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A Short Recap of Evolution Strategies

A Short Recap of Evolution Strategies1

Evolution Strategies (ESs) are a class of Evolutionary Algorithms that use:
1 mutation and recombination to generate λ offspring from µ parents
2 perform truncation (aka breeding) selection denoted by
(µ, λ): only the µ best offspring individuals are selected as parents of the next

generation, or
(µ+ λ): both the λ offspring and the µ parent are together are object of selection to

determine the parents of the next generation

Remark:
Application domains (search spaces):

discrete, combinatorial, real-valued optimization and mixtures
however, predominantly used in real-valued un-constrained optimization
popularized by the Covariance Matrix Adaptation (CMA) ES2

1See H.-G. Beyer: Scholarpedia: Evolution Strategies. And H.-G. Beyer & H.-P. Schwefel:
Evolution Strategies: A Comprehensive Introduction. Natural Computing 1(1):3–52, 2002.

2See N. Hansen, S.D. Müller, and P. Koumoutsakos. Reducing the Time Complexity of the
Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES).
Evolutionary Computation, 11(1):1–18, 2003.
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A Short Recap of Evolution Strategies

compared to other EAs, especially Differential Evolution (DE), there is
relatively little follow-up work that builts on the CMA-ES
What are the reasons?
at first glance CMA-ES seems a rather sophisticated EA
CMA-ES contains ingredients that seems to be difficult to modify
without sacrificing its superb performance on certain test function sets
most modifications proposed are rather minor and are built around the
covariance matrix :
the tenet is to estimate the covariance matrix
Why do we need the covariance matrix?
actually, one wants to mutate parents to get promissing offspring
one only has to generate correlated mutations in order to target into
promissing directions in the search space
How to do that without covarianc matrix calculations will be a topic of
this tutorial

But, first let us consider a simple ES without correlated mutations:
c©2020 H.-G. Beyer (FHV ) Design Principles for MA-ES 4 / 67

http://www.scholarpedia.org/article/Evolution_strategies
https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1162/106365603321828970
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Simple ES with Self-Adaptation and Recombination

(µ/µI , λ)-σSA-ES line

Initialize (x, σ, τ) 1
Repeat 2

For l := 1 To λ 3
σ̃l := σeτNl(0,1) 4
d̃l := N l(0, I) 5
x̃l := x + σ̃ld̃l 6
f̃l := f (x̃l) 7
ãl :=

(
f̃l, x̃l, σ̃l

)
8

End 9
RankOffspringPopulation(ã1, . . . , ãλ) 10
x := 〈x̃〉 11
σ := 〈σ̃〉 12

Until(Termination_Condition) 13
Return(x) 14

Task: optimize f (x), where
x ∈ RN (i.e. unconstrained)
L3–8: produce λ offspring
L4: mutate σ (mutation
strength), τ = 1/

√
2N

L5: generate search direction
L6: mutate parent by w = σd̃
L7: evaluate offspring
L8: assemble offspring
L11f: recombine the best µ
offspring’ x and σ:3

〈x̃〉 := 1
µ

∑µ
m=1 xm;λ (1)

〈σ̃〉 := 1
µ

∑µ
m=1 σm;λ (2)

3“m;λ” is the index of the mth best individual out of λ offspring (w.r.t. fitness).
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1. Isotropic Gaussian Mutations in RN

of  success

x

local  domain

Figure 1: Isotropic Gaussian
mutation samples in a
2-dimensional search space
applied to a recombinant state
x = 〈x̃〉 in Line 6, Slide 5.

for “well shaped” local success domains,
isotropic Gaussian mutations w = σd̃ are
sufficient:

w ∼
(
N (0, σ2), . . . ,N (0, σ2)

)T
= σN (0, I) (3)

probability density function:

p(w) = p(w1, . . . ,wN) =

1
(
√

2πσ)N
exp

(
−z2

1 + . . .+ z2
N

2σ2

)
(4)

(hyper) surfaces of constant p are
spherical shells

note, in high N-dimensional spaces the
mutation vectors w are nearly located in
the vicinity of a sphere of radius σ

√
N

mutation strength σ can be adapted by,
e.g., (µ/µI, λ)-σSA-ES, Slide 5
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2. Non-correlated independently distributed Gaussian mutations

local  domain

of  success

x

local  domain

of  success

x

Figure 2: Success domains with preference directions parallel to certain coordinate
directions are better treated by Gaussian mutation vectors the components of which
have different mutations strengths (lhs: isotropic, rhs: ellipsoidal mutations).

w ∼
(
N (0, σ2

1), . . . ,N (0, σ2
N)
)T
, p(w) =

N∏
i=1

1√
2πσi

exp

(
− w2

i

2σ2
i

)
(5)

there is a set of N strategy parameters σi to be evolved

(σ1, . . . , σi, . . . , σN)T (6)
(hyper) surfaces of constant p are axes-parallel ellipsoids
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3. Correlated Gaussian mutations

local  domain

of  success

x x

local  domain

of  success

Figure 3: Rotated mutation ellipsoids (rhs) are better suited for the recombinant x.
correlated w mutations are to be used to obtain mutation ellipsoids
arbitrarily oriented in search space

w ∼N (0,Σ) (7)

p(w) =
1(√
2π
)N

1√
det[Σ]

exp

(
−1

2
wTΣ−1w

)
(8)

Σ is the covariance matrix and Σ−1 its inverse
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Remarks
covariance matrix Σ contains N(N + 1)/2 independent parameters to be
learned (because Σ is symmetric)

å there are N object parameters to be evolved in order to optimize f (x),
but, there are N(N + 1)/2 Σ-matrix components to be learned, too!

å using an EA that learns correlated mutations via covariance matrix Σ
makes sense only when one has a budget of function evaluations that is
greater than kN2

How to generate correlated mutations?
correlated mutations w can be produced by linear transformation of iid
standard normally distributed vectors z = (N1(0, 1), . . . ,NN(0, 1))T by a
two-step process

1 calculating the direction: d := Mz
2 scaling the length: w := σd

since E[w] = E[σMz] = σME[z] = 0, one finds using the definition of Σ

Σ = E[wwT] = σ2E[MzzTMT] = σ2ME[zzT]MT = σ2MMT (9)
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The Matrix Adaptation Idea

The Matrix Adaptation Idea
How can one get M if Σ were known?

