary Computation, 11(1):1–18, 2003.

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

3/67

A Short Recap of Evolution Strategies

- compared to other EAs, especially Differential Evolution (DE), there is relatively little follow-up work that builts on the CMA-ES
- What are the reasons?
- at first glance CMA-ES seems a rather sophisticated EA
- CMA-ES contains ingredients that seems to be difficult to modify without sacrificing its superb performance on certain test function sets
- most modifications proposed are rather minor and are built around the covariance matrix :
- the tenet is to estimate the covariance matrix
- Why do we need the covariance matrix?
- actually, one wants to mutate parents to get promissing offspring
- one only has to generate correlated mutations in order to target into promissing directions in the search space
- How to do that without covarianc matrix calculations will be a topic of this tutorial

But, first let us consider a simple ES without correlated mutations:

Simple ES with Self-Adaptation and Recombination

$(\mu/\mu_I,\lambda)$ - σ SA-ES	line
Initialize $(\mathbf{x}, \sigma, \tau)$	1
Repeat	2
For $l := 1$ To λ	3
$ ilde{\sigma}_l := \sigma \mathrm{e}^{ au \mathcal{N}_l(0,1)}$	4
$\widetilde{f d}_l := {oldsymbol{\mathcal{N}}}_l({f 0},{f I})$	5
$ ilde{\mathbf{x}}_l := \mathbf{x} + ilde{\sigma}_l ilde{\mathbf{d}}_l$	6
$ ilde{f}_l := f(ilde{\mathbf{x}}_l)$	7
$ ilde{\mathfrak{a}}_l := \left(ilde{f}_l, ilde{\mathbf{x}}_l, ilde{\sigma}_l ight)$	8
End	9
RankOffspringPopulation($\tilde{\mathfrak{a}}_1, \ldots,$	$\tilde{\mathfrak{a}}_{\lambda}$) 10
$\mathbf{x} := \langle \tilde{\mathbf{x}} \rangle$	11
$\sigma := \langle ilde{\sigma} angle$	12
Until (Termination_Condition)	13
Return(x)	14

- Task: optimize $f(\mathbf{x})$, where $\mathbf{x} \in \mathbb{R}^N$ (i.e. unconstrained)
- L3–8: produce λ offspring
- L4: mutate σ (mutation strength), $\tau = 1/\sqrt{2N}$
- L5: generate search direction
- L6: mutate parent by $\mathbf{w} = \sigma \tilde{\mathbf{d}}$
- L7: evaluate offspring
- L8: assemble offspring
- L11f: recombine the *best* μ offspring' **x** and σ :³

$$\langle \tilde{\mathbf{x}} \rangle := \frac{1}{\mu} \sum_{m=1}^{\mu} \mathbf{x}_{m;\lambda}$$
 (1)

$$\langle \tilde{\sigma} \rangle := \frac{1}{\mu} \sum_{m=1}^{\mu} \sigma_{m;\lambda}$$
 (2)

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

5/67

A Short Recap of Evolution Strategies

A Simple ES with Self-Adaptation (SA) and Recombination

1. Isotropic Gaussian Mutations in \mathbb{R}^N

local domain of success

Figure 1: Isotropic Gaussian mutation samples in a 2-dimensional search space applied to a recombinant state $\mathbf{x} = \langle \tilde{\mathbf{x}} \rangle$ in Line 6, Slide 5.

• for "well shaped" local success domains, isotropic Gaussian mutations $\mathbf{w} = \sigma \tilde{\mathbf{d}}$ are sufficient:

$$\mathbf{w} \sim (\mathcal{N}(0, \sigma^2), \dots, \mathcal{N}(0, \sigma^2))^{\mathrm{T}} = \sigma \mathcal{N}(\mathbf{0}, \mathbf{I})$$
 (3)

• probability density function:

$$p(\mathbf{w}) = p(w_1, \dots, w_N) = \frac{1}{(\sqrt{2\pi}\sigma)^N} \exp\left(-\frac{z_1^2 + \dots + z_N^2}{2\sigma^2}\right)$$
(4)

- (hyper) surfaces of constant *p* are spherical shells
- note, in high *N*-dimensional spaces the mutation vectors **w** are nearly located in the vicinity of a sphere of radius $\sigma \sqrt{N}$
- mutation strength σ can be adapted by, e.g., $(\mu/\mu_I, \lambda)$ - σ SA-ES, Slide 5

³"m; λ " is the index of the mth best individual out of λ offspring (w.r.t. fitness).

2. Non-correlated independently distributed Gaussian mutations

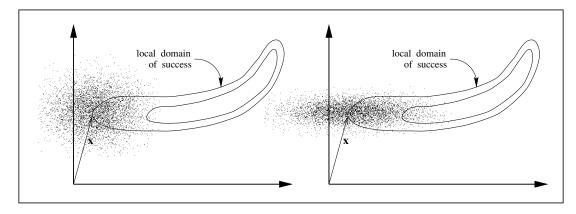


Figure 2: Success domains with preference directions parallel to certain coordinate directions are better treated by Gaussian mutation vectors the components of which have different mutations strengths (lhs: isotropic, rhs: ellipsoidal mutations).

$$\mathbf{w} \sim \left(\mathcal{N}(0, \sigma_1^2), \dots, \mathcal{N}(0, \sigma_N^2) \right)^{\mathsf{T}}, \quad p(\mathbf{w}) = \prod_{i=1}^N \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left(-\frac{w_i^2}{2\sigma_i^2} \right)$$
 (5)

• there is a set of N strategy parameters σ_i to be evolved

$$(\sigma_1,\ldots,\sigma_i,\ldots,\sigma_N)^{\mathrm{T}}$$
 (6)

• (hyper) surfaces of constant p are axes-parallel ellipsoids

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

7/67

A Short Recap of Evolution Strategies

Non-Isotropic Mutations in \mathbb{R}^N

3. Correlated Gaussian mutations

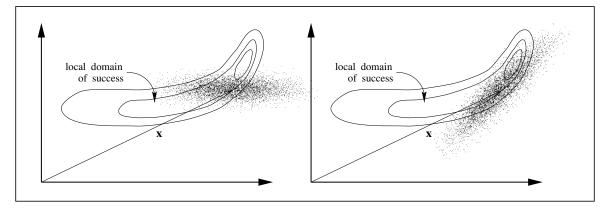


Figure 3: Rotated mutation ellipsoids (rhs) are better suited for the recombinant x.

• *correlated* w mutations are to be used to obtain mutation ellipsoids arbitrarily oriented in search space

$$\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}) \tag{7}$$

$$p(\mathbf{w}) = \frac{1}{\left(\sqrt{2\pi}\right)^N} \frac{1}{\sqrt{\det[\mathbf{\Sigma}]}} \exp\left(-\frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{\Sigma}^{-1} \mathbf{w}\right)$$
(8)

ullet Σ is the *covariance matrix* and Σ^{-1} its inverse

Remarks

- covariance matrix Σ contains N(N+1)/2 independent parameters to be learned (because Σ is symmetric)
- there are N object parameters to be evolved in order to optimize $f(\mathbf{x})$, but, there are N(N+1)/2 Σ-matrix components to be learned, too!
- wising an EA that learns correlated mutations via covariance matrix Σ makes sense only when one has a budget of function evaluations that is greater than kN^2

How to generate correlated mutations?

- correlated mutations **w** can be produced by linear transformation of iid standard normally distributed vectors $\mathbf{z} = (\mathcal{N}_1(0, 1), \dots, \mathcal{N}_N(0, 1))^T$ by a two-step process
 - $\mathbf{0}$ calculating the direction: $\mathbf{d} := \mathbf{Mz}$
 - **2** scaling the length: $\mathbf{w} := \sigma \mathbf{d}$
- since $E[\mathbf{w}] = E[\sigma \mathbf{M} \mathbf{z}] = \sigma \mathbf{M} E[\mathbf{z}] = \mathbf{0}$, one finds using the definition of Σ

$$\Sigma = E[\mathbf{w}\mathbf{w}^{\mathsf{T}}] = \sigma^{2}E[\mathbf{M}\mathbf{z}\mathbf{z}^{\mathsf{T}}\mathbf{M}^{\mathsf{T}}] = \sigma^{2}\mathbf{M}E[\mathbf{z}\mathbf{z}^{\mathsf{T}}]\mathbf{M}^{\mathsf{T}} = \sigma^{2}\mathbf{M}\mathbf{M}^{\mathsf{T}}$$
(9)

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

9/67

The Matrix Adaptation Idea

The Matrix Adaptation Idea

How can one get M if Σ were known?

- take the "square root" of Σ in (9), i.e., $\mathbf{M} = \frac{1}{\sigma} \sqrt{\Sigma}$ This can be done by:
 - CHOLESKY-decomposition
 - matrix square root via eigenvalue decomposition

However, how can one get the covariance matrix Σ ?

- it must be derived from the evolutionary dynamics of the real ES run
- this is what the Covariance Matrix Adaptation (CMA) ES does

But, why not deriving the M matrix from the observed ES dynamics directly?

- analysis of the CMA-ES revealed that one can (approximately) rewrite the CMA-ES algorithm and remove its "C"
- as a result one obtains very simple Matrix Adaptation (MA) ESs that perform equally well as the CMA-ES⁴

C related numerical operations are no longer needed!

⁴H.-G. Beyer and B. Sendhoff. Simplify Your Covariance Matrix Adaptation Evolution Strategy. *IEEE Transactions on Evolutionary Computation* 21(5):746–759, 2017. DOI:

10.1109/TEVC.2017.2680320

A Simple Recombinative MA-ES with Self-Adaptation (SA)

$(\mu/\mu_I,\lambda)$ - σ SA-MA-ES	line
Initialize $(\mathbf{x}, \sigma, \tau, \tau_{\mathbf{M}}, \mathbf{M} := \mathbf{I})$	1
Repeat	2
For $l := 1$ To λ	3
$ ilde{\sigma}_l := \sigma \mathrm{e}^{ au \mathcal{N}_l(0,1)}$	4
$\widetilde{\mathbf{z}}_l := oldsymbol{\mathcal{N}}_l(0, \mathbf{I})$	5
$\widetilde{\mathbf{d}}_l := \mathbf{M}\widetilde{\mathbf{z}}_l$	6
$ ilde{\mathbf{x}}_l := \mathbf{x} + ilde{\sigma}_l ilde{\mathbf{d}}_l$	7
$ ilde{f_l} := f(ilde{\mathbf{x}}_l)$	8
$ ilde{\mathfrak{a}}_l := \left(ilde{f}_l, ilde{\mathbf{x}}_l, ilde{\sigma}_l, ilde{\mathbf{z}}_l ight)$	9
End	10
RankOffspringPopulation $(\tilde{\mathfrak{a}}_1,\ldots,\tilde{\mathfrak{a}}$	$_{\lambda})$ 11
$\mathbf{x} := \langle ilde{\mathbf{x}} angle$	12
$\sigma:=\langle ilde{\sigma} angle$	13
$\mathbf{M} := \mathbf{M} \left[\mathbf{I} + rac{1}{ au_{\mathrm{M}}} \left(\left\langle ilde{\mathbf{z}} ilde{\mathbf{z}}^{\scriptscriptstyle{\mathrm{T}}} ight angle - \mathbf{I} ight) ight]$	14
Until(Termination_Condition)	15

- L3–9: produce λ offspring
- L4: mutate σ (mutation strength), $\tau := 1/\sqrt{2N}$
- L5f: generate search direction
- L7: mutate parent by $\mathbf{w} = \tilde{\sigma} \mathbf{d}$
- L8: evaluate offspring
- L9: assemble offspring
- L12f: recombine the *best* μ offspring' **x** and σ , (1/2)
- L14: update **M**-matrix with learning rate

$$\tau_{\mathbf{M}} := 2 + \frac{(N+1)N}{\mu} \qquad (10)$$

$$\langle \tilde{\mathbf{z}} \tilde{\mathbf{z}}^{\mathrm{T}} \rangle := \frac{1}{\mu} \sum_{m=1}^{\mu} \tilde{\mathbf{z}}_{m;\lambda} \tilde{\mathbf{z}}_{m;\lambda}^{\mathrm{T}}$$
 (11)

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

11/67

The Matrix Adaptation Idea

A Simple Recombinative MA-ES with Self-Adaptation (SA)

