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How does the ES explore the search space?

often used picture: Population traces the gradient path

this is based on the following observations

1 ES exhibits linear convergence order just like classical gradient strategies
2 Claims in publications:

⋆ “Evolution strategies (ES) can be best described as a gradient descent

method which uses gradients estimated from stochastic perturbations around

the current parameter value.”1

⋆ “. . . instead of computing the exact gradient, ES computes an approximation

from all the sample points (called pseudo-offspring) generated from parent”2

NB: This is due to a misleading statement in a paper by Salimans et al. (2017):

Evolution Strategies as a Scalable Alternative to Reinforcement Learning.3

1
https://www.inference.vc/evolutionary-strategies-embarrassingly-parallelizable-optimization/

2
X. Zhang, J. Clune, and K.O. Stanley: On the Relationship Between the OpenAI EvolutionStrategy and Stochastic Gradient Descent.

ArXiv e-prints, abs/1712.06564

3
T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever. ArXiv e-prints, abs/1703.03864
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Recall: Gradient Strategies

If one wants to minimize a function f (y), y ∈ R
N

Iterative scheme:

y(g+1) = y(g) − η(g)∇f (y(g)) (1)

or more general

y(g+1) = y(g) − η(g)C(g)∇f (y(g)) (2)

as long as C(g) ∈ R
N×N is positive definite, or even more general

y(g+1) = y(g) − c̃[∇f (y(g)), g] (3)

SALIMANS ET AL. used normally distributed mutations zi ∼ N (0, σ2I) and

called

y(g+1) = y(g) − α
λ
∑

i=1

f (y(g) + zi)zi (4)

this update scheme Evolution Strategy (with reference to RECHENBERG)
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What is the meaning of α
∑λ

i=1 f (y + zi)zi?

Since in high-dimensional spaces zi ∼ N (0, σ2I) the length of z is

E[‖z‖] ≃ σ
√

N (5)

thus, we have a Monte Carlo estimator of a surface integral in R
N

α
λ
∑

i=1

f (y + zi)zi ≃
‹

∂V

f (y + x) dA(x) (6)

Applying Gauss’ Theorem:
‚

∂V
f (x) dA =

˝

V
∇f dV and

divide by the volume V of the ball and taking the limit V → 0, i.e. σ → 0

lim
V→0

α

V

λ
∑

i=1

f (y+zi)zi ≃ lim
V→0

1

V

‹

∂V

f (y+x) dA(x) = lim
V→0

1

V

˚

V

∇f dV = ∇f

(7)

one recovers the coordinate-free definition of the gradient!

☞ SALIMANS ET AL. “Evolution Strategy” is a vanilla gradient strategy!

☞ ... and this is not SALIMANS’ ET AL. invention, but was already proposed

by R. SALOMON in the late 1990s “Evolutionary Gradient Search” [1]
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3 if one projects N-dimensional individual y := (y1, . . . , yN)
T into

(x1, x2)-plane using (RECHENBERG)

x1 :=
√

y2
1 + · · ·+ y2

(N/2) , x2 :=
√

y2
(N/2)+1

+ · · ·+ y2
N , (8)

one observes indeed some kind of “gradient diffusion”
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Figure 1: Path of the best individual in a (4, 20)-ES (left) and a (4/4I , 20)-ES (right)

on the N = 100-dimensional sphere model after Projection (8) into 2D over 200

generations. “•”: start, “×”: optimizer.

Dagstuhl, Oct. 2019, H.-G. Beyer (FHV ) ES are NOT Gradient Followers 5 / 22

On the Search Behavior of ES in R
N

Fig. 1 presents a strong support for the gradient diffusion picture,

however

⇒ What would be the use of ES at all?

⇒ probability of leaving local attractors would be very small

⇒ one should better use multi-start gradient strategies

Is this the real picture of the search behavior of ES?