+ take the “square root” of Σ in (9), i.e., M = 1
σ

√
Σ

This can be done by:
CHOLESKY-decomposition
matrix square root via eigenvalue decomposition

However, how can one get the covariance matrix Σ?
it must be derived from the evolutionary dynamics of the real ES run
this is what the Covariance Matrix Adaptation (CMA) ES does

But, why not deriving the M matrix from the observed ES dynamics directly?
analysis of the CMA-ES revealed that one can (approximately) rewrite
the CMA-ES algorithm and remove its “C”
as a result one obtains very simple Matrix Adaptation (MA) ESs that
perform equally well as the CMA-ES4

+ C related numerical operations are no longer needed!
4H.-G. Beyer and B. Sendhoff. Simplify Your Covariance Matrix Adaptation Evolution

Strategy. IEEE Transactions on Evolutionary Computation 21(5):746–759, 2017. DOI:
10.1109/TEVC.2017.2680320
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A Simple Recombinative MA-ES with Self-Adaptation (SA)

(µ/µI , λ)-σSA-MA-ES line

Initialize (x, σ, τ, τM,M := I) 1
Repeat 2

For l := 1 To λ 3
σ̃l := σeτNl(0,1) 4
z̃l := N l(0, I) 5
d̃l := Mz̃l 6
x̃l := x + σ̃ld̃l 7
f̃l := f (x̃l) 8
ãl :=

(
f̃l, x̃l, σ̃l, z̃l

)
9

End 10
RankOffspringPopulation(ã1, . . . , ãλ) 11
x := 〈x̃〉 12
σ := 〈σ̃〉 13

M := M
[
I + 1

τM
(〈z̃z̃T〉 − I)

]
14

Until(Termination_Condition) 15

L3–9: produce λ offspring

L4: mutate σ (mutation
strength), τ := 1/

√
2N

L5f: generate search direction

L7: mutate parent by w = σ̃d̃
L8: evaluate offspring

L9: assemble offspring

L12f: recombine the best µ
offspring’ x and σ, (1/2)

L14: update M-matrix with
learning rate

τM := 2 + (N+1)N
µ (10)

〈z̃z̃T〉 := 1
µ

∑µ
m=1 z̃m;λz̃T

m;λ (11)
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Comparison to Covariance Matrix Self-Adaptation ES (CMSA-ES) 5

(µ/µI , λ)-σ-CMSA-ES line
Initialize (x, σ, τ, τc,C := I) 1
Repeat 2

For l := 1 To λ 3
σ̃l := σeτNl(0,1) 4
d̃l :=

√
CN l(0, I) 5

x̃l := x + σ̃ld̃l 6
f̃l := f (x̃l) 7
ãl :=

(
f̃l, x̃l, σ̃l, d̃l

)
8

End 9
RankOffspringPopulation(ã1, . . . , ãλ) 10
x := 〈x̃〉 11
σ := 〈σ̃〉 12

C :=
(

1− 1
τc

)
C + 1

τc
〈d̃d̃T〉 13

Until(Termination_Condition) 14

Differenzes to
(µ/µI, λ)-σSA-MA-ES:

L5: generate correlated search
direction, matrix

√
C must be

calculated in an O(N3) step

L13: update C-matrix with
learning rate:

τc := 1 + (N+1)N
2µ (12)

〈d̃d̃T〉 := 1
µ

∑µ
m=1 d̃m;λd̃T

m;λ (13)

5H.-G. Beyer and B. Sendhoff, Covariance Matrix Adaptation Revisited – the CMSA
Evolution Strategy, in PPSN X, pp. 123–132, Berlin: Springer, 2008.
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Understanding the M-Update
What do the z variations see in MA-ES algorithm, Line 5, Slide 11?

f (x̃) = f (x + σMz) =: g(z) (14)

assume g(z) defines quadratic fitness landscapes

Figure 4: Isotropy in search space considered from “viewpoint” of the z variations in
Line 5, Slide 11: The black curves represent lines of constant f -values. The isotropic
z ∼N l(0, I) vectors experience on average the same selective pressure in case of the
spherical success domain (left graph) independent of the location of parental state x.
Thus, there are no correlations in the z-vectors implying E[〈zzT〉] ∝ I. In the case of
an elliptical success domain (right graph) symmetry is broken and the z experience
different selective pressure in different directions. This implies E[〈zzT〉] 6∝ I.

c©2020 H.-G. Beyer (FHV ) Design Principles for MA-ES 13 / 67

The Matrix Adaptation Idea Understanding the M-Update

M-update in Line 14, Slide 11:

M := M
[
I + 1

τM
(〈z̃z̃T〉 − I)

]
(15)

+ change of M is governed by the deviation of the 〈z̃z̃T〉-matrix from the
identity matrix I
taking the expectation

E[M] = M
[
I + 1

τM
(E[〈z̃z̃T〉]− I)

]
(16)

if E[〈z̃z̃T〉] = αI =⇒ M is only changed by a scalar factor
+ the z-vectors “see” a sphere

if E[〈z̃z̃T〉] 6= αI =⇒ z-vectors “experience” an anisotropic
fitness landscape

+ M undergoes changes during evolution
+ a general quadratic fitness landscape (ellipsoidally shaped) is gradually

transformed into a spherical landscape
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Reducing the Internal Costs of the MA-ES – The Fast MA-ES
most expensive Line 14: O

(
µN3

)
, N – search space dimensionality

costs for generating a single offspring: O
(
µN3

λ

)
= O

(
N3
)

however, this is the naive view

recasting Line 14, Slide 11

M := M
[

I +
1
τM

(
〈zzT〉 − I

)]
=

(
1− 1

τM

)
M + M

1
τM
〈zzT〉

=

(
1− 1

τM

)
M +

1
τM
〈(Mz)zT〉

(L6)
=

(
1− 1

τM

)
M +

1
τM
〈dzT〉 (17)

⇒ costs are effectively reduced to: O
(
µN2

λ

)
= O

(
N2
)

c©2020 H.-G. Beyer (FHV ) Design Principles for MA-ES 15 / 67

The Matrix Adaptation Idea Reducing the Internal Costs of the MA-ES

Simple MA-ES with Self-Adaptation (SA) – Fast Version

(µ/µI , λ)-σSA-fMA-ES line

Initialize (x, σ, τ, τM,M := I) 1
Repeat 2

For l := 1 To λ 3
σ̃l := σeτNl(0,1) 4
z̃l := N l(0, I) 5
d̃l := Mz̃l 6
x̃l := x + σ̃ld̃l 7
f̃l := f (x̃l) 8
ãl :=