Comparison to Covariance Matrix Self-Adaptation ES (CMSA-ES) ⁵

$(\mu/\mu_I,\lambda)$ - σ -CMSA-ES	line
Initialize $(\mathbf{x}, \sigma, \tau, \tau_{\mathbf{c}}, \mathbf{C} := \mathbf{I})$	1
Repeat	2
For $l := 1$ To λ	3
$ ilde{\sigma}_l := \sigma \mathrm{e}^{ au \mathcal{N}_l(0,1)}$	4
$\widetilde{\mathbf{d}}_l := \sqrt{\mathbf{C}} oldsymbol{\mathcal{N}}_l(0, \mathbf{I})$	5
$ ilde{\mathbf{x}}_l := \mathbf{x} + ilde{\sigma}_l ilde{\mathbf{d}}_l$	6
$ ilde{f}_l := f(ilde{\mathbf{x}}_l)$	7
$ ilde{\mathfrak{a}}_l := ig(ilde{f}_l, ilde{\mathbf{x}}_l, ilde{\sigma}_l, ilde{\mathbf{d}}_lig)$	8
End	9
RankOffspringPopulation($\tilde{\mathfrak{a}}_1, \ldots, \tilde{\mathfrak{a}}_{\lambda}$)	() 10
$\mathbf{x} := \langle \widetilde{\mathbf{x}} angle$	11
$\sigma := \langle ilde{\sigma} angle$	12
$\mathbf{C} := \left(1 - \frac{1}{\tau_{\mathrm{c}}}\right)\mathbf{C} + \frac{1}{\tau_{\mathrm{c}}}\langle \tilde{\mathbf{d}}\tilde{\mathbf{d}}^{\mathrm{T}} \rangle$	13
Until(Termination_Condition)	14

Differenzes to $(\mu/\mu_I, \lambda)$ - σ SA-MA-ES:

- L5: generate correlated search direction, matrix $\sqrt{\mathbf{C}}$ must be calculated in an $O(N^3)$ step
- L13: update C-matrix with learning rate:

$$\tau_{\rm c} := 1 + \frac{(N+1)N}{2\mu} \qquad (12)$$

$$\langle \tilde{\mathbf{d}} \tilde{\mathbf{d}}^{\mathrm{T}} \rangle := \frac{1}{\mu} \sum_{m=1}^{\mu} \tilde{\mathbf{d}}_{m;\lambda} \tilde{\mathbf{d}}_{m;\lambda}^{\mathrm{T}}$$
 (13)

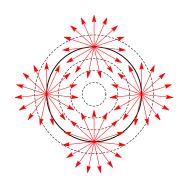
⁵H.-G. Beyer and B. Sendhoff, *Covariance Matrix Adaptation Revisited – the CMSA Evolution Strategy*, in PPSN X, pp. 123–132, Berlin: Springer, 2008.

Understanding the M-Update

• What do the z variations see in MA-ES algorithm, Line 5, Slide 11?

$$f(\tilde{\mathbf{x}}) = f(\mathbf{x} + \sigma \mathbf{Mz}) =: g(\mathbf{z})$$
(14)

• assume $g(\mathbf{z})$ defines quadratic fitness landscapes



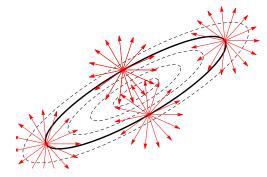


Figure 4: Isotropy in search space considered from "viewpoint" of the **z** variations in Line 5, Slide 11: The black curves represent lines of constant f-values. The isotropic $\mathbf{z} \sim \mathcal{N}_l(\mathbf{0}, \mathbf{I})$ vectors experience on average the same selective pressure in case of the spherical success domain (left graph) independent of the location of parental state \mathbf{x} . Thus, there are no correlations in the **z**-vectors implying $\mathbf{E}[\langle \mathbf{z}\mathbf{z}^{\mathsf{T}}\rangle] \propto \mathbf{I}$. In the case of an elliptical success domain (right graph) symmetry is broken and the **z** experience different selective pressure in different directions. This implies $\mathbf{E}[\langle \mathbf{z}\mathbf{z}^{\mathsf{T}}\rangle] \not\propto \mathbf{I}$.

©2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

13/67

The Matrix Adaptation Idea Understanding the M-Update

• M-update in Line 14, Slide 11:

$$\mathbf{M} := \mathbf{M} \left[\mathbf{I} + \frac{1}{\tau_{\mathbf{M}}} \left(\langle \tilde{\mathbf{z}} \tilde{\mathbf{z}}^{\mathrm{T}} \rangle - \mathbf{I} \right) \right]$$
 (15)

- change of M is governed by the deviation of the $\langle \tilde{z}\tilde{z}^T \rangle$ -matrix from the identity matrix I
 - taking the expectation

$$E[\mathbf{M}] = \mathbf{M} \left[\mathbf{I} + \frac{1}{\tau_{\mathbf{M}}} \left(E[\langle \tilde{\mathbf{z}} \tilde{\mathbf{z}}^{\mathsf{T}} \rangle] - \mathbf{I} \right) \right]$$
 (16)

- if $E[\langle \tilde{\mathbf{z}}\tilde{\mathbf{z}}^T \rangle] = \alpha \mathbf{I} \implies \mathbf{M}$ is only changed by a scalar factor
- the **z**-vectors "see" a sphere
 - if $E[\langle \tilde{\mathbf{z}}\tilde{\mathbf{z}}^T \rangle] \neq \alpha \mathbf{I} \implies \mathbf{z}$ -vectors "experience" an anisotropic fitness landscape
- M undergoes changes during evolution
- a general quadratic fitness landscape (ellipsoidally shaped) is gradually transformed into a spherical landscape

Reducing the Internal Costs of the MA-ES – The Fast MA-ES

- most expensive Line 14: $\mathcal{O}(\mu N^3)$, N search space dimensionality
- costs for generating a single offspring: $\mathcal{O}\left(\frac{\mu N^3}{\lambda}\right) = \mathcal{O}\left(N^3\right)$
- however, this is the naive view
- recasting Line 14, Slide 11

$$\mathbf{M} := \mathbf{M} \left[\mathbf{I} + \frac{1}{\tau_{\mathbf{M}}} \left(\langle \mathbf{z} \mathbf{z}^{\mathsf{T}} \rangle - \mathbf{I} \right) \right]$$

$$= \left(1 - \frac{1}{\tau_{\mathbf{M}}} \right) \mathbf{M} + \mathbf{M} \frac{1}{\tau_{\mathbf{M}}} \langle \mathbf{z} \mathbf{z}^{\mathsf{T}} \rangle$$

$$= \left(1 - \frac{1}{\tau_{\mathbf{M}}} \right) \mathbf{M} + \frac{1}{\tau_{\mathbf{M}}} \langle (\mathbf{M} \mathbf{z}) \mathbf{z}^{\mathsf{T}} \rangle$$

$$\stackrel{(\mathbf{L6})}{=} \left(1 - \frac{1}{\tau_{\mathbf{M}}} \right) \mathbf{M} + \frac{1}{\tau_{\mathbf{M}}} \langle \mathbf{d} \mathbf{z}^{\mathsf{T}} \rangle$$

$$(17)$$

 \Rightarrow costs are effectively reduced to: $\mathcal{O}\left(\frac{\mu N^2}{\lambda}\right) = \mathcal{O}\left(N^2\right)$

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

15/67

The Matrix Adaptation Idea Reducing the Internal Costs of the MA-ES

Simple MA-ES with Self-Adaptation (SA) – Fast Version

$(\mu/\mu_I,\lambda)$ - σ SA-fMA-ES	line
Initialize $(\mathbf{x}, \sigma, \tau, \tau_{\mathbf{M}}, \mathbf{M} := \mathbf{I})$	1
Repeat	2
For $l := 1$ To λ	3
$ ilde{\sigma}_l := \sigma \mathrm{e}^{ au \mathcal{N}_l(0,1)}$	4
$ ilde{\mathbf{z}}_l := oldsymbol{\mathcal{N}}_l(0, \mathbf{I})$	5
$\widetilde{\mathbf{d}}_l := \mathbf{M} \widetilde{\mathbf{z}}_l$	6
$ ilde{\mathbf{x}}_l := \mathbf{x} + ilde{\sigma}_l ilde{\mathbf{d}}_l$	7
$ ilde{f_l} := f(ilde{\mathbf{x}}_l)$	8
$ ilde{\mathfrak{a}}_l := ig(ilde{f}_l, ilde{\mathbf{x}}_l, ilde{\sigma}_l, ilde{\mathbf{z}}_l, ilde{f d}_lig)$	9
End	10
RankOffspringPopulation($\tilde{\mathfrak{a}}_1, \ldots, \tilde{\mathfrak{a}}_{\lambda}$) 11
$\mathbf{x} := \langle ilde{\mathbf{x}} angle$	12
$\sigma := \langle \tilde{\sigma} angle$	13
$\mathbf{M} := \left(1 - rac{1}{ au_{\mathrm{M}}} ight)\mathbf{M} + rac{1}{ au_{\mathrm{M}}}\langle ilde{\mathbf{d}} ilde{\mathbf{z}}^{\scriptscriptstyle{\mathrm{T}}} angle$	14
Until(Termination Condition)	15

- L4: $\tau = 1/\sqrt{2N}$ is asymptotically optimal for the sphere model
- L12f: recombine the best μ offspring' **x** and σ , according to Eq. (1/2)
- L14: update **M**-matrix with learning rate

$$\tau_{\rm M} := 2 + \frac{(N+1)N}{\mu} \qquad (18)$$

$$\langle \tilde{\mathbf{d}} \tilde{\mathbf{z}}^{\mathrm{T}} \rangle := \frac{1}{\mu} \sum_{m=1}^{\mu} \tilde{\mathbf{d}}_{m;\lambda} \tilde{\mathbf{z}}_{m;\lambda}^{\mathrm{T}}$$
 (19)

- recommended truncation ratio: $\mu/\lambda = \frac{1}{4}$
- note, there are only two learning constants: τ and $\tau_{\rm M}$

Example: Optimization of a Lens Using σ SA-MA-ES⁶

Objectives:

- Find the optimal shape of glass body such that parallel incident light rays are concentrated in a given point P on a plane
- 2 Use a minimum of glass material possible (secondary goal)

General problem solving approach:

Step 1–3: system description, evaluation, and decision variables

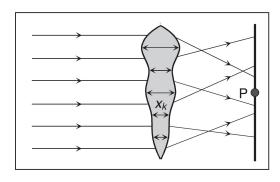


Figure 5: Evolvable glass body: incoming light rays from the left are refracted. Evolve thicknesses x_k such that the rays meet in P. The x_k (k = 0, ..., K) are the decision (aka control, aka objective) variables.

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

17/67

The Matrix Adaptation Idea Example: Optimization of a Lens Using σ SA-MA-ES

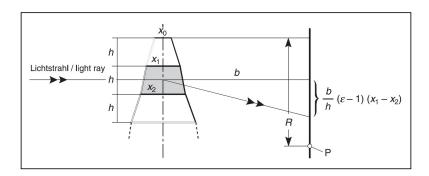


Figure 6: Lens is subdivided into trapezoidal slices of hight h; ϵ is refraction index.

