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1 Introduction

For many real-world applications the problem complexity is increased by noise perturba-

tions. The noise may stem from many different sources such as randomized simulations or

sensory disturbances. Due to uncertainties in the objective function of the optimization prob-

lem an analytical treatment based on the derivative is not possible. Recently direct search

methods, including Evolutionary Algorithms (EA), proved to be successful for optimization

in the presence of noise. A survey on the suitability of EAs for different classes of noisy

optimization problems is presented in [13].
Evolution strategies (ES) which build a subclass of EAs that without limitation mainly

concentrates on real-valued optimization. The progress of evolution strategies only relies on

the function values of the candidate solutions, i.e. on their fitness. An objective function that

is subject to noise biases the selection process of the ES which can cause a stagnation of the

search process. In order to prevent stagnations the vulnerability of the ES to noise has to be

reduced. One can basically apply two methods for reduction of the noise influence on the

strategy’s performance. On the one hand, the actual fitness of a candidate solution can be

replaced by its expected fitness. The expected fitness is computed by multiple evaluations of

the same candidate solution and subsequent averaging of the observed function value sam-

ples. Increasing the sample size reduces the variance of the estimated fitness provided that

the moments of the noise distribution exist. Since fitness evaluations can be expensive, the

sample size should be defined as small as possible while simultaneously acquiring a satis-

factory performance. Another technique to impair the impact of noise the ES is to increase

the population size. In large populations the influence of noise on an individual is likely

to be compensated by that of another individual. Recombination also gains a significant

performance improvement in noisy fitness environments, see [2]. However, enlarging the

population size also implicates an increase of the required number of fitness evaluations.
In order to avoid an excess of function evaluations, the question arises at which point to

take the countermeasures, i.e. to increase the population size or to use the averaged function

values. Since noise is reflected in changes of a candidate solution’s measured fitness between

two consecutive evaluations, resampling of fitness values is also suitable for noise detection.

But it is not a reliable indicator for progress stagnation. The approach introduced in [12]

bases the decision whether to treat the uncertainties or not on an uncertainty level. This

level is determined by the number of rank changes within the offspring individuals after

applying small perturbations. Although this approach aims at handling so-called actuator

noise, it is applicable to fitness noise by replacing the perturbations with an additional fitness

evaluation. The work of [9] suggests a population control rule which is based on the residual

error. Since the dynamics of an ES in a noisy environment will usually approach a steady

state in the vicinity of the optimizer. At that point, fluctuations of the parental fitness values

around their mean value can be observed. The population size is then increased if the fitness

dynamics on average deny further progress.
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This paper investigates the applicability of three different approaches to noisy fitness

environments. Two detection techniques are based on linear regression analysis. The first

approach estimates the slope of the linear regression line. The direction of the trend can

be determined to a certain significance level by computation of a confidence interval on

the slope estimator. The second approach uses the Mann-Kendall hypothesis test to infer

whether the trend of the strategy’s dynamics exhibits increasing or decreasing tendencies.

Eventually, the third technique relies on tools known from Time Series Analysis context. In

particular, the application of trend decomposition by moving average filters together with

the use of specific hypothesis tests on the resulting residual series is regarded.

All approaches are separately integrated into the covariance matrix self-adaptation evolution

strategy (CMSA-ES). In particular, the application of trend estimation together with the use

of specific hypothesis tests is regarded. The approaches allow for the detection of stagnations

within the strategy’s progress. Thus the strategy is able to take remedial actions by increasing

the population size. The performance of the different strategies is tested on the noisy sphere

model as well as the more general noisy ellipsoid model considering three different noise

variants. The achieved behavior agrees with existing theoretical predictions [1, 5, 9].

The standard (µ/µI , λ)-CMSA-ES is recapped in Sec. 2. Afterwards Sec. 3 introduces

the optimization problem and the considered noise models. On this basis the proposed noise

handling strategy is presented in Sec. 4. The paper concludes with a discussion of the results.

2 The (µ/µI , λ)-CMSA-ES

The methods developed in this paper are integrated into the CMSA-ES. For that reason

the standard (µ/µI , λ)-CMSA-ES is reviewed at this point. Its pseudo code is displayed in

Fig. 1. In each iteration the (µ/µI , λ)-CMSA-ES generates λ offspring candidate solutions

with its individual mutation strength σl. The mutation strength σ can be interpreted as an

individual scaling factor. Within the algorithm it is controlled by use of the parameter τσ The

standard mutation strength learning parameter is chosen τσ =
1√
2N

. The mutation vector zl

of each offspring depends on the covariance matrix C which corresponds to the distribution

Initialize

g← 0; 〈σ〉 ← σ(init); 〈y〉 ← y(init) 1

µ← µ(init); λ← ⌈µ/ν⌉; C ← I 2

Repeat 3

For l← 1 To λ 4

σl ← 〈σ〉eτσN(0,1) 5

sl ←
√

CN(0, I) 6

zl ← σl sl 7

yl ← 〈y〉 + zl 8

fl ← f (yl) 9

End For 10

g← g + 1 11

〈z〉 ← ∑µ
m=1

zm;λ 12

〈σ〉 ← ∑µ
m=1
σm;λ 13

〈y〉 ← 〈y〉 + 〈z〉 14

C ←
(

1 − 1
τc

)

C + 1
τc
〈ss⊤〉 15

Until T erminationCriterion 16

Figure 1: Pseudo code of the (µ/µI , λ)-CMSA evolution strategy.
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Figure 2: Distance R(g) to the optimizer as well as mutation strength σ(g) dynamics of the

(3/3I , 10)-CMSA-ES using standard parameter settings. The dynamics are displayed for N =

40 on the noise-free Sphere model (ai = 1). The algorithm terminates after 103 generations.

of previously generated successful candidate solutions. The update rule can be found in line

15. A standard value for the learning parameter is τc = 1 +
N(N+1)

2µ
. After construction of the

offspring, their objective function (fitness) values are evaluated, see lines 4 to 10.