(
f̃l, x̃l, σ̃l, z̃l, d̃l

)
9

End 10
RankOffspringPopulation(ã1, . . . , ãλ) 11
x := 〈x̃〉 12
σ := 〈σ̃〉 13

M :=
(

1− 1
τM

)
M + 1

τM
〈d̃z̃T〉 14

Until(Termination_Condition) 15

L4: τ = 1/
√

2N is
asymptotically optimal for the
sphere model

L12f: recombine the best µ
offspring’ x and σ, according
to Eq. (1/2)

L14: update M-matrix with
learning rate

τM := 2 + (N+1)N
µ (18)

〈d̃z̃T〉 := 1
µ

∑µ
m=1 d̃m;λz̃T

m;λ (19)

recommended truncation
ratio: µ/λ = 1

4

note, there are only two
learning constants: τ and τM
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Example: Optimization of a Lens Using σSA-MA-ES6

Objectives:
1 Find the optimal shape of glass body such that parallel incident light rays

are concentrated in a given point P on a plane
2 Use a minimum of glass material possible (secondary goal)

General problem solving approach:

Step 1–3: system description, evaluation, and decision variables

Figure 5: Evolvable glass body: incoming light
rays from the left are refracted. Evolve thicknesses
xk such that the rays meet in P. The xk

(k = 0, . . . ,K) are the decision (aka control, aka
objective) variables.

6Example adapted from VDI Richtlinie 6224 Blatt 1.
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Figure 6: Lens is subdivided into trapezoidal slices of hight h; ε is refraction index.

using the physical law of refraction on thin prisms (see Fig. 6), one can
calculate the deviation ∆ of the ray from focal point P on the plane
considering the kth prism (k = 1, . . . ,K)

∆k = R− h
2
− (k − 1)h− b

h
(ε− 1)(xk − xk−1), xk ≥ 0 (20)

Step 4: determine the goal (aka objective) function:
1 considering all K prisms, the squared sum can be used as measure for the

optical image quality
ffocus :=

∑K
k=1 ∆2

k (21)
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3 modeling the 2nd objective, the mass of the lense, we assume (for sake
of simplicity) a mass density of one, therefore, the mass is simply the
area of the lens (two-dimensional model)

fmass :=
K∑

k=1

h
1
2

(xk + xk−1) (22)

4 note, we have two objectives:
1 minimizing the optical image quality ffocus
2 minimizing the mass of the lense fmass

+ actually, this calls for a multi-objective evolutionary algorithm
(Pareto-optimization, however, beyond the scope of this tutorial)

5 instead, using scalarization approach where both objectives are
combined in a weighted sum:

flens(x0, . . . , xK) := wffocus + (1− w)fmass w ∈ [0, 1] (23)

and ∀k = 0, . . . ,K : xk ≥ 0 (24)

w controls the emphasis of optimization w.r.t focus (w = 1) or mass
(w = 0)
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Evolutionary Optimization of (23)

(µ/µI, λ)-σSA-fMA-ES, Slide 16, is used with N = K + 1

since xk ≥ 0 (thickness parameters!), the xk in MA-ES must be
transformed in order to be used in the objective function (23)

that is: flens(|x0|, . . . , |xK |) must be used for evaluation in Line 8 of
MA-ES on Slide 16

problem parameters: ε = 1.5, h = 1, K = 14

strategy parameters: µ = 5, λ = 20(7, weighting factor w = 0.9(8

initialization: xk = 3, σ = 1

stopping criterion: mutation strength σ < 10−5

7Recommended truncation ratio for MA-ES is µ/λ = 1/4.
8Strong emphasis on optical quality.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Matlab code of a simple Evolution Strategy applied to the optical lens

% optimization. Stategy type: (mu/mu_I, lambda)-sigmaSA-MA-ES

% Scalarized minimization of quadratic focal point deviation and lens mass

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Copyright by Hans-Georg Beyer (HGB), 23.02.20. For non-commercial use

%% only. Commercial use requires written permission by Hans-Georg Beyer

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global LensParms; % physical parameters of the geometrical system

LensParms.h = 1; LensParms.b = 20; LensParms.R = 7; LensParms.eps = 1.5;

LensParms.d_init = 3; % initial lens geometry (being rectangular)

global Weighting; % scalarization factor for bi-objective problem

Weighting =.9;

n = 15; % number of free geometry parameters to be optimized

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Here starts the MA-ES (cf. Pseudocode)

% initialization

mu = 5; lambda = 20; % (L1)

x = LensParms.d_init*ones(n,1); % (L1)

sigma = 1; sigma_stop = 1e-5; % (L1)

M = eye(n); % (L1)

tau = 1/sqrt(2*n); tau_M = 2 + n*(n+1)/mu; % (L1)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% here starts generation loop

while( sigma > sigma_stop ) % (L2)

for l=1:lambda % (L3)

sigmaTilde(l) = sigma * exp(tau*randn()); % (L4)

zTilde(:, l) = randn(n,1); % (L5)

dTilde(:, l) = M*zTilde(:, l); % (L6)

xTilde(:, l) = x + sigmaTilde(l)*dTilde(:, l); % (L7)

fTilde(l) = f_lens(xTilde(:, l)); % (L8)

end

[fsorted, r] = sort(fTilde, "ascend"); % (L11)

x = 1/mu * sum(xTilde(:, r(1:mu)), 2); % (L12)

sigma = 1/mu * sum(sigmaTilde(r(1:mu))); % (L13)

SUMds = zeros(n, n); % (L14)

for m=1:mu; SUMds = SUMds + dTilde(:, r(m))*zTilde(:, r(m))’; end; % (L14)

M = (1-1/tau_M)*M + (1/tau_M) * (1/mu)*SUMds; % (L14)

end % (L15)

Figure 7: Matlab code of fast MA-ES for lens optimization.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% after termination, abs(x) returns the x-coordinates (thicknesses)

% of the optimized lens geometry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% here comes the objective function, to be saved in a .m-file

% we use abs(x) instead of x in order to ensure positiveness of parameters

function qual = f_lens(x)

global LensParms Weighting;

n = length(x);

f_focus = sum( ( LensParms.R ...

- ( LensParms.h*((1:n-1)-.5) + LensParms.b/LensParms.h * ...

(LensParms.eps-1) * ...