• using the physical law of refraction on thin prisms (see Fig. 6), one can calculate the deviation Δ of the ray from focal point P on the plane considering the kth prism (k = 1, ..., K)

$$\Delta_k = R - \frac{h}{2} - (k-1)h - \frac{b}{h}(\epsilon - 1)(x_k - x_{k-1}), \qquad x_k \ge 0$$
 (20)

Step 4: determine the goal (aka objective) function:

• considering all *K* prisms, the squared sum can be used as measure for the optical image quality

$$f_{\text{focus}} := \sum_{k=1}^{K} \Delta_k^2 \tag{21}$$

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

⁶Example adapted from *VDI Richtlinie 6224 Blatt 1*.

of simplicity) a mass density of one, therefore, the mass is simply the area of the lens (two-dimensional model)

$$f_{\text{mass}} := \sum_{k=1}^{K} h^{\frac{1}{2}} (x_k + x_{k-1})$$
 (22)

- note, we have two objectives:
 - \bullet minimizing the optical image quality f_{focus}
 - \bullet minimizing the mass of the lense f_{mass}
- actually, this calls for a *multi-objective evolutionary algorithm* (Pareto-optimization, however, beyond the scope of this tutorial)
- instead, using *scalarization approach* where both objectives are combined in a weighted sum:

$$f_{\text{lens}}(x_0, \dots, x_K) := w f_{\text{focus}} + (1 - w) f_{\text{mass}} \qquad w \in [0, 1]$$
 (23)

and
$$\forall k = 0, \dots, K : x_k \ge 0$$
 (24)

w controls the emphasis of optimization w.r.t focus (w = 1) or mass (w = 0)

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

19/67

The Matrix Adaptation Idea Example: Optimization of a Lens Using σ SA-MA-ES

Evolutionary Optimization of (23)

- $(\mu/\mu_I, \lambda)$ - σ SA-fMA-ES, Slide 16, is used with N = K + 1
- since $x_k \ge 0$ (thickness parameters!), the x_k in MA-ES must be transformed in order to be used in the objective function (23)
- that is: $f_{lens}(|x_0|, ..., |x_K|)$ must be used for evaluation in Line 8 of MA-ES on Slide 16
- problem parameters: $\epsilon = 1.5, h = 1, K = 14$
- strategy parameters: $\mu = 5$, $\lambda = 20^{(7)}$, weighting factor $w = 0.9^{(8)}$
- initialization: $x_k = 3$, $\sigma = 1$
- stopping criterion: mutation strength $\sigma < 10^{-5}$

⁷Recommended truncation ratio for MA-ES is $\mu/\lambda = 1/4$.

⁸Strong emphasis on optical quality.

```
************************
% Matlab code of a simple Evolution Strategy applied to the optical lens
% optimization. Stategy type: (mu/mu_I, lambda)-sigmaSA-MA-ES
% Scalarized minimization of quadratic focal point deviation and lens mass
%% Copyright by Hans-Georg Beyer (HGB), 23.02.20. For non-commercial use
%% only. Commercial use requires written permission by Hans-Georg Beyer
global LensParms;
                     % physical parameters of the geometrical system
LensParms.h = 1; LensParms.b = 20; LensParms.R = 7; LensParms.eps = 1.5;
% scalarization factor for bi-objective problem
global Weighting:
Weighting =.9;
                  % number of free geometry parameters to be optimized
n = 15:
% Here starts the MA-ES (cf. Pseudocode)
mu = 5; lambda = 20;
x = LensParms.d_init*ones(n,1);
sigma = 1; sigma_stop = 1e-5;
                                                    (L1)
M = eye(n);
                                                    (L1)
tau = 1/sqrt(2*n); tau_M = 2 + n*(n+1)/mu;
                                                    (L1)
% here starts generation loop
while( sigma > sigma_stop )
 for l=1:lambda
                                                    (L3)
   sigmaTilde(l) = sigma * exp(tau*randn());
                                                  % (L4)
   zTilde(:, 1) = randn(n, 1);
                                                  % (L5)
  dTilde(:, 1) = M*zTilde(:, 1);
                                                  % (L6)
  xTilde(:, 1) = x + sigmaTilde(1)*dTilde(:, 1);
                                                  % (L7)
   fTilde(l) = f_lens(xTilde(:, l));
                                                  % (L8)
 [fsorted, r] = sort(fTilde, "ascend");
 x = 1/mu * sum(xTilde(:, r(1:mu)), 2);
 sigma = 1/mu * sum(sigmaTilde(r(1:mu)));
 SUMds = zeros(n, n);
 for m=1:mu; SUMds = SUMds + dTilde(:, r(m))*zTilde(:, r(m))'; end; % (L14)
 M = (1-1/tau_M) *M + (1/tau_M) * (1/mu) *SUMds;
                                                  % (L14)
end
                                                  % (L15)
```

Figure 7: Matlab code of fast MA-ES for lens optimization.

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

21/67

The Matrix Adaptation Idea Example: Optimization of a Lens Using σ SA-MA-ES

```
\mbox{\$} after termination, abs(x) returns the x-coordinates (thicknesses)
% of the optimized lens geometry
% here comes the objective function, to be saved in a .m-file
% we use abs(x) instead of x in order to ensure positiveness of parameters
function qual = f lens(x)
 global LensParms Weighting;
 n = length(x);
 f_focus = sum( ( LensParms.R ...
            - ( LensParms.h*((1:n-1)-.5) + LensParms.b/LensParms.h * ...
               (LensParms.eps-1) * ...
               (abs(x(2:n)) - abs(x(1:n-1)))') .^2);
 f_{mass} = LensParms.h*(sum(abs(x(2:n-1))) + 0.5*(abs(x(1))+abs(x(n))));
 qual = Weighting*f_focus + (1-Weighting)*f_mass; % weighting of goals
```

Figure 8: Matlab code of MA-ES for lens optimization continued: coding of the (aggregated) goal function f_{lens} , Eq. (23).

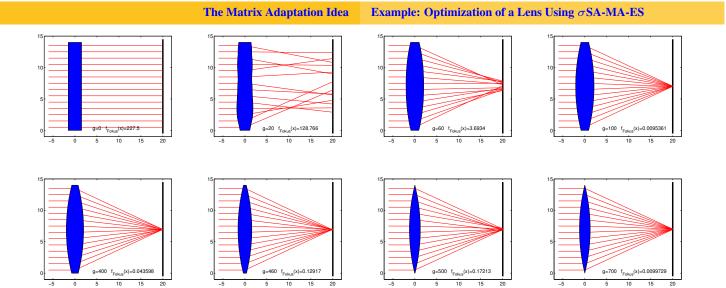


Figure 9: Snapshoots of the lens evolution using $(5/5_I, 20)$ - σ SA-MA-ES

- due to the choice of w = 0.9, at first the lens geometry evolves toward high optical quality
- after about 100 generations, the second goal (reducing the lens mass), dominates the evolution process resulting in defocussing
- at about generation 500, the lens has been reduced in mass and fine tuning of the image quality starts

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

23/67

The Matrix Adaptation Idea

Example: Optimization of a Lens Using σ SA-MA-ES

On the dynamics of the evolution process

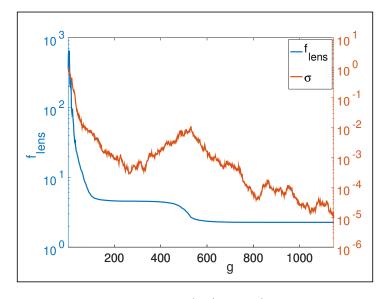


Figure 10: Evolutionary dynamics of the $(5/5_I, 20)$ - σ SA-MA-ES on the lens example.

- up to about generation g = 100, the evolution improves the focal quality
- then, the geometry must be rebuilt and therefore the M-matrix, too
- after about g = 300 the M allows for larger mutation strengths σ
- finally, the mass of the lens reduces and the evolution converges

How to Get the Most Out

- Path Cumulation
 - learning promising evolution directions
 - 2 alternative σ control rule (cumulative step-size adaptation CSA)
- 2 Approximate Matrix-Vector Operations
 - ► limited memory MA-ES
- Weighting the Individuals
 - weighted recombination
 - 2 utilize the worst individuals (active matrix adaptation)

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

25/67

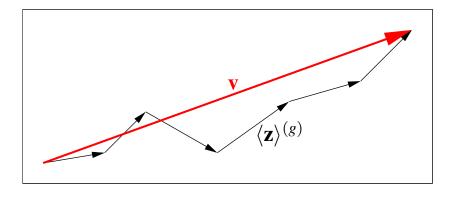
How to Get the Most Out of It

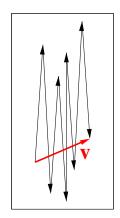
Path Cumulation

Path Cumulation

• consider the cumulation \mathbf{v} of the generation history (g-generation counter) of the selected $\tilde{\mathbf{z}}$ -vector centroids

$$\mathbf{v} := \sum_{g=g_1}^{g_1+G} \langle \mathbf{z} \rangle^{(g)} \quad \text{where} \quad \langle \mathbf{z} \rangle^{(g)} := \frac{1}{\mu} \sum_{m=1}^{\mu} \mathbf{z}_{m;\lambda}^{(g)} \quad (25)$$





v-direction in z-space with strong tendency

versus

weak tendency

Figure 11: Two qualitatively different paths \mathbf{v} of concatenated $\langle \mathbf{z} \rangle^{(g)}$ centroids: Even though the average length of the $\langle \mathbf{z} \rangle$ -vectors is larger for the right path than for the left, the cumulative effect is much larger for the left path indicating a preferred direction in \mathbf{z} -space.

- incorporate the v information in the update M update
 - if the consecutive $\langle \mathbf{z} \rangle^{(g)}$ steps are uncorrelated it holds

$$\mathbf{E}[\mathbf{v}\mathbf{v}^{\mathrm{T}}] = \alpha \mathbf{I} \tag{26}$$

- however, the $\mathbf{v}\mathbf{v}^{\mathrm{T}}$ -matrix could grow with the generation number g
- and past direction information may get stale after a while
- the cumulation of the $\langle \mathbf{z} \rangle$ -vectors must be discounted by exponentially smoothing, leading to an s-vector update

$$\mathbf{s} := \left(1 - \frac{1}{\tau_s}\right)\mathbf{s} + \sqrt{\frac{\mu}{\tau_s}\left(2 - \frac{1}{\tau_s}\right)}\langle \mathbf{z}\rangle \tag{27}$$

analogously to the Eq. (15) the M-update one gets

$$\mathbf{M} := \mathbf{M} \left[\mathbf{I} + \frac{1}{\tau_1} \left(\mathbf{s} \mathbf{s}^{\mathrm{T}} - \mathbf{I} \right) \right]$$
 (28)

$$\tau_s = \Theta(N), \qquad \tau_1 = \Theta(N^2) \tag{29}$$

© 2020 H.-G. Beyer (FHV 🍫)

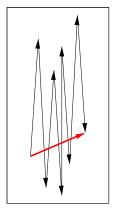
Design Principles for MA-ES

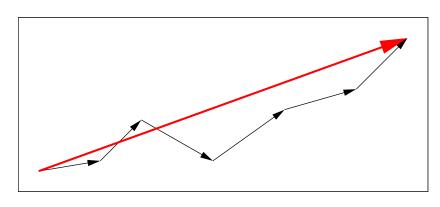
27/67

How to Get the Most Out of It Path Cumulation

... and there is even more information in this v-path

- consider the length of the resulting path compared to single $\langle \mathbf{z} \rangle^{(g)}$ steps
- if there is no selection (flat fitness landscape) \Rightarrow random path
- \rightarrow do not change mutation strength σ
 - ullet if there is selection and length of path is less than expected random path length, then decrease mutation strength σ





 \Rightarrow decrease

 \Rightarrow increase the step size (i.e., mutation strength)

• if there is selection and length of path is greater than expected random path length, then increase mutation strength σ

- it can be shown that this strategy is asymptotically optimal $(N \to \infty)$ on the *static* sphere model (w/o noise)⁹
- since optimal mutation strength changes during the approach to the optimum, the steps used to calculate the statistics must be normalized w.r.t. the actual mutation strength σ
- this leads to the (modified¹⁰) cumulative step length adaptation (CSA) update rule¹¹

$$\sigma := \sigma \exp\left[\frac{1}{2D} \left(\frac{\|\mathbf{s}\|^2}{N} - 1\right)\right] \tag{30}$$

- single steps of the evolution path are very noisy, therefore, path length statistics must be updated by the weighted cumulation (27)
- damping constant $D = \Theta(\sqrt{N})$ (N search space dimensionality)

⁹H.-G. Beyer and D.V. Arnold. Qualms Regarding the Optimality of Cumulative Path Length Control in CSA/CMA-Evolution Strategies. Evol. Comp., 11(1):19-28, 2003.

¹⁰D.V. Arnold, H.-G. Beyer. Performance Analysis of Evolutionary Optimization With Cumulative Step Length Adaptation. IEEE Trans. on Autom. Control, 49(4): 617–622, 2004.

¹¹N. Hansen, A. Ostermeier. Adapting Arbitrary Normal Mutation Distributions in Evolution Strategies: The Covariance Matrix Adaptation. In Proc. 1996 IEEE Int'l Conf. on Evol. Comp. (ICEC'96), 312–317.