Having completed the variation step, the algorithm selects those µ of the λ offspring

which turn out to have the best fitness values fm;λ, m = 1, . . . , λ. Notice, m; λ denotes the mth

best out of λ possible values. Accordingly, the notation 〈.〉 refers to the construction of the

centroid of the respective values corresponding to the µ best offspring candidate solutions.

For example, the centroid of the mutation strengths is 〈σ〉 = 1
µ

∑µ

m=1
σm;λ.

The algorithm terminates after a predefined termination criterion is met, e.g. maximal

number of function evaluations or maximal number of iterations.

3 The noisy fitness environment

The paper focuses on the fitness environment referred to as the ellipsoid model. The accord-

ing objective function reads

f (x) =

N
∑

i=1

ai x
2
i (1)

with ellipsoid coefficients ai and search space parameter x ∈ RN . A special case of this

fitness environment is the frequently studied sphere model ai = 1.

Fig. 2 displays the typical behavior of the (3/3, 10))-CMSA-ES with standard learning

parameters τσ and τc on the noise-free sphere model (ai = 1, N = 40). The parental cen-

troid’s distance to the optimizer as well as the corresponding mutation strength σ are plotted

against the number of generations. The optimization is started at y(init) = 3 with initial step-

size σ = 1. In the noise-free environment, the CMSA is able to approach the optimizer

arbitrarily close (g→∞) and continuously reduces its mutation strength σ.

Regarding a noisy fitness environment the fitness evaluations are subject to noise. The

selection process is then based on the noisy fitness values and might accordingly be biased.

We will consider three different types of noise models.

In the first two cases the noise is modeled by an additive term

f̃ (x) = f (x) + σǫN(0, 1). (2)

That is, a normally distributed noise term with variance σ2
ǫ is added to the original fitness

of each offspring. The respective standard deviation σǫ is referred to as noise strength.
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The models exclude correlations between successive evaluations of Eq. (2). The third noise

model is denoted as actuator noise. The actuator noise model reflects internal uncertainties

in the variables that are subject to optimization, e.g. actuator imprecision.

The following subsections explain the different noise models and recap existing theoret-

ical results. The effects of different noise models on the dynamics of the same CMSA-ES

are illustrated. All results have been obtained by use of the same initial values and strategy

parameters as in Fig. 2.

3.1 Constant noise variance

First, consider the noise model of constant noise variance, i.e. the noise strength σǫ is inde-

pendent from the current location in the search space. In this situation evolution strategies

exhibit a common behavior. The noise influence can be neglected far away from the opti-

mizer, i.e. if f (x) ≫ σǫN(0, 1)). But as the strategy approaches the optimizer the noise

gets more pronounced and the ES finally exhibits some kind of steady state behavior. This

steady state on average resides in a certain residual distance from the optimal solution (see

also Fig. 3 below).

The expected residual distance on the noisy sphere function is derived in [2, 1]. Its

formulation for sufficiently small mutation strength values reads

R∞ =

√

Nσǫ

4µcµ/µ,λ
. (3)

In this context, the term cµ/µ,λ refers to the progress coefficient of the (µ/µI , λ)-ES, [4],

cµ/µ,λ =
λ−µ
2π

(

λ

µ

) ∫ ∞
−∞ e−t2 (1 − Φ(t))λ−µ−1Φ(t)µ−1dt. (4)

with Φ(t) denoting the cumulative distribution function of a standard normal variable.

Considering non-spherical ellipsoid models the derivation of the residual distance be-

comes more complicated. However, a lower bound for the expected steady state function

value on the noisy ellipsoid model is obtained in [5] as

E
[

f∞
] ≥

Nσǫ

4µcµ/µ,λ
. (5)

This rather simple result can be explained by the equipartition effect which decomposes

the arbitrary directed ellipsoid into its essential fitness components. It was experimentally

verified that the equal sign in (5) predicts the steady state fitness well as long as the mutation

strength σ of the ES is adapted properly.

The residual distance formula (3) can be extended to non-sperical quadratic models. A

residual value Ra for the weighted sum of the parental centroid’s components can be defined

Ra ≔

√

√

√

N
∑

j=1

a2
j
y2

j
. (6)

The steady state value R∞a can be determined by means of the noisy quadratic progress rate

of the ellipsoid model derived in [17].

ϕII
i (σ(g), y(g)) =

2σ(g)cµ/µ,λaiy
(g)

i

2

√

(1 + κ2)
∑N

j=1 a2
j
y

(g)

j

2
−
σ(g)2

µ
, (7)
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with noise-to-signal ratio κ

κ
2 =

σ2
ǫ

4σ2
∑N

j=1 a2
j
y2

j

. (8)

After the ES has reached its noisy residual steady state distance R∞a to the optimizer, the

further progress is zero in expectation. Making use of the noisy quadratic progress rate (7)

yields the condition

σ2

µ

!
=

2σcµ/µ,λaiy
2
i

√

(1 + κ2)
∑N

j=1 a2
j
y2

j

, (9)

The square root in the denominator of Eq. (9) can be transformed into

√

√

√

(1 + κ2)

N
∑

j=1

a2
j
y2

j
=

√

4σ2
∑N

j=1 a2
j
y2

j
+ σ2

ǫ

2σ
. (10)

Thus another representation of (9) is

σ2

µ

!
=

4σ2cµ/µ,λaiy
2
i

√

4σ2
∑N

j=1 a2
j
y2

j
+ σ2

ǫ

. (11)

Multiplying both sides by ai and summation over all i yields

Σa

4µcµ/µ,λ

!
=

∑N
j=1 a2

j y
2
j

√

4σ2
∑N

j=1 a2
j
y2

j
+ σ2

ǫ

=

∑N
j=1 a2

j y
2
j

√

∑N
j=1 a2

j
y2

j

√

√

4σ2 +
σ2
ǫ

∑N
j=1 a2

j
y2

j

(12)

Notice, that the abbreviation Σa ≔
∑N

i=1 ai is used in Eq. (12).
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Figure 3: Distance R(g) to the optimizer as well as mutation strength σ(g) dynamics of the

(3/3I , 10)-CMSA-ES on the noisy sphere model. The dynamics are subject to fitness noise

of constant variance. All other settings match those of Fig. 2.
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Finally, the residual quantity R∞a can be derived in the limit of small mutation strengths.