(abs(x(2:n)) - abs(x(1:n-1)))’ ) ).^2 );

f_mass = LensParms.h*(sum(abs(x(2:n-1))) + 0.5*(abs(x(1))+abs(x(n))));

qual = Weighting*f_focus + (1-Weighting)*f_mass; % weighting of goals

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Figure 8: Matlab code of MA-ES for lens optimization continued: coding of the
(aggregated) goal function flens, Eq. (23).
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Figure 9: Snapshoots of the lens evolution using (5/5I , 20)-σSA-MA-ES

due to the choice of w = 0.9, at first the lens geometry evolves toward
high optical quality
after about 100 generations, the second goal (reducing the lens mass),
dominates the evolution process resulting in defocussing
at about generation 500, the lens has been reduced in mass and fine
tuning of the image quality starts
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On the dynamics of the evolution process
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Figure 10: Evolutionary dynamics of the (5/5I , 20)-σSA-MA-ES on the lens
example.

up to about generation g = 100, the evolution improves the focal quality
then, the geometry must be rebuilt and therefore the M-matrix, too
after about g = 300 the M allows for larger mutation strengths σ
finally, the mass of the lens reduces and the evolution converges

c©2020 H.-G. Beyer (FHV ) Design Principles for MA-ES 24 / 67



How to Get the Most Out of It

How to Get the Most Out
1 Path Cumulation

1 learning promising evolution directions
2 alternative σ control rule (cumulative step-size adaptation CSA)

2 Approximate Matrix-Vector Operations
I limited memory MA-ES

3 Weighting the Individuals
1 weighted recombination
2 utilize the worst individuals (active matrix adaptation)
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Path Cumulation
consider the cumulation v of the generation history (g-generation
counter) of the selected z̃-vector centroids

v :=
∑g1+G

g=g1
〈z〉(g) where 〈z〉(g) := 1

µ

∑µ
m=1 z(g)m;λ (25)

〈z〉(g)

v

v

v-direction in z-space with strong tendency versus weak tendency

Figure 11: Two qualitatively different paths v of concatenated 〈z〉(g) centroids: Even
though the average length of the 〈z〉-vectors is larger for the right path than for the
left, the cumulative effect is much larger for the left path indicating a preferred
direction in z-space.
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+ incorporate the v information in the update M update
if the consecutive 〈z〉(g) steps are uncorrelated it holds

E[vvT] = αI (26)

however, the vvT-matrix could grow with the generation number g
and past direction information may get stale after a while

+ the cumulation of the 〈z〉-vectors must be discounted by exponentially
smoothing, leading to an s-vector update

s := (1− 1
τs

)s +

√
µ
τs

(
2− 1

τs

)
〈z〉 (27)

+ analogously to the Eq. (15) the M-update one gets

M := M
[
I + 1

τ1
(ssT − I)

]
(28)

τs = Θ(N), τ1 = Θ(N2) (29)
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... and there is even more information in this v-path

consider the length of the resulting path compared to single 〈z〉(g) steps
if there is no selection (flat fitness landscape)⇒ random path

å do not change mutation strength σ
if there is selection and length of path is less than expected random path
length, then decrease mutation strength σ

⇒ decrease ⇒ increase the step size (i.e., mutation strength)
if there is selection and length of path is greater than expected random
path length, then increase mutation strength σ
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it can be shown that this strategy is asymptotically optimal (N →∞) on
the static sphere model (w/o noise)9

since optimal mutation strength changes during the approach to the
optimum, the steps used to calculate the statistics must be normalized
w.r.t. the actual mutation strength σ
this leads to the (modified10) cumulative step length adaptation (CSA)
update rule11

σ := σ exp
[

1
2D

(
‖s‖2

N − 1
)]

(30)

single steps of the evolution path are very noisy, therefore, path length
statistics must be updated by the weighted cumulation (27)
damping constant D = Θ(

√
N) (N – search space dimensionality)

9H.-G. Beyer and D.V. Arnold. Qualms Regarding the Optimality of Cumulative Path
Length Control in CSA/CMA-Evolution Strategies. Evol. Comp., 11(1):19–28, 2003.

10D.V. Arnold, H.-G. Beyer. Performance Analysis of Evolutionary Optimization With
Cumulative Step Length Adaptation. IEEE Trans. on Autom. Control, 49(4): 617–622, 2004.

11N. Hansen, A. Ostermeier. Adapting Arbitrary Normal Mutation Distributions in
Evolution Strategies: The Covariance Matrix Adaptation. In Proc. 1996 IEEE Int’l Conf. on
Evol. Comp. (ICEC’96), 312–317.
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Putting Things Together: The (µ/µI, λ)-MA-ES

Initialize (x, σ,D,τs,τ1,τM, s := 1,M := I) (M1)
Repeat (M2)

For l := 1 To λ (M3)
z̃l := N l(0, I) (M4)
d̃l := Mz̃l (M5)
x̃l := x + σd̃l (M6)
f̃l := f (x̃l) (M7)
ãl :=

(
f̃l, x̃l, z̃l

)
(M8)

End (M9)
RankOffspringPopulation(ã1, . . . , ãλ) (M10)
x := 〈x̃〉 (M11)

s :=
(

1− 1
τs

)
s +

√
µ
τs

(
2− 1

τs

)
〈z̃〉 (M12)

M := M
[
I + 1

τ1
(〈ssT〉 − I) + 1

τM
(〈z̃z̃T〉 − I)

]
(M13)

σ := σ exp
[

1
2D

(
‖s‖2

N − 1
)]

(M14)

Until(Termination_Condition) (M15)
Return(x) (M16)

M6: there is only one σ

M13: incorporation of
the s-path direction

M1: initial
s := (1, . . . , 1)T ∈ RN

M12: s-path cumulation

M14: σ-update using
cumulative step length
adapatation (CSA)
strategy parameters (can
be improved):

I D :=
√

N
I τ1 := 2N2

I τs := N
I τM := 2 + (N+1)N

µ

published in TEVC
21(5), see Footnote 4
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the MA-ES can be regarded as an approximation of the CMA-ES
however, the performance differences on standard test beds including the
COCO BBOB are not really significant (using weighted recombination)
no big differences even for population sizes such as λ = 4N2

Example: COCO BBOB performance in BiPop-ES setting:
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Reducing the Internal Algorithm’s Costs: The Fast-(µ/µI, λ)-MA-ES

Initialize (x, σ,D, τs, τ1, τM, s := 1,M := I) (M1)
Repeat (M2)

For l := 1 To λ (M3)
z̃l := N l(0, I) (M4)
d̃l := Mz̃l (M5)
x̃l := x + σd̃l (M6)
f̃l := f (x̃l) (M7)
ãl :=

(
f̃l, x̃l, z̃l, d̃l

)
(M8)