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

29/67

How to Get the Most Out of It The $(\mu/\mu_I, \lambda)$ -MA-ES

Putting Things Together: The $(\mu/\mu_I,\lambda)$ -MA-ES

Initialize $(\mathbf{x}, \sigma, \mathbf{D}, \tau_s, \tau_1, \tau_M, \mathbf{s} := \mathbf{I}, \mathbf{M} := \mathbf{I})$	(IVI I)
Repeat	(M2)
For $l := 1$ To λ	(M3)
$\widetilde{\mathbf{z}}_l := oldsymbol{\mathcal{N}}_l(0, \mathbf{I})$	(M4)
$ ilde{\mathbf{d}}_l := \mathbf{M} \widetilde{\mathbf{z}}_l$	(M5)
$ ilde{\mathbf{x}}_l := \mathbf{x} + oldsymbol{\sigma} ilde{\mathbf{d}}_l$	(M6)
$ ilde{f}_l := f(ilde{\mathbf{x}}_l)$	(M7)
$ ilde{\mathfrak{a}}_l := ig(ilde{f}_l, ilde{\mathbf{x}}_l, ilde{\mathbf{z}}_lig)$	(M8)
End	(M9)
RankOffspringPopulation $(\tilde{\mathfrak{a}}_1,\ldots,\tilde{\mathfrak{a}}_{\lambda})$	(M10)

$$\mathbf{x} := \langle \tilde{\mathbf{x}} \rangle \tag{M11}$$

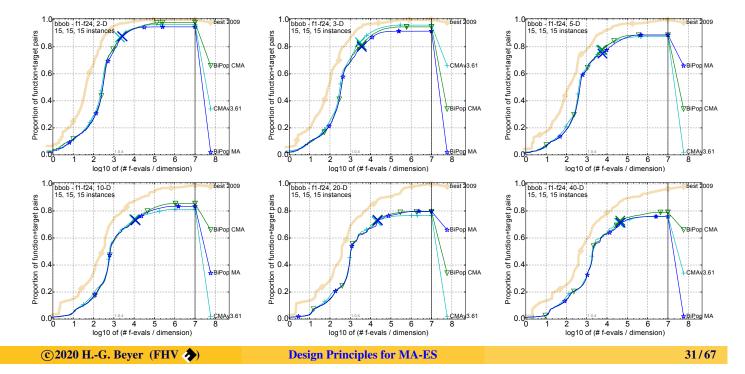
$$\mathbf{s} := \left(1 - \frac{1}{\tau_s}\right)\mathbf{s} + \sqrt{\frac{\mu}{\tau_s}\left(2 - \frac{1}{\tau_s}\right)}\langle \tilde{\mathbf{z}}\rangle \tag{M12}$$

$$\mathbf{M} := \mathbf{M} \left[\mathbf{I} + \frac{1}{\tau_1} \left(\langle \mathbf{s} \mathbf{s}^{\mathsf{T}} \rangle - \mathbf{I} \right) + \frac{1}{\tau_{\mathsf{M}}} \left(\langle \tilde{\mathbf{z}} \tilde{\mathbf{z}}^{\mathsf{T}} \rangle - \mathbf{I} \right) \right]$$
 (M13)
$$\sigma := \sigma \exp \left[\frac{1}{2D} \left(\frac{\|\mathbf{s}\|^2}{N} - 1 \right) \right]$$
 (M14)

Return(x)

- M6: there is only one σ
- M13: incorporation of the s-path direction
- M1: initial $\mathbf{s} := (1, \dots, 1)^{\mathrm{T}} \in \mathbb{R}^N$
- M12: s-path cumulation
- M14: σ -update using cumulative step length adapatation (CSA)
- strategy parameters (can be improved):
 - $ightharpoonup D := \sqrt{N}$
 - $\tau_1 := 2N^2$
 - bullet $au_s := N$
 - \bullet $\tau_M := 2 + \frac{(N+1)N}{\mu}$
- published in TEVC 21(5), see Footnote 4

- the MA-ES can be regarded as an approximation of the CMA-ES
- however, the performance differences on standard test beds including the COCO BBOB are not really significant (using weighted recombination)
- no big differences even for population sizes such as $\lambda = 4N^2$
- Example: COCO BBOB performance in BiPop-ES setting:



How to Get the Most Out of It The $(\mu/\mu_I, \lambda)$ -MA-ES

Reducing the Internal Algorithm's Costs: The Fast- $(\mu/\mu_I, \lambda)$ -MA-ES

Initialize $(\mathbf{x}, \sigma, D, \tau_s, \tau_1, \tau_M, \mathbf{s} := 1, \mathbf{M} := \mathbf{I})$	(M1)	• M13 dominates internal
Repeat	(M2)	cost of the algorithm,
For $l := 1$ To λ	(M3)	Slide 30: $\mathcal{O}(N^3)$
$\widetilde{oldsymbol{z}}_l := oldsymbol{\mathcal{N}}_l(oldsymbol{0}, oldsymbol{ ext{I}})$	(M4)	(matrix-matrix
$\widetilde{\mathbf{d}}_l := \mathbf{M}\widetilde{\mathbf{z}}_l$	(M5)	multiplication)
$\widetilde{\mathbf{x}}_l := \mathbf{x} + \sigma \widetilde{\mathbf{d}}_l$	(M6)	,
$\widetilde{f}_l := f(\widetilde{\mathbf{x}}_l)$	(M7)	• reordering M13 yields
$\widetilde{\mathfrak{a}}_l := ig(\widetilde{f}_l, \widetilde{\mathbf{x}}_l, \widetilde{\mathbf{z}}_l, \widetilde{\mathbf{d}}_l ig)$	(M8)	$\mathcal{O}(N^2)$ since there are
End	(M9)	only matrix-vector
RankOffspringPopulation $(\tilde{\mathfrak{a}}_1,\ldots,\tilde{\mathfrak{a}}_{\lambda})$	(M10)	products and sums
$\mathbf{x} := \langle ilde{\mathbf{x}} angle$	(M11)	• note, this algorithm is
$\mathbf{s} := \left(1 - rac{1}{ au_s} ight)\mathbf{s} + \sqrt{rac{\mu}{ au_s}\left(2 - rac{1}{ au_s} ight)}\langle ilde{\mathbf{z}} angle$	(M12)	equivalent to the $(\mu/\mu_I, \lambda)$ -MA-ES of
$\mathbf{M} := \left(1 - \frac{1}{\tau_1} - \frac{1}{\tau_M}\right) \mathbf{M} + \frac{1}{\tau_1} \langle (\mathbf{M}\mathbf{s})\mathbf{s}^{T} \rangle + \frac{1}{\tau_M} \langle \tilde{\mathbf{d}} \hat{\mathbf{z}}$	$\langle T \rangle (M13)$	Slide 30
$\sigma := \sigma \exp \left[\frac{1}{2D} \left(\frac{\ \mathbf{s}\ ^2}{N} - 1 \right) \right]$	(M14)	• now, the $\lambda \tilde{\mathbf{d}}$
Until(Termination_Condition)	(M15)	calculations in (M5)
Return(x)	(M16)	become the bottleneck

Advantages of the MA-ES

Using MA-ES instead of CMA-ES is recommended, because:

- simpler implementation, no eigenvalue or Cholesky decomposition, no Cholesky factorization (faster than the KRAUSE ET AL. 12 approach)
- 2 ... and better suited for GPUs
- 3 uses only one evolution path, thus, reduced number of strategy parameters
- greater numerical stability, regularization yet possible
- 3 due to its simplicity, the MA-ES is a starting point for the derivation of approximation schemes for (M5, M13) to further reduce the single offspring generation cost (see Slide 35ff)
- **6** (M13) should be the starting point for theoretical convergence analyses
- MA-ES might be easier for teaching undergraduates

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

33/67

How to Get the Most Out of It

The $(\mu/\mu_I, \lambda)$ -MA-ES

Example: Cholesky-CMA-ES

```
Algorithm 1: The Cholesky-CMA-ES.
input:\lambda, \mu, m_1, \omega_{i=1...\mu}, c_{\sigma}, d_{\sigma}, c_c, c_1 and c_{\mu}
A_1 = I, p_{c,1} = \mathbf{0}, p_{\sigma,1} = \mathbf{0}
for t = 1, 2, ... do
       for i=1,\ldots,\lambda do
         \boldsymbol{x}_{i,t} = \sigma_t A_t \boldsymbol{y}_{i,t} + \boldsymbol{m}_t, \ \boldsymbol{y}_{i,t} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
       Sort x_{i,t}, i = 1, ..., \lambda increasing by f(x_{i,t})
       m_{t+1} = \sum_{i=1}^{\mu} \omega_i x_{i,t}
       \boldsymbol{p}_{c,t+1} = (1 - c_c)\boldsymbol{p}_{c,t} + \sqrt{c_c(2 - c_c)\mu_{\text{eff}}} \frac{\boldsymbol{m}_{t+1} - \boldsymbol{m}_t}{\sigma_{\bullet}}
       // Apply formula (2) to A_t
       A_{t+1} \leftarrow \sqrt{1 - c_1 - c_\mu} A_t
       A_{t+1} \leftarrow \text{rankOneUpdate}(A_{t+1}, c_1, p_{c,t+1})
       for i=1,\ldots,\mu do
         A_{t+1} \leftarrow \text{rankOneUpdate}(A_{t+1}, c_{\mu}\omega_i, \frac{\boldsymbol{x}_{i,t} - \boldsymbol{m}_t}{\sigma_{\star}})
       // Update \sigma using \hat{s}_k as in (5)
       \boldsymbol{p}_{\sigma,t+1} = (1 - c_{\sigma})\boldsymbol{p}_{\sigma,t} + \sqrt{c_{\sigma}(2 - c_{\sigma})\mu_{\text{eff}}}A_{t}^{-1}\frac{\boldsymbol{m}_{t+1} - \boldsymbol{m}_{t}}{\sigma_{t}}
       \sigma_{t+1} = \sigma_t \exp\left(\frac{c_{\sigma}}{d_{\sigma}} \left(\frac{\|\boldsymbol{p}_{\sigma,t+1}\|}{\mathbb{E}\{\gamma\}} - 1\right)\right)
```

```
Algorithm 2: rankOneUpdate(A, \beta, v)
input: Cholesky factor A \in \mathbb{R}^{d \times d} of C, \beta \in \mathbb{R}, v \in \mathbb{R}^d
output: Cholesky factor A' of C + \beta vv^T
b \leftarrow 1
for j = 1, \ldots, d do
       A'_{jj} \leftarrow \sqrt{A_{jj}^2 + \frac{\beta}{b}\alpha_i^2}
       \gamma \leftarrow A_{ij}^2 b + \beta \alpha_i^2
       for k = j + 1, \dots, d do
\alpha_k \leftarrow \alpha_k - \frac{\alpha_j}{A_{jj}} A_{kj}
          A'_{kj} = \frac{A'_{jj}}{A_{jj}} A_{kj} + \frac{A'_{jj}\beta\alpha_j}{\gamma} \alpha_k
```

Published in: O. Krause, D.R. Arbones, and C. Igel, "CMA-ES with optimal covariance Update and Storage Complexity," in Proc. Adv. Neural Inf. Process. Syst. Barcelona, Spain, 2016, pp. 370–378.

¹²O. Krause, D.R. Arbones, and C. Igel. CMA-ES with Optimal Covariance Update and Storage Complexity, in Proc. Adv. Neural Inf. Process. Syst. 29 (NIPS'2016), pp. 370–378, Barcelona, Spain, 2016.