Assuming small values of σ, the term 4σ2 in the denominator of (12) can be neglected and

one obtains

R∞a =

√

σǫΣa

4µcµ/µ,λ
. (13)

This formulation provides a generalization of (3) which can be realized by inserting ai = 1.

Equation (13) clearly indicates that increasing the population size is capable of reducing the

residual distance to the optimizer (given that the truncation ratio ϑ = µ/λ is held constant).

The presence of additive fitness noise of constant variance causes the CMSA-ES to ap-

proach its residual distance R∞a instead of converging towards the optimizer. This typical

behavior is illustrated in Fig. 3 on the noisy sphere model (ai = 1). There, the steady state

R∞a is displayed using a solid green line. Being initialized withσ(0) = 1 at y = 1 in dimension

N = 40 the (3/3, 10)-CMSA-ES uses the standard parameter configuration. The solid blue

line represents the distance to the optimizer R(g) while the dashed red line illustrates the cor-

responding mutation strength dynamics. The stagnation of the strategy around its residual

steady state R∞a substantiates the idea to enable further progress in direction of the optimizer

by increasing the population size. In order to keep the amount of function evaluations as low

as possible the right moment for the population augmentation has to be determined. This

will be accomplished by detection of stagnations within the strategy’s fitness dynamics.

3.2 Constant normalized noise variance

The second noise representation is the model of constant normalized noise variance. On the

ellipsoid model the normalized noise strength is defined as [17],

σ∗ǫ ≔
σǫΣa

2
∑N

j=1 a2
j
y2

j

. (14)

For ai = 1 this representation includes the well known noise strength normalization on the

sphere model [2]

σ∗ǫ ≔ σǫ
N

2R2
, (15)

where R ≔ ‖x‖ is the individual’s distance to the optimizer. By definition the noise strength

σǫ gets reduced with decreasing distance to the optimizer. That is, in this model the optimizer

is noise-free and σǫ increases quadratically with the distance from the optimizer. Distant

candidate solutions are subject to huge noise perturbations which can lead the strategy to

diverge from the optimizer. Due to its representation (15) this type of fitness noise is also

referred to as fitness proportional noise.

According to theoretical investigations on the ellipsoid model [6, 7], positive progress in

direction of the optimizer is related to the condition

σ∗2
+ σ∗ǫ

2
< 4µ2c2

µ/µ,λ. (16)

The term σ∗ denotes the normalized mutation strength which is defined on the ellipsoid

model as

σ∗ = σ
Σa

√

∑N
j=1 a2

j
y2

j

. (17)

Notice, that this definition also holds for the sphere model ai = 1. Regarding the limit of

small mutation strength σ the condition for positive progress becomes

µ >
σ∗ǫ

2cµ/µ,λ
. (18)
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Figure 4: Distance R(g) to the optimizer as well as mutation strength σ(g) dynamics of the

(3/3I , 10)-CMSA-ES on the noisy sphere model. The noise is modeled according to Eq. (17)

as fitness proportional noise. All other settings match those of Fig. 2.

From Eq. (18) it can be deduced that positive progress is connected to the population size. If

the strategy diverges, enlarging the population size sufficiently results in returning to positive

progress and in the long run in convergence to the noise-free optimizer.

Fig. 4 illustrates the influence of fitness proportional noise on the (3/3, 10)-CMSA-ES

dynamics. Taking a look at the graphs one observes that the huge normalized noise strength

of σ∗ǫ = 5 is preventing the strategy from converging. In this particular case the CMSA-ES

rather maintains its initial distance to the optimizer. This does not reflect the general behavior

since the impact of strong fitness proportional noise typically results in divergence from the

optimizer, cf. the positive progress criterion (18). Conclusively, a procedure which increases

the population size in the event of divergence or stagnation would also be beneficial for noise

with constant normalized variance.

3.3 Actuator noise

Taking a look at the third noise model it does not directly bias the fitness evaluations. The

perturbations affect the search space variables which "manipulate" the fitness values inter-

nally. The actuator noise model assigns a noise term to each component of the search space

parameter x ∈ RN

f̃ = f (x + δ). (19)

The components of the random vector (δ)i ∼ N(0, σ2
ǫ ), ∀i = 1, . . . ,N, are normally dis-

tributed with noise variance σ2
ǫ .

Like in the constant noise variance model, in this scenario the ES is not able to reach the

optimizer and will in the long run approach a steady state distance R∞. Although the asymp-

totically exact formula has been derived in [8] for the sphere model, for our investigations it

is sufficient to provide its approximation for σ≪ σǫ

R∞ ≥
Nσǫ
√

8µcµ/µ,λ

√

√

√

1 +

√

1 +
8µ2c2

µ/µ,λ

N
. (20)

As in the previous cases, this formula shows that larger populations sizes allow for the real-

ization of residual steady state distances closer to the optimizer. A generalization of Eq. (20)
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Figure 5: Distance R(g) to the optimizer and mutation strength σ(g) dynamics. The (3/3I , 10)-

CMSA-ES on the sphere model is illustrated considering the impact of actuator noise of

variance σǫ = 1. All settings match those of Fig. 2.

for the ellipsoid model with coefficients ai , 1 ∀i can be obtained as

R∞a ≥
Σaσǫ
√

8µcµ/µ,λ

√

√

√

1 +

√

1 +
8µ2c2

µ/µ,λ

Σa
. (21)

Figure 5 shows the actuator noise influence on the CMSA-ES dynamics. As predicted

by Eq. (21) the strategy approaches its steady state distance R∞a which is displayed by the

solid green line. Except for the larger residual distance to the optimizer the typical behavior

of the CMSA-ES under actuator noise closely resembles the additive noise case of constant

variance, cf. Fig. 3. Regarding the dependency of Eq. (21) on the population size one

is also interested in a mechanism which identifies stagnations within the strategy’s fitness

dynamics. Hence, the residual distance can be successively decreased and long stagnations

can be prevented.