End (M9)
RankOffspringPopulation(ã1, . . . , ãλ) (M10)
x := 〈x̃〉 (M11)

s :=
(

1− 1
τs

)
s +

√
µ
τs

(
2− 1

τs

)
〈z̃〉 (M12)

M :=
(
1− 1

τ1
− 1
τM

)
M + 1

τ1
〈(Ms)sT〉+ 1

τM
〈d̃z̃T〉(M13)

σ := σ exp
[

1
2D

(
‖s‖2

N − 1
)]

(M14)

Until(Termination_Condition) (M15)
Return(x) (M16)

M13 dominates internal
cost of the algorithm,
Slide 30: O(N3)
(matrix-matrix
multiplication)

reordering M13 yields
O(N2) since there are
only matrix-vector
products and sums

note, this algorithm is
equivalent to the
(µ/µI, λ)-MA-ES of
Slide 30

now, the λ d̃
calculations in (M5)
become the bottleneck
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Advantages of the MA-ES

Using MA-ES instead of CMA-ES is recommended, because:

1 simpler implementation, no eigenvalue or Cholesky decomposition,
no Cholesky factorization (faster than the KRAUSE ET AL.12 approach)

2 . . . and better suited for GPUs
3 uses only one evolution path, thus, reduced number of strategy

parameters
4 greater numerical stability, regularization yet possible
5 due to its simplicity, the MA-ES is a starting point for the derivation of

approximation schemes for (M5, M13) to further reduce the single
offspring generation cost (see Slide 35ff)

6 (M13) should be the starting point for theoretical convergence analyses
7 MA-ES might be easier for teaching undergraduates
12O. Krause, D.R. Arbones, and C. Igel. CMA-ES with Optimal Covariance Update and

Storage Complexity, in Proc. Adv. Neural Inf. Process. Syst. 29 (NIPS’2016), pp. 370–378,
Barcelona, Spain, 2016.
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Example: Cholesky-CMA-ES

Published in: O. Krause, D.R. Arbones, and C. Igel, “CMA-ES with optimal
covariance Update and Storage Complexity,” in Proc. Adv. Neural Inf.
Process. Syst. Barcelona, Spain, 2016, pp. 370–378.
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. . . for large search space dimensionalities N:

The Limited Memory MA-ES - the LM-MA-ES13

algorithm complexity of the fast MA-ES is still of O(N2) due to (M11)
and (M5)

if one wants to reduce the complexity further, one needs to approximate
the matrix-vector operations in (M5) and (M11)

an approach taken ideas from Limited Memory BFGS comes into mind,
however, an alternative approach will be considered here

in order to approximate the M matrix, γ vectors pk are used

running γ evolution paths at different time scales

13I. Loshchilov, T. Glasmachers, and H.-G. Beyer. Large Scale Black-box Optimization by
Limited-Memory Matrix Adaptation. IEEE Transactions on Evolutionary Computation, 2018.
DOI: 10.1109/TEVC.2018.2855049.
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(µ/µw, λ)-LM-MA-ES

Initialize
(

x(0)
, σ

(0)
, g := 0, s(0)

:= 1, p(0)
1...γ := 0

)
(L1)

Repeat (L2)
For l := 1 To λ (L3)

z̃(g)
l := N l(0, I) (L4)

d̃(g)
l := z̃(g)

l (L5)
For k := 1 To min(g, γ) (L6)

d̃(g)
l := (1 − cd,k)d̃(g)

l + cd,k

(
p(g)

k
T

d̃(g)
l

)
p(g)

k (L7)
End (L8)

x̃(g)
l := x(g) + σ(g)d̃(g)

l (L9)

f̃ (g)
l := f

(
x̃(g)

l
)

(L10)

ã
(g)
l :=

(̃
f (g)
l , x̃(g)

l , z̃(g)
l
)

(L11)
End (L12)

RankOffspringPopulation
(
ã
(g)
1 , . . . , ã

(g)
λ

)
(L13)

x(g+1)
:=
〈

x̃(g)
〉
w

(L14)

s(g+1)
:= (1 − cs)s(g)

+
√
µeffcs(2 − cs)

〈
z̃(g)

〉
w

(L15)

For k := 1 To γ (L16)

p(g+1)
k := (1 − cp,k)p(g)

k +
√
µeffcp,k(2 − cp,k)

〈
z̃(g)

〉
w

(L17)

End (L18)

σ
(g+1)

:= σ
(g)

exp

[
cs

2

(∥∥s(g+1)∥∥2

N
− 1

)]
(L19)

g := g + 1 (L20)
Until(termination condition(s) fulfilled) (L21)

heuristically chosen strategy
parameters (for N > 50):

number of evolution paths
γ := 4 + b3 ln Nc
weighting constants
cd,k := 1

1.5k−1N

σ-evolution path
cumulation constant
cs := 2λ

N (< 1
2)

p-evolution path
cumulation constants
cp,k := λ

4k−1N

using weighted recombination:
〈·〉w and µeff, see Slide 38
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Figure 12: Performance of LM-MA-ES vs. fastMA-ES w.r.t. #-fevals and time.
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Remarks (LM-MA-ES Performance)
algorithm complexity of LM-MA-ES: O(γN) = O(N ln N)

note, there are problem instances where LM-MA-ES outperforms
MA-ES w.r.t. function evaluations (e.g. Rosenbrock N = 256, 512)

Remarks (additional details LM-MA-ES)

weighted recombination:
〈
ã(g)
〉
w :=

∑µ
m=1 wma(g)m;λ

“effective” parent population value µeff =
(∑µ

m=1 w2
m
)−1

weights wm must fulfill
∑µ

m=1 wm
!