No, Projection (8) is misleading:

lumping together N/2 components⇒ central limit theorem of statistics

dampens the variance of the random components by a factor of 2/N

behavior of single components of the y vector is not correctly reflected

☞ single components of y must be considered
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Figure 2: The x1 := y1 and x2 := y2 components (x1 horizontal axis, x2 vertical axis)

of the evolution path of the best individual of the ES runs of Fig. 1, Slide 5 are

displayed. Left: (4, 20)-ES, right: (4/4, 20)-ES.
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actually realized evolution path is much more random as can be seen on

Slide 7

however, this random walk is restricted by selection

approach to the optimizer⇔ EXPLOITATIVE POWER of the EA

can be described by the Evolutionary Progress Principle (EPP)

note, concrete form of EPP depends on the definition of “progress”

however, it is always related to a decomposition of the mutation vector z

or the vector describing the change of the parental centroid from g to

g + 1

general observation:

{

gain part ⇔ x-component ⇔ EXPLOITATION

loss part ⇔ h-vector ⇔ EXPLORATION
(9)

Q: How to quantify Exploitation/Exploration?
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Different options to define the exploitation/exploration ratio

1 decomposition of the expected value of the parental centroid change

〈y〉(g) − 〈y〉(g+1) according to

Exploitation

Exploration
:=

E[R− R̃]

E[‖h‖] =
ϕ

E[‖h‖] (10)

2 relating the fictive length of the expected change in local gradient
direction to the perpendicular part (perpendicular w.r.t. the local
gradient) of the parental centroid change

◮ fictive length is also referred to as normal progress ϕR

ϕR =
Q

‖∇F(yp)‖
, Q – QUALITY GAIN, yp = 〈y〉(g) (11)

◮ where quality gain is defined by

Q = E
[

F
(

〈y〉(g+1)
)

− F(yp)
]

(12)

◮ and the exploitation/exploration ratio reads

Exploitation

Exploration
:=

ϕR

E[‖h‖] (13)
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{

progress in local gradient direction ⇔ EXPLOITATION

perpendicular part ⇔ EXPLORATION
(14)

p pF  = F(y  ) = const.

R

yp

Q

F

h

exploitation

zexploratio
n

pF = F(y  ) -      = const.

mutation

ϕ

Figure 3: Visualization of exploration vs. exploitation based on normal progress.

The surface displayed represents equal function values (i.e., y ∈ R
3).
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Asymptotic N →∞ exploration-exploitation behavior (sphere model)

isotropic Gaussian mutations: E[‖h‖] ≃ σ
√

N

as for (µ/µI , λ)-ES on sphere model, Definition (9) yields

max[ϕµ/µ,λ] ≃
R

N
µ

c2
µ/µ,λ

2
⇔ σ = µcµ/µ,λ

R

N

and

E[‖hµ/µ,λ‖] ≃
R

N
µcµ/µ,λ

√
N

thus

Exploitation

Exploration
≃

(

1√
N

)

(15)

this also holds for each single mutation
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First Summary

1 Exploitation: ability of an EA to evolve into a desirable progress

direction

☞ acts locally in one dimension

2 Exploration: process that drives the offspring away from the local

progress direction

☞ random walk on an (N − 1)-dimensional manifold, locally

perpendicular to local progress direction

3 actual “path” of the population in search space does not follow the local

gradient

4 Are ESs path-oriented search methods?

☞ Yes, Brownian random path

5 actual “path” of population in search space is reminiscent of serpentines

in mountainous regions
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Dynamics of (µ/µI , λ)-σSA-ES on the General Ellipsoid Model

Mean Value Dynamics of Self-Adaptive ESs

Goals of a theoretical analysis:

getting a general understanding how Evolution Strategies (ES) do work

given a objective function model f (y) to be optimized, how fast does the

ES approach the optimizer?

how is the influence of the model parameters (e.g. condition number) on

the ES performance?

not only interested in convergence order, but also in the computational

resources needed to get a predefined improvement

ideally, we want to calculate the dynamics describing the approach

towards the optimizer

getting information how strategy specific parameters (e.g. population

size, truncation ratio) influence the performance

Goal Function:

f (y) =
N
∑

i=1

aiy
2
i , ai > 0 (16)
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1 σ(0) ← σinit

2 y(0) ← yinit

3 g← 0

4 do

5 for l = 1, . . . , λ begin

6 σ̃l ← σ(g)eτNl(0,1)

7 zl ←N l (0, I)
8 xl ← σ̃lzl

9 ỹl ← y(g) + xl

10 F̃l ← F (ỹl)
11 end

12 F̃sort ← sort
(

F̃1...λ

)

13 σ(g+1) ← 1
µ

∑µ
m=1 σ̃m;λ

14 y(g+1) ← 1
µ

∑µ
m=1 ỹm;λ

15 g← g + 1

16 until termination

Figure 4: The (µ/µI , λ)-σSA-ES
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Figure 5: Dynamics of the (3/3I , 10)-ES

on a fitness function (16) with ai = i and

N = 40. The quadratic deviation of yi

from the optimizer is displayed for the

components i = 1, 2, 3, 10, 40.