4 Noise detection

This section aims at the presentation of mechanisms which are able to cope with noise. The

underlying idea is to identify stagnations in the fitness value dynamics of the CMSA-ES

which are caused by the three noise models mentioned in Sec. 3. The detection mechanism

is based on the fitness of the parental centroid resulting in one additional function evaluation

per iteration. Having recognized a significant stagnation of the parental centroids fitness we

are able to apply counteractions, i.e. increase the population size.

Interpreting the parental fitness dynamics as a time series its trend can be analyzed. The

first detection method uses a linear regression model of the fitness sequence. A confidence

interval of the model’s slope can be used to test if the slope of the estimated linear regression

line is different from zero. Negative trend indicates further progress in direction of the

optimizer while non-negative trend points towards stagnation or even towards divergence

away from the optimizer.

Another mechanism for trend evaluation is the Mann-Kendall hypothesis test, [16, 14].

It can be used in place of a parametric linear regression analysis. The Mann-Kendall test

statistically assess if there is a monotonic downward trend of the fitness values. A monotonic

downward trend indicates that the fitness consistently decreases through time, but the trend

may or may not be linear.

8



The third approach to identify fitness stagnations is realized by methods from the context

of time series analysis, [10]. Interpreting the parental fitness dynamics as a time series, its

trend can be estimated by a moving average filter or exponential smoothing, respectively.

The elimination of the trend components from the fitness sequence yields a residual series

which is tested for significant autocorrelations. The absence of autocorrelations within the

residual series is then interpreted as indicator for stagnation in a certain steady state distance

from the optimizer. We refer to this approach as the residual decision method.

The considered techniques are recapped and discussed in the next subsections. Finally,

they are applied to a sequence of the typical noisy fitness dynamics resulting from the

CMSA-ES, see Fig. 1. Considering the different noise models, all three approaches are

able to detect stagnations within the noisy fitness dynamics.

4.1 Linear regression

Linear regression is the least squares estimator of a regression model with a single explana-

tory variable. That is, a straight line is fitted through a set of n data points (x1, y1), . . . , (xn, yn)

in such a way that the sum of squared residuals of the model is minimal. The slope of the

fitted line is equal to the correlation between y and x corrected by the ratio of standard devia-

tions of these variables. The intercept ensures that the fitted line passes through the center of

mass (x, y) of the data points. By derivation of a confidence interval for the estimated slope

one is able to find an indicator for a negative linear trend.

Suppose there are n data points {(xi, yi), i = 1, . . . , n}. The function that describes x and

y is represented by

yi = axi + b + ǫi. (22)

Being interested in the straight line

y = ax + b (23)

that provides a "best" fit for the data points in terms of the least-squares approach, one

searches a line that minimizes the sum of squared residuals of the linear regression model.

Accordingly, to obtain the y-intercept b and the slope a, the following minimization problem

has to be solved,

min
a, b

n
∑

i=1

(yi − b − axi)
2. (24)

Using calculus, cf. [15], the least squares estimators for a and b can be derived as

â =

∑n
i=1 (xi − x̄)(yi − ȳ)
∑n

i=1 (xi − x̄)2
, (25)

and

b̂ = ȳ − âx̄ (26)

where x̄ and ȳ represent the sample mean values of the observations. The formulas (25)

and (26) allow for the calculation of the coefficients a and b of the regression line for the

given data set. In order to make an assertion about the preciseness of the estimation the cor-

responding confidence interval is computed. The confidence interval determines a plausible

set of values for the estimates given that the experiment is repeated a very large number of

times.

Assuming that the number of observations n is sufficiently large, the central limit the-

orem guarantees that the estimator of the slope is approximately normally distributed with

mean a. Under the normality assumption the sum of squared residuals
∑n

i=1(yi − b − axi)
2

9



is distributed proportionally to χ2
n−2

with n − 2 degrees of freedom, and independent from

â [15]. This allows to construct a t-statistic

t =
â − a

sâ

∼ tn−2, (27)

where

sâ =

√

∑n
i=1(yi − b − axi)

2

(n − 2)
∑n

i=1(xi − x̄)2
(28)

represents the standard error of the estimator â. The t-statistic has a Student’s t-distribution

with n − 2 degrees of freedom. On this basis a confidence interval for a can be constructed

a ∈ [â − sâtαn−2, â + sâtαn−2

]

(29)

with confidence level (1 − α), where tα
n−2

is the (1 − α/2)-th quantile of the tn−2 distribution.

The confidence interval for a gives a general idea in which range the slope of the regression

line is most likely located. In situations where the upper boundary of the confidence interval

is smaller or equal to zero a negative linear trend within the set of observations can be

expected. Conclusively, this leads to the condition

â + sâtαn−2 < 0. (30)

On the other hand the violation of this condition does not allow for a proposition of the trend

direction. The absence of a significant negative trend within the ES dynamics can thus be

interpreted as an indicator for the presence of progress stagnations.

Linear regression analysis is applied to a series of noisy fitness dynamics of a (3/3I , 10)-

CMSA-ES in Fig. 6. The illustration displays the negative test decisions for a negative linear

trend on intervals of 3N fitness observations for α = 0.05. A non-negative trend is used as an

indicator for noise related progress stagnations. The linear regression approach is integrated

into the CMSA-ES in Sec. 5.

4.2 The Mann-Kendall test

While the regression analysis requires that the residuals from the fitted regression line are

normally distributed this assumption is not required by the Mann-Kendall test. The Mann-

Kendall test (MK test) is a non-parametric test, i.e. it does neither depend upon the magni-

tude of data nor on assumptions of the distribution1. It assesses whether a time-ordered data

set exhibits an increasing or decreasing trend, within a predetermined level of significance.

The MK test is based on the assumption that the absence of a trend indicates that the mea-

surements obtained over time are independent and identically distributed. The assumption

of independence means that the observations are not autocorrelated.