 \dots for large search space dimensionalities N:

The Limited Memory MA-ES - the LM-MA-ES¹³

- algorithm complexity of the fast MA-ES is still of $\mathcal{O}(N^2)$ due to (M11) and (M5)
- if one wants to reduce the complexity further, one needs to approximate the matrix-vector operations in (M5) and (M11)
- an approach taken ideas from *Limited Memory BFGS* comes into mind, however, an alternative approach will be considered here
- in order to approximate the **M** matrix, γ vectors \mathbf{p}_k are used
- \bullet running γ evolution paths at different time scales

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

35/67

How to Get the Most Out of It The Limited Memory MA-ES

$(\mu/\mu_w, \lambda)$ -LM-MA-ES

Initialize $(\mathbf{x}^{(0)}, \sigma^{(0)}, g := 0, \mathbf{s}^{(0)} := 1, \mathbf{p}_{1 \dots \gamma}^{(0)} := 0)$ Repeat	(L1) (L2)
For $l := 1$ To λ	(L3)
$ ilde{\mathbf{z}}_l^{(g)} := oldsymbol{\mathcal{N}}_l(0, \mathbf{I})$	(L4)
$ ilde{\mathbf{d}}_{t}^{(g)} := ilde{\mathbf{z}}_{t}^{(g)}$	(L5)
For $k := 1$ To $\min(g, \gamma)$	(L6)
$\tilde{\mathbf{d}}_{l}^{(g)} := (1 - c_{d,k})\tilde{\mathbf{d}}_{l}^{(g)} + c_{d,k} \left(\mathbf{p}_{k}^{(g)}^{T}\tilde{\mathbf{d}}_{l}^{(g)}\right)\mathbf{p}_{k}^{(g)}$	(L7)
End	(L8)
$ ilde{\mathbf{x}}_l^{(g)} := \mathbf{x}^{(g)} + \sigma^{(g)} ilde{\mathbf{d}}_l^{(g)}$	(L9)
$ ilde{f}_l^{(g)} := f(ilde{\mathbf{x}}_l^{(g)})$	(L10)
$ ilde{\mathfrak{a}}_l^{(g)} := (ilde{f}_l^{(g)}, ilde{\mathbf{x}}_l^{(g)}, ilde{\mathbf{z}}_l^{(g)})$	(L11)
End	(L12)
RankOffspringPopulation $\left(ilde{\mathfrak{a}}_1^{(g)},\ldots, ilde{\mathfrak{a}}_{\lambda}^{(g)} ight)$	(L13)
$\mathbf{x}^{(g+1)} := \left\langle \tilde{\mathbf{x}}^{(g)} \right\rangle_{\!\!\!w}$	(L14)
$\mathbf{s}^{(g+1)} := (1 - c_s)\mathbf{s}^{(g)} + \sqrt{\mu_{\text{eff}}c_s(2 - c_s)} \left\langle \tilde{\mathbf{z}}^{(g)} \right\rangle_{\mathcal{U}}$	(L15)
For $k := 1$ To γ	(L16)
$\mathbf{p}_{k}^{(g+1)} := (1 - c_{p,k})\mathbf{p}_{k}^{(g)} + \sqrt{\mu_{\text{eff}}c_{p,k}(2 - c_{p,k})} \left\langle \tilde{\mathbf{z}}^{(g)} \right\rangle_{u}$	(L17)
End	(L18)
$\sigma^{(g+1)} := \sigma^{(g)} \exp \left[rac{c_s}{2} \left(rac{\ \mathbf{s}^{(g+1)}\ ^2}{N} - 1 ight) ight]$	(L19)
g := g + 1	(L20)

heuristically chosen strategy parameters (for N > 50):

- number of evolution paths $\gamma := 4 + \lfloor 3 \ln N \rfloor$
- weighting constants $c_{d,k} := \frac{1}{1.5^{k-1}N}$
- σ -evolution path cumulation constant $c_s := \frac{2\lambda}{N} \quad (<\frac{1}{2})$
- **p**-evolution path cumulation constants $c_{p,k} := \frac{\lambda}{4^{k-1}N}$

using weighted recombination: $\langle \cdot \rangle_w$ and μ_{eff} , see Slide 38

Until (termination condition(s) fulfilled)

(L21)

¹³I. Loshchilov, T. Glasmachers, and H.-G. Beyer. Large Scale Black-box Optimization by Limited-Memory Matrix Adaptation. *IEEE Transactions on Evolutionary Computation*, 2018. DOI: 10.1109/TEVC.2018.2855049.

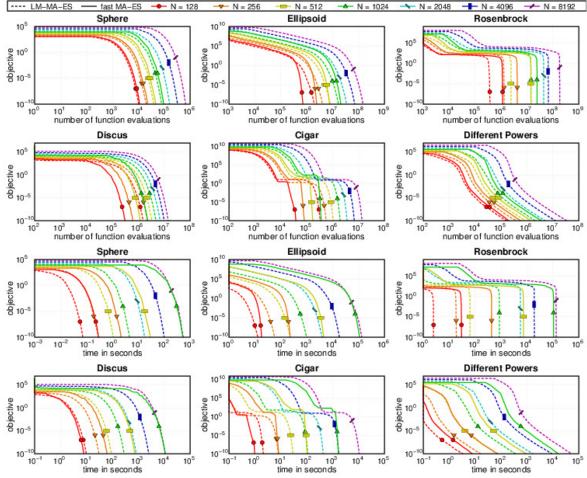


Figure 12: Performance of LM-MA-ES vs. fastMA-ES w.r.t. #-fevals and time.

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

37/67

How to Get the Most Out of It The

The Limited Memory MA-ES

Remarks (LM-MA-ES Performance)

- algorithm complexity of LM-MA-ES: $\mathcal{O}(\gamma N) = \mathcal{O}(N \ln N)$
- note, there are problem instances where LM-MA-ES outperforms MA-ES w.r.t. function evaluations (e.g. Rosenbrock N = 256, 512)

Remarks (additional details LM-MA-ES)

- weighted recombination: $\langle \tilde{\mathbf{a}}^{(g)} \rangle_{w} := \sum_{m=1}^{\mu} w_{m} \mathbf{a}_{m;\lambda}^{(g)}$
- "effective" parent population value $\mu_{\text{eff}} = \left(\sum_{m=1}^{\mu} w_m^2\right)^{-1}$
- weights w_m must fulfill $\sum_{m=1}^{\mu} w_m \stackrel{!}{=} 1$ and should not emphasize bad individuals, e.g.

$$w_m := \begin{cases} \frac{\ln\left(\frac{\lambda+1}{2}\right) - \ln m}{\sum_{k=1}^{\mu} \left(\ln\left(\frac{\lambda+1}{2}\right) - \ln k\right)}, & \text{for } 1 \le m \le \mu, \\ 0, & \text{otherwise} \end{cases}$$

• population sizing: $\lambda = 4 + \lfloor 3 \ln N \rfloor$ and $\mu = \lfloor \frac{\lambda}{2} \rfloor$

Note, these recommendations are directly taken from: N. Hansen. *The CMA Evolution Strategy: A Comparing Review.* DOI: 10.1007/3-540-32494-1 4

Design Principles for MA-ES on Constrained Problems

Optimization under constraints is a wide and almost uncharted field for Matrix Adaptation Evolution Strategies

• equality contraints

$$\forall j = 1, \dots, J: \ h_j(\mathbf{x}) = 0, \quad \mathbf{x} \in \mathbb{R}^{N_x}$$
 (31)

inequality constraints

$$\forall k = 1, \dots, K: g_k(\mathbf{x}) \le 0, \quad \mathbf{x} \in \mathbb{R}^{N_x}$$
 (32)

3 mixtures of (31) and (32)

Often used: Penalty methods that do not touch the ES itself, but shifts the problem into a modified objective function

Up until recently, there were only a few exeptions from this approach, most notable the work of D. Arnold et al.¹⁴

¹⁴E.g.: D.V. Arnold, *Reconsidering constraint release for active-set evolution strategies*, GECCO'17, pp. 665–672. DOI: 10.1145/3071178.3071294

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

39/67

Design Principles for MA-ES on Constrained Problems

Equality Constraints

Equality Constraints

often used approach:

• turn (31) into inequalities and use methods for inequality handling (standard way in EAs)

$$h_j(\mathbf{x}) = 0 \Leftrightarrow |h_j(\mathbf{x})| - \delta \le 0 \quad \text{for} \quad \delta \to 0$$
 (33)

- **problem:** δ must be chosen sufficiently small
- ightharpoonup feasible region is very small (measure goes to zero if $\delta \to 0$)
 - ideal solution: generate offspring that fulfill $h_j(\mathbf{x}) = 0$ automatically **Options:**
 - find suitable transformation that transforms a "raw offspring" into a feasible offspring
 - \square applicable for special $h_i(\mathbf{x})$ cases only
 - 2 repair "raw offspring" such that it fulfills (31) and (optionally) perform a back-calculation to adapt the M matrix
- these methods are referred to as inner point methods

1. Transformation methods

• linear equality constraints

$$\mathbf{A}\mathbf{x} = \mathbf{b}, \quad \text{i.e.,} \quad h_i(\mathbf{x}) = \sum_{n=1}^{N} (\mathbf{A})_{in}(\mathbf{x})_n - (\mathbf{b})_i = 0$$
 (34)

- ► use null-space mutations¹⁵
- ▶ note that any solution \mathbf{x} of (34) can be decomposed into an *in*homogenous and a homogenous solution

$$\mathbf{A}(\mathbf{x}_{inh} + \mathbf{x}_{h}) = \mathbf{b}$$
 where $\mathbf{A}\mathbf{x}_{h} = \mathbf{0}$, i.e., $\mathbf{x}_{h} \in null(\mathbf{A})$ (35)

▶ the elements of the null space of **A** can be represented by an orthogonal basis, the vectors of this basis can be collected in a matrix $\mathbf{B} \in \mathbb{R}^{N_x \times N}$ obeying

$$\mathbf{B}^{\mathsf{T}}\mathbf{B} = \mathbf{I} \quad \text{and} \quad \mathbf{A}\mathbf{B} = \mathbf{0}, \tag{36}$$

• the initial parental state is obtained by solving the linear system $\mathbf{A}\mathbf{x}_{inh} = \mathbf{b}$ (perhaps adding an \mathbf{x}_h to shift the initial parent to a desired position)

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

41/67

Design Principles for MA-ES on Constrained Problems

Linear Equality Constraints

Initialize ($\mathbf{x} := \mathbf{x}_{inh}, \sigma, D, \tau_s, \tau_1, \tau_M,$	
$\mathbf{s} := 1, \mathbf{M} := \mathbf{I}, \mathbf{B} := \text{null}(\mathbf{A})$	(M1)
Repeat	(M2)
For $l := 1$ To λ	(M3)
$ ilde{\mathbf{z}}_l := oldsymbol{\mathcal{N}}_l(0, \mathbf{I})$	(M4)
$\widetilde{\mathbf{d}}_l := \mathbf{M}\widetilde{\mathbf{z}}_l$	(M5)
$\tilde{\mathbf{x}}_l := \mathbf{x} + \sigma \mathbf{B} \tilde{\mathbf{d}}_l$	(M6)
$ ilde{f}_l := f(ilde{\mathbf{x}}_l)$	(M7)
$ ilde{\mathfrak{a}}_l := ig(ilde{f}_l, ilde{\mathbf{x}}_l, ilde{\mathbf{z}}_lig)$	(M8)
End	(M9)
RankOffspringPopulation($\tilde{\mathfrak{a}}_1, \dots, \tilde{\mathfrak{a}}_{\lambda}$)	(M10)
$\mathbf{x} := \langle \widetilde{\mathbf{x}} angle$	(M11)
$\mathbf{s} := \left(1 - \frac{1}{\tau_s}\right)\mathbf{s} + \sqrt{\frac{\mu}{\tau_s}\left(2 - \frac{1}{\tau_s}\right)}\langle \tilde{\mathbf{z}} \rangle$	(M12)
$\mathbf{M} := \mathbf{M} \left[\mathbf{I} + rac{1}{ au_1} \left(\langle \mathbf{s} \mathbf{s}^{ ext{ iny T}} angle - \mathbf{I} ight) + rac{1}{ au_{ ext{ iny M}}} \left(\langle \widetilde{\mathbf{z}} \widetilde{\mathbf{z}}^{ ext{ iny T}} angle - \mathbf{I} ight) ight]$	(M13)
$\sigma := \sigma \exp\left[\frac{1}{2D} \left(\frac{\ \mathbf{s}\ ^2}{N} - 1\right)\right]$	(M14)
Until(Termination_Condition)	(M15)
Return(x)	(M16)

- M1: initial \mathbf{x} is obtained by solving $\mathbf{A}\mathbf{x}_{inh} = \mathbf{b}$
- dimensionality N of $\tilde{\mathbf{z}}$ and $\tilde{\mathbf{d}}$ is given by $N := \operatorname{rank}(\mathbf{B})$
- $\mathbf{M} \in \mathbb{R}^{N \times N}$