= 1 and should not emphasize bad
individuals, e.g.

wm :=


ln(λ+1

2 )−lnm∑µ
k=1(ln(

λ+1
2 )−ln k)

, for 1 ≤ m ≤ µ,
0, otherwise

population sizing: λ = 4 + b3 ln Nc and µ =
⌊
λ
2

⌋
Note, these recommendations are directly taken from: N. Hansen. The CMA
Evolution Strategy: A Comparing Review. DOI: 10.1007/3-540-32494-1_4
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Design Principles for MA-ES on Constrained Problems
Optimization under constraints is a wide and almost uncharted field for
Matrix Adaptation Evolution Strategies

1 equality contraints

∀j = 1, . . . , J : hj(x) = 0, x ∈ RNx (31)

2 inequality constraints

∀k = 1, . . . ,K : gk(x) ≤ 0, x ∈ RNx (32)

3 mixtures of (31) and (32)

Often used: Penalty methods that do not touch the ES itself, but shifts the
problem into a modified objective function

Up until recently, there were only a few exeptions from this approach, most
notable the work of D. Arnold et al.14

14E.g.: D.V. Arnold, Reconsidering constraint release for active-set evolution strategies,
GECCO’17, pp. 665–672. DOI: 10.1145/3071178.3071294
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Equality Constraints
often used approach:

turn (31) into inequalities and use methods for inequality handling
(standard way in EAs)

hj(x) = 0 ⇔ |hj(x)| − δ ≤ 0 for δ → 0 (33)

problem: δ must be chosen sufficiently small

å feasible region is very small (measure goes to zero if δ → 0)

ideal solution: generate offspring that fulfill hj(x) = 0 automatically

Options:
1 find suitable transformation that transforms a “raw offspring” into a

feasible offspring
+ applicable for special hj(x) cases only

2 repair “raw offspring” such that it fulfills (31) and
(optionally) perform a back-calculation to adapt the M matrix

+ these methods are referred to as inner point methods
c©2020 H.-G. Beyer (FHV ) Design Principles for MA-ES 40 / 67
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1. Transformation methods
1 linear equality constraints

Ax = b, i.e., hj(x) =
∑N

n=1(A)jn(x)n − (b)j = 0 (34)

I use null-space mutations15

I note that any solution x of (34) can be decomposed into an inhomogenous
and a homogenous solution

A (xinh + xh) = b where Axh = 0, i.e., xh ∈ null(A) (35)

I the elements of the null space of A can be represented by an orthogonal
basis, the vectors of this basis can be collected in a matrix B ∈ RNx×N

obeying
BTB = I and AB = 0, (36)

I the initial parental state is obained by solving the linear system Axinh = b
(perhaps adding an xh to shift the initial parent to a desired position)

15First introduced in: P. Spettel et al.: “A Covariance Matrix Self-Adaptation Evolution
Strategy for Optimization under Linear Constraints.” IEEE Transactions on Evolutionary
Computation 23(3):514–524, 2019. DOI: 10.1109/TEVC.2018.2871944
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Initialize
(
x := xinh, σ,D, τs, τ1, τM,

s := 1,M := I,B := null(A)
)

(M1)
Repeat (M2)

For l := 1 To λ (M3)
z̃l := N l(0, I) (M4)
d̃l := Mz̃l (M5)
x̃l := x + σBd̃l (M6)
f̃l := f (x̃l) (M7)
ãl :=

(
f̃l, x̃l, z̃l

)
(M8)

End (M9)
RankOffspringPopulation(ã1, . . . , ãλ) (M10)
x := 〈x̃〉 (M11)

s :=
(

1− 1
τs

)
s +

√
µ
τs

(
2− 1

τs

)
〈z̃〉 (M12)

M := M
[
I + 1

τ1
(〈ssT〉 − I) + 1

τM
(〈z̃z̃T〉 − I)

]
(M13)

σ := σ exp
[

1
2D

(
‖s‖2

N − 1
)]

(M14)

Until(Termination_Condition) (M15)
Return(x) (M16)

M1: initial x is obtained
by solving Axinh = b
dimensionality N of z̃
and d̃ is given by
N := rank(B)

M ∈ RN×N
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2 ellipsoidal equality constraint

xTSx = κ > 0, ∀x ∈ RN ∧ x 6= 0 (37)
I use non-linear transformation16

I consider the Cholesky decomposition of S in the A-factor

ATA = S (38)

I then an offspring x̃ satisfying (37) is obtained by

x̃ :=
√
κ

x + σA−1d̃
‖Ax + σd̃‖

(39)

I the parental state can be obtained similarly

〈x̃〉 :=
√
κ

x + σA−1〈d̃〉
‖Ax + σ〈d̃〉‖

(40)

16First introduced in: P. Spettel & H.-G. Beyer: “Matrix Adaptation Evolution Strategies for
Optimization Under Nonlinear Equality Constraints.” Swarm and Evolutionary Computation,
2019. DOI: 10.1016/j.swevo.2020.100653
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Initialize
(
x, σ,D, τs, τ1, τM, s := 1,M := I,
A := CholeskyDecomposition(S)

)
(M1)

Repeat (M2)
For l := 1 To λ (M3)

z̃l := N l(0, I) (M4)
d̃l := Mz̃l (M5)
x̃l :=

√
κ x+σA−1d̃l

‖Ax+σd̃l‖
(M6)

f̃l := f (x̃l) (M7)
ãl :=

(
f̃l, x̃l, z̃l

)
(M8)

End (M9)
RankOffspringPopulation(ã1, . . . , ãλ) (M10)
x :=

√
κ x+σA−1〈d̃〉
‖Ax+σ〈d̃〉‖ (M11)

s :=
(

1− 1
τs

)
s +

√
µ
τs

(
2− 1

τs

)
〈z̃〉 (M12)

M := M
[
I + 1

τ1
(〈ssT〉 − I) + 1

τM
(〈z̃z̃T〉 − I)

]
(M13)

σ := σ exp
[

1
2D

(
‖s‖2

N − 1
)]

(M14)

Until(Termination_Condition) (M15)
Return(x) (M16)

M6: non-linear
transformation of
direction vector

M1: A−1 can be
calculated as well

M11: this transforma-
tion might be replaced
by 〈x〉, in that case M16
must return x̃1;λ.
Note, in that case
performance might/will
be different

Remark: There is also
a transformation (not
discussed here) that
satisfies hyperbolic
constraints
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2. Repair method

even if the parental state x fulfills ∀j = 1, . . . , J : hj(x) = 0, the
offspring state x̃ := x + σd̃ will (almost surely) violate the constraint(s)

h(x̃) 6= 0 (41)

+ x̃ must be repaired by adding ∆x such that

h(x̃ + ∆x) = 0 (42)

Taylor expansion yields with the Jacobian matrix (J)jn :=
∂hj
∂xn

h(x̃ + ∆x) = h(x̃) + J∆x + . . . = 0 (43)

neglecting higher-order terms, ∆x can be approximately determined
using the MOORE-PENROSE Pseudoinverse J†, one obtains

∆x = −J†(x̃)h(x̃) (44)
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thus, performing the update x̃ := x̃ + ∆x yielding the iterative scheme

x̃ := x̃− J†(x̃)h(x̃) (45)
the scheme (44) is iterated until ‖h(x̃)‖ is sufficiently small (e.g. 10−8)
this process is performed by the function Repair(x̃,h) in the pseudocode
on the next slide17

the Jacobian can be determined numerically (black-box scenario) or
symbolically (white-box)