According to [11] the first step to compute the MK test statistic is to list the data in their

order of appearance

x1, x2, . . . , xn, (31)

and to determine the sign of all n(n − 1)/2 possible differences

x j − xk, j > k. (32)

1Thus, it could be also applied to heavy tail noise.
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The sign of x j − xk indicates that the observation x j at time j is greater or smaller than the

observation xk at time k. The next step is concerned with the computation of the number of

positive differences minus the number of negative differences

S =

n−1
∑

k=1

n
∑

j=k+1

sign(x j − xk). (33)

A positive value S corresponds to the situation that observations obtained later in time tend

to be larger than observations made earlier. On the other hand a negative S value indicates

that the observations decrease with time. For sample size n > 10 a trend in the data can be

determined by computation of the variance of S

Var[S ] =
n(n − 1)(2n + 5)

18
. (34)

Afterwards, the (normally distributed) Mann-Kendall test statistic is derived

Zmk =























S−1√
Var[S ]

, if S > 0,

0, if S = 0,
S+1√
Var[S ]

, if S > 0.

(35)

A positive or negative value of Zmk indicates that the data tend to increase or decrease, re-

spectively. In order to test the null hypothesis

H0 : No monotonic trend (36)

against the alternative hypothesis

Ha : Downward monotonic trend (37)

at the significance level α, H0 is rejected and Ha is accepted if

Zmk ≤ Z1−α. (38)

That is, the value of the Mann-Kendall test statistic is lower or equal than Z1−α, the (1 − α)

percentile of the standard normal distribution.

An application of the MK test to a series of noisy fitness dynamics of a (3/3I , 10)-CMSA-

ES is illustrated in Fig. 6. Again the test decisions which reject a significant negative trend

are displayed and used to indicate possible progress stagnations with α = 0.05. The Mann-

Kendall test is incorporated into the CMSA-ES in Sec. 5.

4.3 Residual decision

The residual decision approach is a two-step procedure which decomposes the time series

of observations into a trend and a residual component, respectively. The residual series

is then analyzed for significant auto-correlations in the second step. The absence of auto-

correlations between the residual values is regarded as an indicator for stagnations.
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4.3.1 Time series decomposition

Given a sequence of observations it can be regarded as a time series in the form of the

decomposition model

xt = mt + rt, t = 1, . . . , n, (39)

with trend component mt and residual component rt. Notice, that seasonal dependencies are

ignored at this point as their appearance is not expected in the present applications.

The corresponding trend mt can be estimated by application of a finite two-sided moving

average filter. For a nonnegative integer q the moving average provides the trend estimates

m̂t =
1

2q + 1

q
∑

j=−q

xt− j, q + 1 ≤ t ≤ n − q. (40)

The filter removes rapid fluctuations from the original time series xt and leaves the slowly

varying estimated trend term m̂t. This estimation assumes that the trend mt of the observa-

tions xt is approximately linear within the interval [t − q, t + q]. Since xt is not observed for

time steps t ≤ 0 or t > n, the estimated trend sequence is 2q entries shorter than the original

observation series.

There are multiple other filters that can be used for smoothing the time series. Another way

is the application of exponential smoothing. For a predefined ξ ∈ [0, 1], it generates the

one-sided moving averages by the recursions

m̂t = ξxt + (1 − ξ)m̂t−1, t = 2, . . . , n,

m̂1 = f1.
(41)

Except for the last one referring to f1, the weights of this recursion decrease exponentially.

Having estimates the trend of the fitness dynamics, the corresponding residual series

r̂t, q + 1 ≤ t ≤ n − q can be computed

r̂t = ft − m̂t, q + 1 ≤ t ≤ n − q. (42)

The next step is concerned with testing this estimated residual sequence r̂t for autocorrela-

tion.

4.3.2 Hypothesis test

The algorithm tries to identify significant noise influence by analysis of the residual time

series. For that reason the residuals are tested for autocorrelation. If there exists a relation

between the entries of the sequence which is more than random, the measured autocorrela-

tion typically has a value that is significantly different from zero. The observations within the

sequence are then referred to as autocorrelated. This section recaps the Ljung-Box Q-test for

checking the hypothesis that the residuals rt are realizations of independent and identically

distributed random variables and thus show no significant autocorrelation. If the hypothesis

is true, measuring the mean and variance of the noise sequence suffices to describe the dis-

tribution of the residuals. Thus it is likely that the residual series describes the fluctuations

around a constant trend which indicates a stagnation in the strategy’s progress.

The considered tests use the sample auto-correlation function for the hypothesis check

whether the residual series is auto-correlated up to lag h or not. The sample auto-correlation

of a set of realizations is defined as follows

Definition 1. Let (xt)t∈I (I = {1, . . . , n}) be the observations of a time series. The sample

mean of (xt) is given by

x̄ =
1

n

n
∑

t=1

xt. (43)
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The sample autocovariance function is then defined as, [10],

γ̂X(h) ≔
1

n

n−|h|
∑

t=1

(xt+|h| − x̄)(xt − x̄), −n < h < n, (44)

and the sample autocorrelation function (ACF) of (Xt) at lag h becomes

ρ̂(h) =
γ̂X(h)

γ̂X(0)
, −n < h < n. (45)

Based on the sample autocorrelation function of the time series a hypothesis test for

identification of autocorrelation within the residual series is introduced.

The Ljung-Box Q-test The Ljung-Box Q-test is a modification of the classical portman-

teau test statistic proposed by Box and Pierce [10]. It allows to test for autocorrelation at

multiple lags jointly. The null hypothesis that the first h autocorrelations are jointly zero,

H0 : ρ̂(1) = ρ̂(2) = · · · = ρ̂(h) = 0, (46)

is tested against the alternative hypothesis that the observations exhibit serial correlation.

The Ljung-Box test statistic is calculated as

QLB(h) = n(n + 2)

h
∑

k=1

ρ̂(k)2

n − k
. (47)

where ρ̂(k) is the sample autocorrelation of order k of the residuals. Under the null hypoth-

esis, QLB(h) follows a χ2 distribution with h degrees of freedom. That is, considering a

significance level of α, the null hypothesis is rejected if

QLB > χ
2
1−α, (48)

where χ2
1−α denotes the α-quantile of the χ2 distribution with h degrees of freedom. The test

performance depends on the choice of h. If n is the number of observations, choosing h =

ln(n) is recommended. The Ljung-Box Q-test can be used to test for autocorrelation in any

series with a constant mean. This includes the residual series constructed in section 4.3.1.