¹⁵First introduced in: P. Spettel et al.: "A Covariance Matrix Self-Adaptation Evolution Strategy for Optimization under Linear Constraints." *IEEE Transactions on Evolutionary Computation* 23(3):514–524, 2019. DOI: 10.1109/TEVC.2018.2871944

ellipsoidal equality constraint

$$\mathbf{x}^{\mathsf{T}}\mathbf{S}\mathbf{x} = \kappa > 0, \quad \forall \mathbf{x} \in \mathbb{R}^{N} \wedge \mathbf{x} \neq \mathbf{0}$$
 (37)

- ► use non-linear transformation¹⁶
- ► consider the Cholesky decomposition of **S** in the **A**-factor

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \mathbf{S} \tag{38}$$

• then an offspring $\tilde{\mathbf{x}}$ satisfying (37) is obtained by

$$\tilde{\mathbf{x}} := \sqrt{\kappa} \frac{\mathbf{x} + \sigma \mathbf{A}^{-1} \tilde{\mathbf{d}}}{\|\mathbf{A}\mathbf{x} + \sigma \tilde{\mathbf{d}}\|}$$
(39)

the parental state can be obtained similarly

$$\langle \tilde{\mathbf{x}} \rangle := \sqrt{\kappa} \frac{\mathbf{x} + \sigma \mathbf{A}^{-1} \langle \tilde{\mathbf{d}} \rangle}{\|\mathbf{A}\mathbf{x} + \sigma \langle \tilde{\mathbf{d}} \rangle\|}$$
(40)

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

43/67

Design Principles for MA-ES on Constrained Problems Ellipsoidal Equality Constraint

Initialize $(\mathbf{x}, \sigma, D, \tau_s, \tau_1, \tau_M, \mathbf{s} := 1, \mathbf{M} := \mathbf{I},$	
$\mathbf{A} := \text{CholeskyDecomposition}(\mathbf{S})$	(M1)
Repeat	(M2)
For $l := 1$ To λ	(M3)
$ ilde{\mathbf{z}}_l := oldsymbol{\mathcal{N}}_l(0, \mathbf{I})$	(M4)
$\widetilde{\mathbf{d}}_l := \mathbf{M}\widetilde{\mathbf{z}}_l$	(M5)
$ ilde{\mathbf{x}}_l := \sqrt{\kappa} rac{\mathbf{x} + \sigma \mathbf{A}^{-1} ilde{\mathbf{d}}_l}{\ \mathbf{A}\mathbf{x} + \sigma ilde{\mathbf{d}}_l\ }$	(M6)
$ ilde{f}_l := f(ilde{\mathbf{x}}_l)$	(M7)
$ ilde{\mathfrak{a}}_l := \left(ilde{f}_l, ilde{\mathbf{x}}_l, ilde{\mathbf{z}}_l ight)$	(M8)
End	(M9)
RankOffspringPopulation($\tilde{\mathfrak{a}}_1, \ldots, \tilde{\mathfrak{a}}_{\lambda}$)	(M10)
$\mathbf{x} := \sqrt{\kappa} \frac{\mathbf{x} + \sigma \mathbf{A}^{-1} \langle \tilde{\mathbf{d}} \rangle}{\ \mathbf{A}\mathbf{x} + \sigma \langle \tilde{\mathbf{d}} \rangle \ }$	(M11)
$\mathbf{s} := \left(1 - \frac{1}{\tau_s}\right)\mathbf{s} + \sqrt{\frac{\mu}{\tau_s}}\left(2 - \frac{1}{\tau_s}\right)\langle \tilde{\mathbf{z}}\rangle$	(M12)
$\mathbf{M} := \mathbf{M} \left[\mathbf{I} + rac{1}{ au_1} \left(\langle \mathbf{s} \mathbf{s}^{ ext{ iny T}} angle - \mathbf{I} ight) + rac{1}{ au_{ ext{M}}} \left(\langle ilde{\mathbf{z}} ilde{\mathbf{z}}^{ ext{ iny T}} angle - \mathbf{I} ight) ight]$	(M13)
$\sigma := \sigma \exp\left[\frac{1}{2D} \left(\frac{\ \mathbf{s}\ ^2}{N} - 1\right)\right]$	(M14)
Until(Termination_Condition)	(M15)
Return(x)	(M16)

- M6: non-linear transformation of direction vector
- M1: A^{-1} can be calculated as well
- M11: this transformation might be replaced by $\langle \mathbf{x} \rangle$, in that case M16 must return $\tilde{\mathbf{x}}_{1;\lambda}$. Note, in that case performance might/will be different

Remark: There is also a transformation (not discussed here) that satisfies hyperbolic constraints

¹⁶First introduced in: P. Spettel & H.-G. Beyer: "Matrix Adaptation Evolution Strategies for Optimization Under Nonlinear Equality Constraints." *Swarm and Evolutionary Computation*, 2019. DOI: 10.1016/j.swevo.2020.100653

2. Repair method

• even if the parental state \mathbf{x} fulfills $\forall j = 1, ..., J : h_j(\mathbf{x}) = 0$, the offspring state $\tilde{\mathbf{x}} := \mathbf{x} + \sigma \tilde{\mathbf{d}}$ will (almost surely) violate the constraint(s)

$$\mathbf{h}(\tilde{\mathbf{x}}) \neq \mathbf{0} \tag{41}$$

 $\tilde{\mathbf{x}}$ must be repaired by adding $\Delta \mathbf{x}$ such that

$$\mathbf{h}(\tilde{\mathbf{x}} + \Delta \mathbf{x}) = \mathbf{0} \tag{42}$$

• Taylor expansion yields with the Jacobian matrix $(\mathbf{J})_{jn} := \frac{\partial h_j}{\partial x_n}$

$$\mathbf{h}(\tilde{\mathbf{x}} + \Delta \mathbf{x}) = \mathbf{h}(\tilde{\mathbf{x}}) + \mathbf{J}\Delta \mathbf{x} + \dots = \mathbf{0}$$
 (43)

• neglecting higher-order terms, Δx can be approximately determined using the MOORE-PENROSE *Pseudoinverse* J^{\dagger} , one obtains

$$\Delta \mathbf{x} = -\mathbf{J}^{\dagger}(\tilde{\mathbf{x}})\mathbf{h}(\tilde{\mathbf{x}}) \tag{44}$$

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

45/67

• thus, performing the update $\tilde{\mathbf{x}} := \tilde{\mathbf{x}} + \Delta \mathbf{x}$ yielding the iterative scheme

$$\tilde{\mathbf{x}} := \tilde{\mathbf{x}} - \mathbf{J}^{\dagger}(\tilde{\mathbf{x}})\mathbf{h}(\tilde{\mathbf{x}}) \tag{45}$$

- the scheme (44) is iterated until $\|\mathbf{h}(\tilde{\mathbf{x}})\|$ is sufficiently small (e.g. 10^{-8})
- this process is performed by the function Repair($\tilde{\mathbf{x}}$, \mathbf{h}) in the pseudocode on the next slide¹⁷
- the Jacobian can be determined numerically (black-box scenario) or symbolically (white-box)

MA Peculiarities:

- \bullet $\tilde{\mathbf{z}}$ back calculation to increase probability for individuals in vicinity of constraint hypersurface
- ullet requires the "inverse" \mathbf{M}_{inv} of \mathbf{M}
- ullet can be done by an $\mathbf{M}_{\mathrm{inv}}$ update (initially $\mathbf{M}_{\mathrm{inv}} = \mathbf{I}$)

$$\mathbf{M}_{\text{inv}} := \left[\mathbf{I} - \frac{1}{\tau_{1}} \left(\langle \mathbf{s} \mathbf{s}^{\mathsf{T}} \rangle - \mathbf{I} \right) - \frac{1}{\tau_{M}} \left(\langle \tilde{\mathbf{z}} \tilde{\mathbf{z}}^{\mathsf{T}} \rangle - \mathbf{I} \right) \right] \mathbf{M}_{\text{inv}}$$
(46)

¹⁷For details it is referred to: P. Spettel & H.-G. Beyer: "Matrix Adaptation Evolution Strategies for Optimization Under Nonlinear Equality Constraints." *Swarm and Evolutionary Computation*, 2019. DOI: 10.1016/j.swevo.2020.100653

Initialize $(\mathbf{x}, \sigma, D, \tau_s, \tau_1, \tau_M, \mathbf{s} := 1, \mathbf{M} := \mathbf{I})$	(M1)
Repeat	(M2)
For $l := 1$ To λ	(M3)
$\widetilde{\mathbf{z}}_l := oldsymbol{\mathcal{N}}_l(0, \mathbf{I})$	(M4)
$\widetilde{\mathbf{d}}_l := \mathbf{M}\widetilde{\mathbf{z}}_l$	(M5)
$\tilde{\mathbf{x}}_l := \operatorname{Repair}(\mathbf{x} + \sigma \tilde{\mathbf{d}}_l, \mathbf{h})$	(M6)
$\widetilde{\mathbf{z}}_l := rac{1}{\sigma} \mathbf{M}_{ ext{inv}} (\widetilde{\mathbf{x}}_l - \mathbf{x})$	(M7)
$ ilde{f}_l := f(ilde{\mathbf{x}}_l)$	(M8)
$ ilde{\mathfrak{a}}_l := (ilde{f}_l, ilde{\mathbf{x}}_l, ilde{\mathbf{z}}_l)$	(M9)
End	(M10)
RankOffspringPopulation $(\tilde{\mathfrak{a}}_1,\ldots,\tilde{\mathfrak{a}}_{\lambda})$	(M11)
$\mathbf{x} := \text{Repair}(\langle \tilde{\mathbf{x}}, \mathbf{h} \rangle)$	(M12)
$\mathbf{s} := \left(1 - \frac{1}{\tau_s}\right)\mathbf{s} + \sqrt{\frac{\mu}{\tau_s}\left(2 - \frac{1}{\tau_s}\right)}\langle \tilde{\mathbf{z}} \rangle$	(M13)
$\mathbf{M} := \mathbf{M} \left[\mathbf{I} + rac{1}{ au_1} \left(\left\langle \mathbf{s} \mathbf{s}^{ ext{ iny T}} ight angle - \mathbf{I} ight) + rac{1}{ au_{ ext{M}}} \left(\left\langle \widetilde{\mathbf{z}} \widetilde{\mathbf{z}}^{ ext{ iny T}} ight angle - \mathbf{I} ight) ight]$	(M14)
$\sigma := \sigma \exp \left[\frac{1}{2D} \left(\frac{\ \mathbf{s}\ ^2}{N} - 1 \right) \right]$	(M15)
Until(Termination_Condition)	(M16)
Return(x)	(M17)

- M6: by iterating (45)
- M7: calculate back such that $\tilde{\mathbf{z}}_l$ fulfills $\mathbf{h}(\tilde{\mathbf{x}}_l) = \mathbf{0}$
- M_{inv} "inverse matrix" either by pseudoinverse of M or iteration after (M14) using Eq. (46)
- M12: this transformation might be replaced by ⟨x⟩, in that case M16 must return x̃_{1;λ}.
 Note, in that case performance might/will be different
- Note, this MA-ES in an *interior point method*

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

47/67

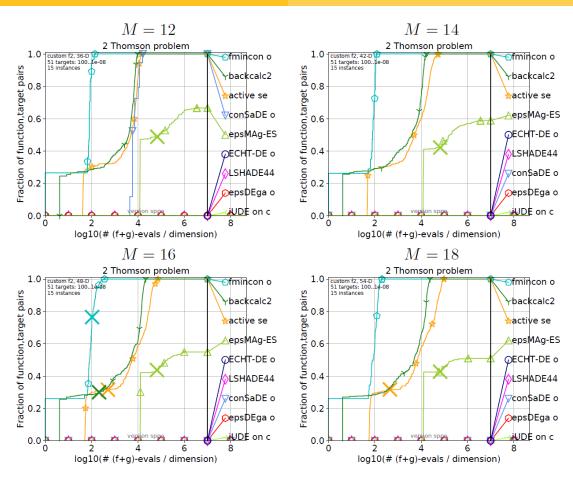


Figure 13: ECDF-plots of Thomson's problem (M - number of points on sphere).