MA Peculiarities:
z̃ back calculation to increase probability for individuals in vicinity of
constraint hypersurface
requires the “inverse” Minv of M
can be done by an Minv update (initially Minv = I)

Minv :=
[
I − 1

τ1
(〈ssT〉 − I)− 1

τM
(〈z̃z̃T〉 − I)

]
Minv (46)

17For details it is referred to: P. Spettel & H.-G. Beyer: “Matrix Adaptation Evolution
Strategies for Optimization Under Nonlinear Equality Constraints.” Swarm and Evolutionary
Computation, 2019. DOI: 10.1016/j.swevo.2020.100653
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Initialize (x, σ,D, τs, τ1, τM, s := 1,M := I) (M1)
Repeat (M2)

For l := 1 To λ (M3)
z̃l := N l(0, I) (M4)
d̃l := Mz̃l (M5)
x̃l := Repair

(
x + σd̃l,h

)
(M6)

z̃l := 1
σMinv(x̃l − x) (M7)

f̃l := f (x̃l) (M8)
ãl :=

(
f̃l, x̃l, z̃l

)
(M9)

End (M10)
RankOffspringPopulation(ã1, . . . , ãλ) (M11)
x := Repair(〈x̃,h〉) (M12)

s :=
(

1− 1
τs

)
s +

√
µ
τs

(
2− 1

τs

)
〈z̃〉 (M13)

M := M
[
I + 1

τ1
(〈ssT〉 − I) + 1

τM
(〈z̃z̃T〉 − I)

]
(M14)

σ := σ exp
[

1
2D

(
‖s‖2

N − 1
)]

(M15)

Until(Termination_Condition) (M16)
Return(x) (M17)

M6: by iterating (45)

M7: calculate back such
that z̃l fulfills h(x̃l) = 0
Minv – “inverse matrix”
either by pseudoinverse
of M or iteration after
(M14) using Eq. (46)

M12: this transforma-
tion might be replaced
by 〈x〉, in that case M16
must return x̃1;λ.
Note, in that case
performance might/will
be different

Note, this MA-ES in an
interior point method
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Figure 13: ECDF-plots of Thomson’s problem (M – number of points on sphere).
c©2020 H.-G. Beyer (FHV ) Design Principles for MA-ES 48 / 67



Design Principles for MA-ES on Constrained Problems Equality Constraints: Repair

Figure 14: ECDF-plots of maximum area problem (M = nodes− 1).
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Figure 15: ECDF-plots of CEC06 equality constraint problems.
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Inequality Constraints
most constraint handling EAs are NOT interior point methods, i.e., they
allow for infeasible solutions during the evolution process
especially, the competitions at CEC and COCO BBOB allow for
infeasible solutions

å there is a plethora of methods used in DE and PSO that are being
considered only recently in Evolution Strategies (ES)

+ the most successful will be considered below
however, there is also an ES-specific approach by D.V. ARNOLD et al.18

called “active covariance adaptation”
idea is to incorporate even the worst individuals’ direction vectors d̃ in
the update of the covariance matrix C using negative weights wl

(∀l > λ/2)

C :=
(

1− 1
τw

)
C + 1

τw
〈d̃d̃T〉w where 〈d̃d̃T〉w :=

∑λ
l=1 wld̃l;λd̃T

l;λ (47)
18G. Jastrebski and D. Arnold. Improving Evolution Strategies through Active Covariance

Matrix Adaptation. CEC’2006, pp. 2814–2821. DOI: 10.1109/CEC.2006.1688662
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this approach has been extended and used in an (1+1)-ES for constrained
optimization19

Problem: due to the negative weights in (47) C can become indefinite
and
√

C 6∈ RNx×Nx

the novel M update (15) does not suffer from such problems, it
solves the indefiniteness problem

Idea:
for each constraint gk(x) (32) keep a fading record of vk-vectors that is
updated in the case that kth constraint is violated for offspring x̃

∀k ∈ {k|gk(x̃) > 0} : vk :=
(

1− 1
τv

)
vk + 1

τv
z̃ (48)

this learns the local normal direction of the constraint boundary from
viewpoint of the isotropic z variation in the offspring generation loop

19D.V. Arnold & N. Hansen. A (1+1)-CMA-ES for constrained optimisation. GECCO’2012,
pp. 297–304. DOI: 10.1145/2330163.2330207
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z

v

g(x)≤0

g(x)≥0

feasible region

Figure 16: Those variations in the (µ/µI , λ)-MA-
ES, Line M13 (Slide 30), which lead to infeasible
offspring are cumulated according to (48). Thus,
those parts of the infeasible z leading to mutations
tangential to the feasibility border g(x) = 0 are
(approximately) averaged out, the normal part,
being v, remains.

then, after selection, M is updated according to Line M13 (Slide 30) in
the standard (µ/µI, λ)-MA-ES and in a second step
the vk normal directions of all violated g(x̃) ≤ 0 constraints (within the
actual generation) are incorporated in the M update (β = Θ(1/Nx))

∀k ∈ {k|gk(x̃) > 0} : M := M− β(Mvk)vT
k (49)

the performance of the resulting MA-ES (pseudocode not displayed
here20) have been compared to other approaches, especially to the one
cited in footnote 19, see next slide

20Published in: P. Spettel & H.-G. Beyer. A multi-recombinative active matrix adaptation
evolution strategy for constrained optimization. Soft Computing 23(16): 6847–6869. DOI:
10.1007/s00500-018-03736-z
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Figure 17: ECDF-plots of COCO BBOB for constraint problems comparing the
active MA algorithm (maEsWithA) with the (1 + 1)-ES (Arnold & Hansen),
conSaDE (Huang et al., 2006), and epsDEga (Takahama & Sakai, 2010).
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How to Become Competitive21

General constrained minimization problem:

arg min
x

f (x) (50a)

s.t. hj(x) = 0, j = 1, . . . , J (50b)

gk(x) ≤ 0, k = 1, . . . ,K (50c)

x̌n ≤ (x)n ≤ x̂n, n = 1, . . . ,N (50d)

What are the ingredients for an MA-ES that is able to be on par or better
than the currently best performing DE for constrained problems?