It should be noted that the residual decision approach does only indicate the presence

of stagnations. That is, the Ljung-Box test will reject the null hypothesis that the residuals

are iid regardless whether there exists either a negative trend or a positive one. On the other

hand the linear regression trend analysis as well as the Mann-Kendall test explicitly examine

the presence of a significant negative trend.

The application of the residual decision method to a series of noisy fitness dynamics of

a (3/3I , 10)-CMSA-ES is displayed in Fig. 6. Interpreting the fitness values as a time series

in the form of the decomposition model

f̃t = mt + rt, t = 1, . . . , L (49)

the corresponding trend mt and residual series rt can be analyzed. Fig. 6 considers the noise-

free ellipsoid model ai = i in dimension N = 30 as well as the three noise models discussed

in Sec. 3. The trend is derived by use of the exponential smoothing filter with ξ = 1/
√

2N.

The hypothesis tests are then applied to the residual series in the following way: Once the

CMSA-ES has established a series of L = 3N fitness values and residuals, respectively, the

interval of the last L residuals is tested for autocorrelation using the Ljung-Box test (with lag

h = ⌊ln(L)⌋ and α = 0.05). If the test indicates that the residuals within the interval shows no
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Figure 6: The fitness dynamics of a (3/3I , 10)-CMSA-ES run on the ellipsoid model (ai = i)

using standard parameter settings in dimension N = 30. The noise-free case as well as

the three different noise models are displayed from (a) to (d). The test decisions indicating

significant evidence for a present stagnation are illustrates by the data points.

significant autocorrelations, this suggests that the strategy’s progress is decreasing resulting

in more evenly distributed residuals around the estimated trend of the fitness observations.

Such positive test results for stagnation are indicated by the black "x" data points. The linear

regression approach and the MK test are realized on the same fitness intervals of length

L = 3N. Their test decisions indicating stagnations are illustrated by the magenta "⋆" as

well as the light blue "x" data points, respectively.

In the noise-free case (a) none of the three approaches indicates stagnations. This does

not come as a surprise since the fitness observations are not biased by noise. Linear regres-

sion as well as Mann-Kendall recognize a significant negative trend within the examined

fitness intervals. The residual decision method also indicates a significant negative trend

which corresponds to the fact that the residuals still show autocorrelations.

Considering constant noise variance σǫ in (b), the residual sequence appears to be nearly

stationary after a sufficiently long time. After about 100 generations the progress of the

strategy slows down considerably. This behavior corresponds to the strategy approaching its

steady state distance to the optimizer. As a result the estimated trend of the fitness obser-

vations is increased until its slope fluctuates around zero. Hence, linear regression as well

as the MK test fail to detect a significant negative trend. Considering the residual decision

technique the estimated trend represents the average fitness more precisely and the residu-

als appear to be uncorrelated. After the first positive test decision for non-negative trend or

zero autocorrelation, respectively, the test decisions are confirmed on almost all following

intervals of length 3N.

Similar results are observable in (c) for constant normalized noise variance σ∗ǫ . There,
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the residual components are rated as uncorrelated after the fitness dynamics of the CMSA-

ES do no longer show significant progress. All detection mechanisms observe the stagnation

within the fitness dynamics of the evolution strategy. In the beginning the residual decision

approach needs a slightly longer phase until it indicates progress stagnation. On the other

hand it seems more robust towards short intervals with a significant negative trend. Due to

high fluctuations within the fitness dynamics these intervals of downward trend can cause

the linear regression analysis as well as the Mann-Kendall test to detect no noise influence.

This is reflected by the small gaps, e.g. between generation 400 and 500, in the data point

plots of the test decisions.

The actuator noise case is displayed in (d). In that situation the fitness dynamics are

subject to perturbations within the search space parameters. Again all three detection mech-

anisms observe the stagnation within the fitness dynamics of the evolution strategy. Alike the

constant noise case the fitness dynamics do approach a residual steady state, but in a greater

distance from the optimizer. After the transient phase almost all test decisions indicate the

presence of a fitness stagnation caused by actuator noise. The occurrence of single opposite

decisions may potentially be caused by large deviations within the noisy fitness dynamics.

The illustration in Fig. 6 verifies the use of the three proposed detection mechanisms for

identification of stagnations within the fitness dynamics of an evolution strategy.

5 Application to CMSA-ES

This section aims at the construction of algorithms which are able to cope with fitness noise.

Therefore, the methods specified in Sec. 4 are incorporated into the basic (µ/µI , λ)-CMSA-

ES, see Fig. 1. The adjusted algorithm tries to identify significant noise influence that causes

a stagnation of the strategy progress. For that reason the fitness dynamics of the evolution

strategy are examined. Having encountered a significant stagnation the algorithm will in-

crease the populations sizes µ and λwhile keeping the truncation ratio ϑ = λ/µ constant. The

population control covariance matrix self-adaptation evolution strategy, (µ, λ)-pcCMSA-ES,

is illustrated in Fig. 7.

Until the algorithm has generated a list F of L parental function values the CMSA-ES

remains unchanged. Subsequently, the pcCMSA-ES examines the list F using the methods

explained in Sec. 4, i.e. either linear regression, the Mann-Kendall test, or residual deci-

sion. These procedures are represented by the single program detection(F int, α), line 20.

Analyzing the fitness interval F int in order to identify stagnations, it returns the decision

variable td = 1 as long as a negative trend among the fitness samples is estimated. Other-

wise it returns the test decision td = 0. The parameter α refers to the significance level of

the underlying hypothesis tests.

Provided that a negative trend is detected the algorithm acts like the original CMSA-

ES. It controls the covariance matrix C of the offspring distribution as well as the parental

mutation strength in the usual way. However, if the initial population size has been increased

within an earlier iteration, then it is reduced again in line 25. This ensures that the algorithm

is able to readjust the population size once the strategy has left noisy search space regions.