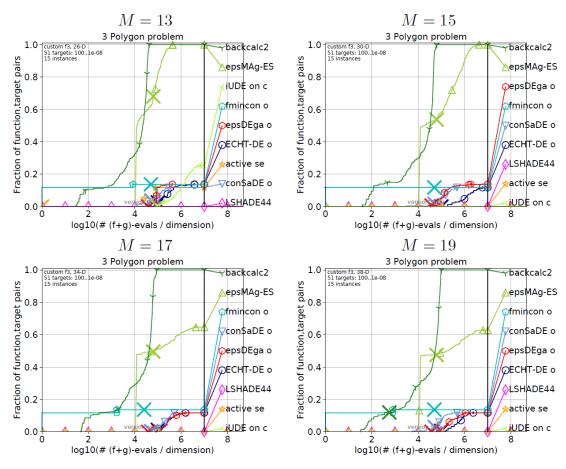


Figure 14: ECDF-plots of maximum area problem (M = nodes - 1).

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

49/67

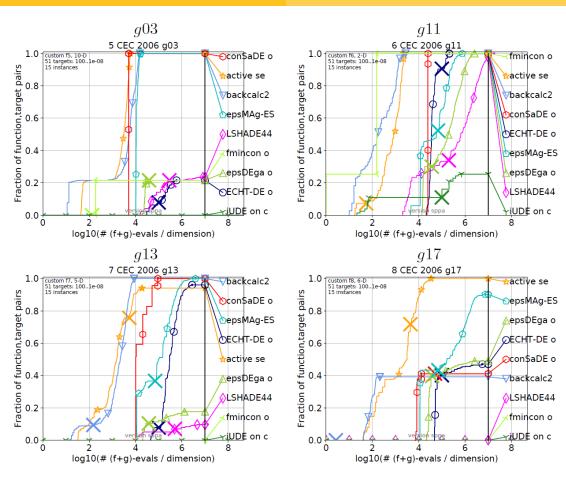


Figure 15: ECDF-plots of CEC06 equality constraint problems.

Inequality Constraints

- most constraint handling EAs are *NOT* interior point methods, i.e., they allow for *infeasible* solutions during the evolution process
- especially, the competitions at CEC and COCO BBOB allow for infeasible solutions
- the most successful will be considered below
 - however, there is also an ES-specific approach by D.V. ARNOLD et al. ¹⁸ called "active covariance adaptation"
 - idea is to incorporate even the *worst individuals*' direction vectors \tilde{d} in the update of the covariance matrix \mathbf{C} using *negative* weights w_l $(\forall l > \lambda/2)$

$$\mathbf{C} := \left(1 - \frac{1}{\tau_w}\right)\mathbf{C} + \frac{1}{\tau_w}\langle \tilde{\mathbf{d}}\tilde{\mathbf{d}}^{\mathrm{T}}\rangle_w \quad \text{where} \quad \langle \tilde{d}\tilde{d}^{\mathrm{T}}\rangle_w := \sum_{l=1}^{\lambda} w_l \tilde{\mathbf{d}}_{l;\lambda} \tilde{\mathbf{d}}_{l;\lambda}^{\mathrm{T}} \quad (47)$$

¹⁸G. Jastrebski and D. Arnold. *Improving Evolution Strategies through Active Covariance Matrix Adaptation*. CEC'2006, pp. 2814–2821. DOI: 10.1109/CEC.2006.1688662

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

51/67

Design Principles for MA-ES on Constrained Problems

Inequality Constraints

- this approach has been extended and used in an (1+1)-ES for constrained optimization¹⁹
- **Problem:** due to the negative weights in (47) \mathbb{C} can become indefinite and $\sqrt{\mathbb{C}} \not\in \mathbb{R}^{N_x \times N_x}$
- the novel **M** update (15) does *not* suffer from such problems, it solves the indefiniteness problem

Idea:

• for each constraint $g_k(\mathbf{x})$ (32) keep a fading record of \mathbf{v}_k -vectors that is updated in the case that kth constraint is violated for offspring $\tilde{\mathbf{x}}$

$$\forall k \in \{k | g_k(\tilde{\mathbf{x}}) > 0\} \colon \ \mathbf{v}_k := \left(1 - \frac{1}{\tau_\nu}\right) \mathbf{v}_k + \frac{1}{\tau_\nu} \tilde{\mathbf{z}}$$
 (48)

• this learns the local normal direction of the constraint boundary from viewpoint of the isotropic **z** variation in the offspring generation loop

¹⁹D.V. Arnold & N. Hansen. *A* (*1*+*1*)-*CMA-ES for constrained optimisation*. GECCO'2012, pp. 297–304. DOI: 10.1145/2330163.2330207

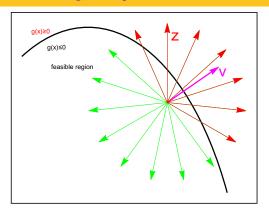


Figure 16: Those variations in the $(\mu/\mu_I, \lambda)$ -MA-ES, Line M13 (Slide 30), which lead to infeasible offspring are cumulated according to (48). Thus, those parts of the infeasible **z** leading to mutations tangential to the feasibility border $g(\mathbf{x}) = 0$ are (approximately) averaged out, the normal part, being **v**, remains.

- then, after selection, **M** is updated according to Line M13 (Slide 30) in the standard $(\mu/\mu_I, \lambda)$ -MA-ES and in a second step
- the \mathbf{v}_k normal directions of *all* violated $g(\tilde{\mathbf{x}}) \leq 0$ constraints (within the actual generation) are incorporated in the \mathbf{M} update $(\beta = \Theta(1/N_x))$

$$\forall k \in \{k | g_k(\tilde{\mathbf{x}}) > 0\} \colon \mathbf{M} := \mathbf{M} - \beta(\mathbf{M}\mathbf{v}_k)\mathbf{v}_k^{\mathrm{T}}$$
(49)

• the performance of the resulting MA-ES (pseudocode not displayed here²⁰) have been compared to other approaches, especially to the one cited in footnote 19, see next slide

²⁰Published in: P. Spettel & H.-G. Beyer. *A multi-recombinative active matrix adaptation evolution strategy for constrained optimization*. Soft Computing 23(16): 6847–6869. DOI: 10.1007/s00500-018-03736-z

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

53/67

Design Principles for MA-ES on Constrained Problems Inequality Constraints

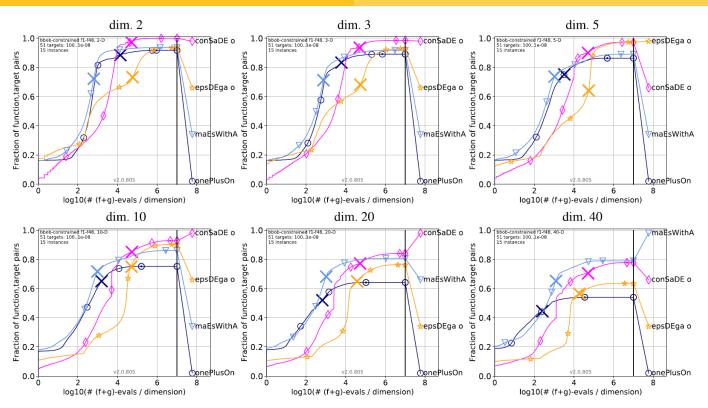


Figure 17: ECDF-plots of COCO BBOB for constraint problems comparing the active MA algorithm (maEsWithA) with the (1 + 1)-ES (Arnold & Hansen), conSaDE (Huang et al., 2006), and epsDEga (Takahama & Sakai, 2010).

How to Become Competitive²¹

General constrained minimization problem:

$$\arg\min_{\mathbf{x}} f(\mathbf{x}) \tag{50a}$$

s.t.
$$h_j(\mathbf{x}) = 0, \qquad j = 1, \dots, J$$
 (50b)

$$g_k(\mathbf{x}) \le 0, \qquad k = 1, \dots, K \tag{50c}$$

$$\check{x}_n \le (\mathbf{x})_n \le \hat{x}_n, \quad n = 1, \dots, N \tag{50d}$$

What are the ingredients for an MA-ES that is able to be on par or better than the currently best performing DE for constrained problems?

Résumé of an analysis of DE algorithms and the advantages of MA-ES:

- **1** always handle box-constraints (50d) first \Rightarrow KeepRange(\mathbf{x})
- 2 allow for infeasible solutions (if admissible as in CEC competitions)
- \odot use scheduled ϵ -relaxed lexicographic ordering of individuals
- use infeasibility repair by gradient techniques "now and then"
- in case of repair or , calculate back to adapt the M-matrix

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

55/67

Design Principles for MA-ES on Constrained Problems

Box Constaints

Box Constraints

Different possiblities:

- project onto the nearest box boundary
 - ► Advantage: provides a minimal repair (respects offspring locality)
 - ► Disadvantage: is biased towards corners of the box
- 2 reflect back into box
 - ► Advantage: no preference of certain box boundaries
 - ► Disadvantage: random point behavior (offspring locality violated)
 - ▶ however, it worked well in CEC competitions:

$$KeepRange(\mathbf{x})_{n} := \begin{cases}
\dot{x}_{n} + \left((\check{x}_{n} - x_{n}) - \left\lfloor \frac{\check{x}_{n} - x_{n}}{\hat{x}_{n} - \check{x}_{n}} \right\rfloor (\hat{x}_{n} - \check{x}_{n}) \right), & \text{if } x_{n} < \check{x}_{n} \\
\hat{x}_{n} - \left((x_{n} - \hat{x}_{n}) - \left\lfloor \frac{x_{n} - \hat{x}_{n}}{\hat{x}_{n} - \check{x}_{n}} \right\rfloor (\hat{x}_{n} - \check{x}_{n}) \right), & \text{if } x_{n} > \hat{x}_{n} \\
x_{n}, & \text{else}
\end{cases} (51)$$

²¹M. Hellwig & H.-G. Beyer. *A Matrix Adaptation Evolution Strategy for Constrained Real-Parameter Optimization*. CEC'2018, pp. 749–756. DOI: 10.1109/CEC.2018.8477950

ϵ -Relaxed Lexicographic Ordering²²

Let

$$H_{j}(\mathbf{x}) := \begin{cases} |h_{j}(\mathbf{x})|, & \text{if } |h_{j}(\mathbf{x})| > \delta \\ 0, & \text{if } |h_{j}(\mathbf{x})| \leq \delta \end{cases}$$
 (52)

and

$$G_k(\mathbf{x}) := \max(0, g_k(\mathbf{x})) \tag{53}$$

then infeasibility measure $\nu(\mathbf{x})$ is defined as

$$\nu(\mathbf{x}) := \sum_{j=1}^{J} H_j(\mathbf{x}) + \sum_{k=1}^{K} G_k(\mathbf{x}).$$
 (54)

Given two individuals \mathbf{x}_{α} und \mathbf{x}_{β} and the couple $(f_{\alpha}, \nu_{\alpha}) := (f(\mathbf{x}_{\alpha}), \nu(\mathbf{x}_{\alpha}))$, the ϵ -level lexicographic order relation \leq_{ϵ} is defined (for f-minimization) as

$$\mathbf{x}_{\alpha} \leq_{\epsilon} \mathbf{x}_{\beta} \Leftrightarrow \begin{cases} f_{\alpha} \leq f_{\beta}, & \text{if } (\nu_{\alpha} \leq \epsilon) \land (\nu_{\beta} \leq \epsilon), \\ f_{\alpha} \leq f_{\beta}, & \text{if } \nu_{\alpha} = \nu_{\beta}, \\ \nu_{\alpha} < \nu_{\beta}, & \text{otherwise.} \end{cases}$$
 (55)

Note, in case of f-maximization, $f_{\alpha} \leq f_{\beta}$ is to be changed to $f_{\alpha} \geq f_{\beta}$.