Résumé of an analysis of DE algorithms and the advantages of MA-ES:
1 always handle box-constraints (50d) first⇒ KeepRange(x)
2 allow for infeasible solutions (if admissible as in CEC competitions)
3 use scheduled ε-relaxed lexicographic ordering of individuals
4 use infeasibility repair by gradient techniques “now and then”
5 in case of repair 1 or 4 , calculate back to adapt the M-matrix
21M. Hellwig & H.-G. Beyer. A Matrix Adaptation Evolution Strategy for Constrained

Real-Parameter Optimization. CEC’2018, pp. 749–756. DOI: 10.1109/CEC.2018.8477950
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Box Constraints

Different possiblities:
1 project onto the nearest box boundary

I Advantage: provides a minimal repair (respects offspring locality)
I Disadvantage: is biased towards corners of the box

2 reflect back into box
I Advantage: no preference of certain box boundaries
I Disadvantage: random point behavior (offspring locality violated)
I however, it worked well in CEC competitions:

KeepRange(x)n :=


x̌n +

(
(x̌n − xn)−

⌊
x̌n−xn
x̂n−x̌n

⌋
(x̂n − x̌n)

)
, if xn < x̌n

x̂n −
(

(xn − x̂n)−
⌊

xn−x̂n
x̂n−x̌n

⌋
(x̂n − x̌n)

)
, if xn > x̂n

xn, else

(51)
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ε-Relaxed Lexicographic Ordering22

Let

Hj(x) :=

{
|hj(x)|, if |hj(x)| > δ

0, if |hj(x)| ≤ δ (52)

and Gk(x) := max(0, gk(x)) (53)

then infeasibility measure ν(x) is defined as

ν(x) :=
∑J

j=1 Hj(x) +
∑K

k=1 Gk(x). (54)

Given two individuals xα und xβ and the couple (fα, να) := (f (xα), ν(xα)),
the ε-level lexicographic order relation �ε is defined (for f -minimization) as

xα �ε xβ ⇔


fα ≤ fβ, if (να ≤ ε) ∧ (νβ ≤ ε),
fα ≤ fβ, if να = νβ,
να < νβ, otherwise.

(55)

Note, in case of f -maximization, fα ≤ fβ is to be changed to fα ≥ fβ .
22T. Takahama & S. Sakai. Constrained Optimization by the ε Constrained Differential

Evolution with Gradient-Based Mutation and Feasible Elites. CEC’2006, pp. 308–315.
DOI: 10.1109/CEC.2006.1688283
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How to control ε

finally ε→ 0 must hold to ensure feasibility

⇒ reasonable to assume a generation number g > T above which standard
lexicographic ordering is used, i.e. ε = 0

currently, ε-decrease over the generations g is controlled by the ad hoc
rule

ε(g) := ε(0)
(
1− g

T

)γ (56)

where
ε(0) := 1

bθtλc
∑bθtλc

l=1 ν
(
x(0)l;λ

)
(57)

choice of T , θt ∈ (0, 1), and γ ≥ γmin by experimentation
(in CEC 2018 competition: T = 1000, θt = 0.9, and γmin = 3)
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Gradient Based Repair
applied from time to time (every Nth generation probabilistically) and
only approximately (stopping after at most θr iteration steps)
in case of an infeasible offspring x̃⇒ repair by x̃ := x̃ + ∆x
constraint vector: c(x) :=

(
h1(x), . . . , hJ(x), g1(x), . . . , gK(x)

)T

Taylor: cm(x + ∆x) = cm(x) +∇cT
m∆x + . . . (m = 1, . . . , J + K)

demanding: hj(x) +∇hT
j ∆x !

= 0 and gk(x) +∇gT
k∆x

!
≤ 0

neglecting higher order terms yields:
∇hT

j ∆x + hj(x) = 0 and
∇gT

k∆x + gk(x) ≤ ∇gT
k∆x + max(0, gk(x)) = 0

collecting the gradients in a matrix J (the Jacobian), one obtains the
linear system J(x)∆x = −b, where

b(x) :=
(
h1(x), . . . , hJ(x),max(0, g1(x)), . . . ,max(0, gK(x))

)T (58)

using pseudoinverse J†, an offspring repair update step reads

x̃ := x̃− J†(x̃)b(x̃) (59)

which can be executed θr times in a row if need be
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MA-ES Specific Step: z̃ Back Calculation

as in the case of equality constraint repair (Slide 45ff), back calculation
is (often) benefical after a Repair and/or KeepRange step

let x̃l the repaired offspring l, then (x being the parental state)

d̃l :=
1
σ

(x̃l − x) (60)

and
z̃l := Minvd̃l, (61)

where Minv can be:
1 the pseudoinverse M† of M23 or
2 evolved using the update (46)24

23Used in our publication mentioned in Footnote 21.
24This approach needs further investigations regarding the general problem (50).
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On the Influence of Different Algorithmic Ingredients

Figure 18: The influence of switching off different algorithmic ingredients in the
εMAg-ES on the performance using the constrained CEC2017 benchmark.
Missing “g”: no gradient based repair; “w/o”: no z back calculation; “nl”: no
σ-limitation; “SA”: M ≡ I; “lex”: ε ≡ 0.
“+/ = /−”: number of problems where εMAg-ES is significantly “better than / on
par with / worse than” the downgraded versions.
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Summary

Summary
The C in CMA-ES can be removed yielding MA-ES

this simplifies the ES algorithm and provides deeper insights:
I
√

C operation is no longer needed (no problems with negative eigenvalues)
I one may also remove the d evolution path

provides a simple interpretation of the ES working principles in that the
evolution of the M-matrix is governed by the selection-caused deviation
from the isotropically generated random z vectors

⇒ MA-ES seeks to transform the optimization problem locally into a
sphere model
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Summary

These results/findings gave and give rise to new algorithm designs:
approximating the M-matrix with a few cumulated vectors allows for
limited memory LM-MA-ES that works for search space
dimensionalities of quite a few thousands (and even more)25

the MA evolution idea can be transferred to constrained optimization:
I infeasible solutions can be easily used to improve the M-matrix
I also repaired solutions can be used in a z back calculation step to improve

the M-matrix
I the “inverse” M-matrix can also be evolved (i.e., w/o explicit inversion

operations)
I using similar techniques as have been used in DE (Differential Evolution),

one can easily design ESs that are among the best performing algorithms

Algorithm design based on MA-ES has just begun.
You are invited to enter this field!

Thank You For Your Attention!

25Unlike most CMA-ES versions proposed for higher search space dimensionalities no
assumptions regarding diagonal or block structure are needed.
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