After having found stagnations within the fitness sequence which are associated with

non-negative trend (td = 0), the algorithm should be able to apply corrective actions in

order to ensure a continuing approach to the optimizer. Accordingly, the population sizes

are increased by the factor cµ, line 22, keeping the truncation ratio ϑ =
µ

λ
constant. Having

adjusted the population size, the detection procedure is interrupted for L generations (line

23). Otherwise the basis of the next test decision would be biased by the old fitness values

generated by use of smaller populations. Additionally the covariance matrix adaptation is

turned off in line 24, once the algorithm has encountered significant noise impact. For this
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Initialization

g← 0; q← 0; 〈σ〉 ← σ(init); 〈y〉 ← y(init); µ← µ(init) 1

µmin ← µ(init); C ← eye(N); ϑ; L; ad jC ← 1 2

Repeat 3

λ← ⌊µ/ϑ⌋ 4

For l← 1 To λ 5

σl ← 〈σ〉eτσN(0,1) 6

sl ←
√

CN(0, I) 7

zl ← σlsl 8

yl ← 〈y〉 + zl 9

fl ← f (yl) 10

End For 11

g← g + 1 12

〈z〉 ← ∑µ
m=1

zm;λ 13

〈σ〉 ← ∑µ
m=1
σm;λ 14

〈y〉 ← 〈y〉 + 〈z〉 15

Add f (〈y〉) To F 16

If g > L ∧ wait = 0 17

F int ← F (g − L : g) 18

td ← detection(F int, α) 19

If td = 0 20

µ← µcµ 21

wait ← L 22

ad jC ← 0 23

Else 24

µ← max

(

µmin, ⌊µ/(1 + 1
cµ

)⌋
)

25

End If 26

Else 27

wait ← wait − 1 28

End If 29

C ←
(

1 − 1
τc

)ad jC
C +

ad jC

τc
〈ss⊤〉 30

Until T erminationCriterion 31

Figure 7: The (µ, λ)-pcCMSA-ES for noisy fitness environments. The methods for the detec-

tion of progress stagnations are implemented into the subroutine detection(Fint, α) which

is specified within the following subsections.

purpose the parameter ad jC is set to zero which stops the covariance matrix update in line

30. Proceeding like this prevents further rise of the conditioning number of the covariance

matrix without gaining any useful information from the noisy environment. The algorithm

repeats until it reaches its termination criterion.

This first variant of the (µ, λ)-pcCMSA-ES, Fig. 7, spares covariance matrix adaptation

after significant noise influence has been identified for the first time. Thinking of fitness

environments where the strategy has to deal with noisy regions, it might be beneficial to turn

the covariance matrix adaptation back on once the ES has overcome the interferences. That

is, if a significant negative trend is present again. The parameter ad jC should then be reset

to one in order to gain additional information about advantageous search directions. This

can easily be obtained by inserting

ad jC ← 1
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between the lines 24 and 25 of the pcCMSA-ES algorithm in Fig. 7. Regarding the noisy

fitness environments considered here, the adjustment was not able to provide meaningful

improvements in terms of the strategy’s progress and was therefore omitted in the present

work. However, the contribution of the respective adjustment has to be evaluated in addi-

tional studies concerning appropriate noisy fitness environments.

Concentrating on the implementation of the subroutine detection(F int, α) in line 20

of Fig. 7 the three different detection mechanisms are considered. The first algorithm vari-

ant detects stagnations within the fitness dynamics based on linear regression trend analysis.

Accordingly, the resulting algorithm is referred to as (µ, λ)-pcCMSAlr-ES. The approach

transfers the method from Sec. 4.1 to the time series of the last L noisy fitness observations

which are gathered within F int. This allows to compute the confidence interval for the es-

timator of the slope of the fitness trend to a predefined significance level α. Given that the

upper boundary of the confidence interval is less than zero this indicates a negative trend

within the fitness observations with an error probability of at most α. Accordingly, the func-

tion detection(F int, α) returns the boolean value 1. On the other hand, an upper boundary

which is greater or equal to zero allows no distinct decision about the trend direction. This

uncertainty can be interpreted as an indicator for the presence of progress stagnations caused

by noise. As detection(F int, α) returns the boolean value 0, the strategy is required to in-

crease the population size.

Applying the Mann-Kendall test within detection(F int, α) (line 20, Fig. 7) for the

purpose of trend estimation the respective algorithm is denoted (µ, λ)-pcCMSAmk-ES. The

underlying test is specified within Sec. 4.2. It is also applied to the time series of the last

L noisy fitness observations stored in F int. Alike using linear regression trend analysis, the

subroutine detection(F int, α) using Mann-Kendall returns the boolean values 1 or 0 if a

significant negative trend is present, or not, respectively.

Considering the decomposition of the noisy fitness dynamics f̃t = mt + rt into trend and

residual components results in the third method for identification of progress stagnations.

According to Sec. 4.3 the program detection(F int, α) relies on the Ljung-Box hypothesis

test which is applied to the residual series rt. The test returns the boolean value 1 if the null

hypothesis that the residual series is independent and identically distributed is accepted. This

suggests that the residuals are evenly fluctuating around a stable value without significant

trend. Thus the test decision on the autocorrelation between the residuals can be used as an

indicator for progress stagnation. Applying the residual decision method to the CMSA-ES

we referred to the corresponding algorithm as (µ/µI , λ)-pcCMSArd-ES.

6 Empirical comparison of the algorithm variants

Regarding the proposed algorithm variants their performance is compared in this section.

Particularly the pcCMSAlr-ES, the pcCMSAmk-ES, as well as pcCMSArd-ES are confronted

with minimization on different noisy fitness environments. To this effect we apply the three

noise models introduced in Sec. 3 to the ellipsoid models determined by ai = 1, ∀i = 1, . . . ,N

and ai = i, ∀i = 1, . . . ,N, respectively.

All three pcCMSA-ES variants are initialized with standard parameter settings andσ(init) =

1 at y(init) = 1 with search space dimension N = 30. The initial population sizes are set to

µ = 3 and λ = 9. The corresponding truncation ratio ϑ =
µ

λ
is kept constant during the

runs. In the case that progress stagnations are observed by the algorithms the population

adaptation parameter cµ = 2 is used to increase the populations. The hypothesis tests use the

parameter α = 0.05.