²²T. Takahama & S. Sakai. *Constrained Optimization by the \epsilon Constrained Differential Evolution with Gradient-Based Mutation and Feasible Elites*. CEC'2006, pp. 308–315. DOI: 10.1109/CEC.2006.1688283

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

57/67

Design Principles for MA-ES on Constrained Problems ϵ -

 ϵ -Relaxed Lexicographic Ordering

How to control ϵ

- finally $\epsilon \to 0$ must hold to ensure feasibility
- \Rightarrow reasonable to assume a generation number g > T above which standard lexicographic ordering is used, i.e. $\epsilon = 0$
 - currently, ϵ -decrease over the generations g is controlled by the $ad\ hoc$ rule

$$\epsilon^{(g)} := \epsilon^{(0)} \left(1 - \frac{g}{T} \right)^{\gamma} \tag{56}$$

where

$$\epsilon^{(0)} := \frac{1}{|\theta_t \lambda|} \sum_{l=1}^{\lfloor \theta_t \lambda \rfloor} \nu(\mathbf{x}_{l;\lambda}^{(0)})$$
 (57)

• choice of T, $\theta_t \in (0, 1)$, and $\gamma \ge \gamma_{\min}$ by experimentation (in CEC 2018 competition: T = 1000, $\theta_t = 0.9$, and $\gamma_{\min} = 3$)

Gradient Based Repair

- applied from time to time (every Nth generation probabilistically) and only approximately (stopping after at most θ_r iteration steps)
- in case of an infeasible offspring $\tilde{\mathbf{x}} \Rightarrow$ repair by $\tilde{\mathbf{x}} := \tilde{\mathbf{x}} + \Delta \mathbf{x}$
- constraint vector: $\mathbf{c}(\mathbf{x}) := (h_1(\mathbf{x}), \dots, h_J(\mathbf{x}), g_1(\mathbf{x}), \dots, g_K(\mathbf{x}))^{\mathrm{T}}$
- Taylor: $c_m(\mathbf{x} + \Delta \mathbf{x}) = c_m(\mathbf{x}) + \nabla c_m^{\mathrm{T}} \Delta \mathbf{x} + \dots (m = 1, \dots, J + K)$
- demanding: $h_j(\mathbf{x}) + \nabla h_j^{\mathrm{T}} \Delta \mathbf{x} \stackrel{!}{=} 0$ and $g_k(\mathbf{x}) + \nabla g_k^{\mathrm{T}} \Delta \mathbf{x} \stackrel{!}{\leq} 0$
- neglecting higher order terms yields:

$$abla h_j^{\mathrm{T}} \Delta \mathbf{x} + h_j(\mathbf{x}) = 0 \text{ and}$$
 $abla g_k^{\mathrm{T}} \Delta \mathbf{x} + g_k(\mathbf{x}) \leq \nabla g_k^{\mathrm{T}} \Delta \mathbf{x} + \max(0, g_k(\mathbf{x})) = 0$

• collecting the gradients in a matrix \mathbf{J} (the Jacobian), one obtains the linear system $\mathbf{J}(\mathbf{x})\Delta\mathbf{x} = -\mathbf{b}$, where

$$\mathbf{b}(\mathbf{x}) := (h_1(\mathbf{x}), \dots, h_J(\mathbf{x}), \max(0, g_1(\mathbf{x})), \dots, \max(0, g_K(\mathbf{x})))^{\mathrm{T}}$$
 (58)

• using pseudoinverse \mathbf{J}^{\dagger} , an offspring repair update step reads

$$\tilde{\mathbf{x}} := \tilde{\mathbf{x}} - \mathbf{J}^{\dagger}(\tilde{\mathbf{x}})\mathbf{b}(\tilde{\mathbf{x}}) \tag{59}$$

which can be executed θ_r times in a row if need be

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

59/67

Design Principles for MA-ES on Constrained Problems

MA-ES Specific Step: ž Back Calculation

MA-ES Specific Step: $\tilde{\mathbf{z}}$ **Back Calculation**

- as in the case of equality constraint repair (Slide 45ff), back calculation is (often) benefical after a Repair and/or KeepRange step
- let $\tilde{\mathbf{x}}_l$ the *repaired* offspring l, then (\mathbf{x} being the parental state)

$$\tilde{\mathbf{d}}_l := \frac{1}{\sigma} (\tilde{\mathbf{x}}_l - \mathbf{x}) \tag{60}$$

and

$$\tilde{\mathbf{z}}_l := \mathbf{M}_{\text{inv}} \tilde{\mathbf{d}}_l, \tag{61}$$

where M_{inv} can be:

- **1** the pseudoinverse \mathbf{M}^{\dagger} of \mathbf{M}^{23} or
- 2 evolved using the update $(46)^{24}$

²³Used in our publication mentioned in Footnote 21.

²⁴This approach needs further investigations regarding the general problem (50).

On the Influence of Different Algorithmic Ingredients

ϵ MAg-ES	N = 10 N = 100					
		Ranking			Ranking	
+/=/-	Median	Mean	Total	Median	Mean	Total
ϵ MA-ES	7/19/2	7/17/4	7/18/3	5/12/11	7/11/10	5/13/10
ϵ MAg-ES w/o	8/17/2	10/15/3	10/15/3	10/8/10	13/6/9	11/8/9
ϵ MAg-ES nl	12/14/2	14/12/2	14/12/2	5/15/8	7/14/7	5/16/7
ϵ SAg-ES	18/9/1	20/7/1	20/7/1	18/8/2	18/8/2	17/10/1
lexMAg-ES	6/20/2	7/18/3	7/18/3	9/10/9	10/9/9	9/11/8
lexMA-ES	8/16/4	8/14/6	8/14/6	14/7/7	14/7/7	13/9/6

Figure 18: The influence of switching off different algorithmic ingredients in the ϵ MAg-ES on the performance using the constrained CEC2017 benchmark. Missing "g": no gradient based repair; "w/o": no **z** back calculation; "nl": no σ -limitation; "SA": $\mathbf{M} \equiv \mathbf{I}$; "lex": $\epsilon \equiv 0$.

"+/ = /-": number of problems where ϵ MAg-ES is significantly "better than / on par with / worse than" the downgraded versions.

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

61/67

Summary

Summary

The C in CMA-ES can be removed yielding MA-ES

- this simplifies the ES algorithm and provides deeper insights:
 - $ightharpoonup \sqrt{\mathbf{C}}$ operation is no longer needed (no problems with negative eigenvalues)
 - ► one may also remove the **d** evolution path
- provides a simple interpretation of the ES working principles in that the evolution of the **M**-matrix is governed by the selection-caused deviation from the isotropically generated random **z** vectors
- ⇒ MA-ES seeks to transform the optimization problem locally into a sphere model

These results/findings gave and give rise to new algorithm designs:

- approximating the **M**-matrix with a few cumulated vectors allows for limited memory LM-MA-ES that works for search space dimensionalities of quite a few thousands (and even more)²⁵
- the MA evolution idea can be transferred to constrained optimization:
 - ▶ infeasible solutions can be easily used to improve the M-matrix
 - ▶ also repaired solutions can be used in a **z** back calculation step to improve the **M**-matrix
 - ► the "inverse" **M**-matrix can also be *evolved* (i.e., w/o explicit inversion operations)
 - using similar techniques as have been used in DE (Differential Evolution), one can easily design ESs that are among the best performing algorithms

Algorithm design based on MA-ES has just begun. You are invited to enter this field!

Thank You For Your Attention!

²⁵Unlike most CMA-ES versions proposed for higher search space dimensionalities no assumptions regarding diagonal or block structure are needed.

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

63/67

Related Publications

Related Publications I

H.-G. Beyer.

Evolution Strategies.

H.-G. Beyer and H.-P. Schwefel.

Evolution Strategies: A Comprehensive Introduction.

Natural Computing, 1(1):3–52, 2002.

N. Hansen, S.D. Müller, and P. Koumoutsakos.

Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). *Evolutionary Computation*, 11(1):1–18, 2003.

H.-G. Beyer and B. Sendhoff.

Simplify Your Covariance Matrix Adaptation Evolution Strategy.

IEEE Transactions on Evolutionary Computation, 21(5):746–759, 2017.

DOI: 10.1109/TEVC.2017.2680320.

H.-G. Beyer and B. Sendhoff.

Covariance Matrix Adaptation Revisited – the CMSA Evolution Strategy.

In G. Rudolph et al., editor, *Parallel Problem Solving from Nature 10*, pages 123–132, Berlin, 2008. Springer. DOI: 10.1007/978-3-540-87700-4_13.

H.-G. Beyer, J. Edler, M. Herdy, I. Santibanez-Koref, M. Olhofer, G. Rudolph, W. Sachs, S. Schliewe, H. Seitz, and I. Tesari.

VDI-Richtlinie 6224, Blatt 1: Bionische Optimierung – Evolutionäre Algorithmen in der Anwendung.

In VDI-Handbuch Bionik. Verein Deutscher Ingenieure, Düsseldorf, 2012.

Related Publications II

H.-G. Beyer and D.V Arnold.

Qualms Regarding the Optimality of Cumulative Path Length Control in CSA/CMA-Evolution Strategies.

Evolutionary Computation, 11(1):19-28, 2003.

DOI: 10.1162/EVCO_a_00261.

D.V. Arnold and H.-G. Beyer.

Performance Analysis of Evolutionary Optimization With Cumulative Step Length Adaptation.

IEEE Transactions on Automatic Control, 49(4):617–622, 2004.

N. Hansen and A. Ostermeier.

Adapting Arbitrary Normal Mutation Distributions in Evolution Strategies: The Covariance Matrix Adaptation.

In Proceedings of 1996 IEEE Int'l Conf. on Evolutionary Computation (ICEC '96), pages 312–317. IEEE Press, NY, 1996.

O. Krause, D.R. Arbones, and C. Igel.

CMA-ES with optimal covariance Update and Storage Complexity.

In Proc. Adv. Neural Inf. Process. Syst., pages 370-378, Barcelona, Spain, 2016.

I. Loshchilov, T. Glasmachers, and H.-G. Beyer.

Large Scale Black-box Optimization by Limited-Memory Matrix Adaptation.

IEEE Transactions on Evolutionary Computation, 23(2):353–358, 2019.

DOI: 10.1109/TEVC.2018.2855049.

N. Hansen.

The CMA Evolution Strategy: A Comparing Review.

In J.A. Lozano, P. Larrañaga, I. Inza, and E. Bengoetxea, editors, *Towards a New Evolutionary Computation: Advances in the Estimation of Distribution Algorithms*, pages 75–102. Springer, 2006.

© 2020 H.-G. Beyer (FHV 🍫)

Design Principles for MA-ES

65/67

Related Publications

Related Publications III

D.V. Arnold.

Reconsidering constraint release for active-set evolution strategies.

In GECCO'17: Proceedings of the Genetic and Evolutionary Computation Conference, pages 665–672, New York, 2017. ACM. DOI: 10.1145/3071178.3071294.

P. Spettel, H.-G. Beyer, and M. Hellwig.

A Covariance Matrix Self-Adaptation Evolution Strategy for Optimization under Linear Constraints.

IEEE Transactions on Evolutionary Computation, 23(3):514–524, 2019. https://doi.org/10.1109/TEVC.2018.2871944.

P. Spettel and H.-G. Beyer.

Matrix Adaptation Evolution Strategies for Optimization Under Nonlinear Equality Constraints.

Swarm and Evolutionary Computation, 2019.

DOI: 10.1016/j.swevo.2020.100653.

G.A. Jastrebski and D.V. Arnold.

Improving Evolution Strategies through Active Covariance Matrix Adaptation.

In Proceedings of the CEC'06 Conference, pages 2814–2821, Piscataway, NJ, 2006. IEEE.

D.V. Arnold and N. Hansen.

A (1+1)-CMA-ES for constrained optimisation.

In GECCO'12: Proceedings of the Genetic and Evolutionary Computation Conference, pages 297–304, New York, 2012. ACM.

P. Spettel and H.-G. Beyer.

A multi-recombinative active matrix adaptation evolution strategy for constrained optimization.

Soft Computing, 23(16):6847-6869, 2019.

https://doi.org/10.1007/s00500-018-03736-z.

Related Publications IV

M. Hellwig and H.-G. Beyer.

A Matrix Adaptation Evolution Strategy for Constrained Real-Parameter Optimization. In *Proceedings of the WCCl'18 Conference*, pages 749–756, Piscataway, NJ, 2018. IEEE Press.

DOI: 10.1109/CEC.2018.8477950.

T. Takahama and S. Sakai.

Constrained Optimization by the ϵ Constrained Differential Evolution with Gradient-Based Mutation and Feasible Elites. In CEC 2006 IEEE Congress on Evolutionary Computation, pages 308–315, 2006. DOI: 10.1109/CEC.2006.1688283.