Additionally, the mutation strength σ has

been plotted. ES learning parameter:

τ = 1/
√

N. Note, the graphs are averages

over 1000 independent runs.
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mean value dynamics are described by a system of N + 1 difference

equations:

(

y
(g+1)
i

)2

=
(

y
(g)
i

)2













1−
2cµ/µ,λσ

(g)ai
√

N
∑

j=1

a2
j

(

y
(g)
j

)2













+

(

σ(g)
)2

µ
(17)

σ(g+1) = σ(g)













1 + τ 2













1

2
+ e

1,1
µ,λ −

cµ/µ,λσ
(g)

∑N
j=1 aj

√

N
∑

j=1

a2
j

(

y
(g)
j

)2

























(18)

note this system is non-linear and a closed-form solution is excluded

however, one can derive an asymptotically exact solution for g→∞
this is also referred to as steady state solution:
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the steady state solution reads:

(

y
(g)
i

)2
= bie

−νg, bi > 0, ν > 0 (19)

σ(g) = σ0e−
ν
2

g, σ0 > 0 (20)

note, this already implies linear convergence order.

here, ν > 0 is the smallest eigenvalue of the eigenvalue problem (21)

νbi = 2σ∗
sscµ/µ,λ

ai
∑N

j=1 aj

bi −
(σ∗

ss)
2

N
∑

j=1

a2
j bj

µ
(

∑N
j=1 aj

)2
, (21)

ν = τ 2
(

2σ∗
sscµ/µ,λ − 2e

1,1
µ,λ − 1

)

, (22)

and ν, bi, and σ∗
ss = σ0

∑N
j=1 aj/

√

∑N
j=1 a2

j bj are unknowns

getting a closed form solution for ν is a challenge,

however, for N →∞ one can asymptotically assume ν → 0

Dagstuhl, Oct. 2019, H.-G. Beyer (FHV ) ES are NOT Gradient Followers 16 / 22
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Important Results

considering the general model case f (y) = yTQy and the eigenvalues ai

of Q, one finds

ν ≃ 2σ∗
sscµ/µ,λmin(ai)/Tr[Q] (23)

expected running time: How many generations are needed to reduce f (y)

by a factor of 2−β?

G ≃ β ln(2)

2σ∗
sscµ/µ,λ

Tr[Q]

min(ai)
. (24)

that is, the resources (number of function evaluations) the ES needs is

basically determined by the trace of Q divided by the smallest eigenvalue

steady state σ∗
ss:

σ∗
ss ≃

1/2 + e
1,1
µ,λ

cµ/µ,λ
· 1

1−min(ai)/ (τ 2Tr[Q])
. (25)
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Figure 6: Expected runtime experiments for the (3/3I , 10)-σSA-ES with τ = 1/
√

N

on the ellipsoid models ai = i, i2, and Hansen’s with α = 5. The predictions of (24)

for β = 2 are displayed by curves.

interestingly, Hansen’s f -model f (y) :=
∑N

i=1 10
α i−1

N−1 y2
i is

asymptotically not harder than the sphere model, i.e. G = O(N)
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ES mean value dynamics does not follow the gradient of f (y)

coming back to the claim that ES follows the gradient path (on average)

this would mean that it mimics a classical gradient strategy

however, look at (19), this is not the case:

Figure 7: In the steady state, the ES follows in expectation a straight line towards the

optimizer when applied to quadratic objective functions.
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Summary

not all ESs labeled as ES are ESs

using an inappropriate visualization may lead to wrong conclusions

regarding the search behavior of ES, one has to look at the actual search

paths

these search paths are more like restricted random walks than gradient

descents/ascents

one may consider this locally as an exploration process in N − 1

dimensions and an exploitation in one dimension

the search path of ES resembles serpentine paths in mountain regions

even if one considers the mean value dynamics, the ES does not

approximate the gradient path, except for the sphere

in the steady state, the ES approximates on average the Newton-direction

even though only isotropic mutations are used

not considered:When does a gradient strategy behave like an ES?
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Summary

The End

?
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