After the population size has been increased the algorithms wait for a predefined period of

iterations before the next interval of fitness values Fint is tested for stagnation. The length
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of the waiting period as well as the length of the fitness interval Fint is controlled by the

parameter L. For the comparisons it is set to L = 3N on the sphere model and to L = 5N on

the ellipsoid model.

On the sphere model the algorithms are equipped with a budget of maximal 2 · 106

function evaluations or are iterated over a maximum of 5000 generations. For the runs on

the ellipsoid model the function evaluation budget is raised to 3 · 106. To guarantee an

unbiased comparison the random number generator settings are saved and restored before

the execution of each algorithm.

All illustrations compare four characteristic dynamics. In (a) the noise-free parental

fitness dynamics are displayed. The ratio between the logarithm of the fitness and the log-

arithm of the number of aggregated function evaluations is plotted against the logarithm of

aggregated function evaluations. This representation of the fitness dynamics is chosen to

allow a connection to the convergence rate investigations on noisy optimization problems

developed by Astete-Morales et al. [3]. Considering additive noise on quadratic functions,

the authors claim that the respective quantity does not fall below a value of − 1
2
, i.e.

log (F(〈y〉))
log(# function evaluations)

> −
1

2
.

Regarding the sphere model subject to noise of constant variance our experiments suggest

that the pcCMSA-ES is able to come below the proposed boundary. This behavior has been

observed provided that the budget of function evaluations is large enough for the algorithm

to steadily increase the population sizes. This observation is part of further examinations and

will be discussed in more detail within future studies. We also use the same representation

for the other noise models in order to ensure comparability of the fitness dynamics.

Figure (b) displays the dynamical behavior of the quantity

√

∑N
j=1 a2

j
y2

j
. For the sphere model

ai = 1 this value simply represents the distance of the parental population centroid 〈y〉 to the

optimizer. In the case of the ellipsoid model ai = i it can be interpreted as a weighted

distance defined through the ellipsoid coefficients. Additionally, the plots (c) and (d) dis-

play the mutation strength dynamics as well as the normalized mutation strength dynamics.

The solid blue line always represents the dynamics of the pcCMSAlr-ES which uses linear

regression analysis for stagnation identification. The dynamics of the pcCMSAmk-ES apply-

ing the Mann-Kendall test and the residual decision variant referred to as pcCMSArd-ES are

illustrated by use of solid red lines and green lines, respectively.

6.1 Constant noise variance

The first noisy fitness environment considered is the one governed by additive noise of con-

stant variance σǫ = 1. Fig. 8 illustrates the algorithm dynamics on the noisy sphere model.

We observe that all three algorithm variants qualitatively exhibit the same dynamics on

both fitness environments. On the sphere model in Fig. 8 pcCMSAlr-ES and pcCMSAmk-ES

actually act similarly. Considering the ellipsoid model (ai = i) the detection mechanisms

within the CMSA-ES appear more diverse.

The noise-free fitness dynamics, see (a), are continuously decreased with growing num-

ber of function evaluations. Regarding (b) we deduce that the algorithms indeed identify

stagnations and accordingly increases the population size after a respective test decision

(td = 0). Under the influence of fitness noise with constant variance the adjusted CMSA-

ES algorithms are following the prediction of the residual steady state distance R∞ to the

optimizer, see Eq. (20). Considering the ellipsoid model in Fig. 9, the strategy approaches

the R∞a in (21), respectively. Both quantities depend on the parental population size µ as

well as the truncation ratio ϑ =
µ

λ
. As the strategies increase µ, while keeping ν constant,
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Figure 8: Comparison of the pcCMSA-ES variants, Fig. 7, on the noisy sphere model with

noise of constant variance σǫ = 1. The normalized mutation strength σ∗ is calculated ac-

cording to Eq. (16).

the residual distance to the optimizer is reduced repeatedly. The predictions of the residual

distances for the CMSA-ES variants are illustrated within Fig. 8 and 9, respectively, by use

of the equally colored step functions.

Taking a look at the mutation strength dynamics in (c) the σ dynamics approach a steady

state. The corresponding normalized mutation strength dynamics are increasing as the strate-

gies approach the optimizer. This compensatory behavior is typical for a self-adaptive ES

which has to deal with relatively huge noise perturbations [18].

However, the original CMSA-ES in Fig. 1 would only approach the residual distance

governed by the initial population sizes (µ = 3, λ = 9). Conclusively, it is not able to gen-

erate candidate solutions comparably close to the optimizer. However, due to the significant

increase of the population size, the adjusted CMSA-ES variants consume considerably more

function evaluations to achieve their improved performances. Figure 9(b) shows that the

pcCMSArd-ES increases its populations faster than the other strategies. Thus in terms of

iterations it advances faster in direction of the optimizer but on the other hand the huge pop-

ulations sizes cause the pcCMSArd-ES to terminate after about 2000 generations. This is due

to the predefined budget of function evaluations which is exceeded approximately 750 gen-

erations earlier than those of the pcCMSAmk-ES. In the end, the three pcCMSA-ES variants

approach the optimizer at a similar distance.
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Figure 9: Comparison of the pcCMSA-ES variants on the noisy ellipsoid model with noise

of constant variance σǫ = 1. The normalized mutation strength σ∗ is calculated according to

Eq. (16).

6.2 Constant normalized noise variance

Considering additive fitness noise of constant normalized noise variance σ∗ǫ the dynamics

of the pcCMSA-ES variants are compared on the sphere and ellipsoid model in Fig. 10 and

Fig. 11, respectively. The results on the sphere model and on the ellipsoid model with ai = i

are illustrated in Fig. 10. Both (3/3, 10)-CMSA-ES are initialized with standard parameter

settings and σ(init) = 1 at y(init) = 3. After the first strategy the random number generator

settings are saved and restored before the execution of the second algorithm in order to

provide comparable runs. Regarding the sphere model the fitness dynamics decrease rapidly

once the strategy has reached a parental population size that satisfied condition (18). This is

reflected by the
√

∑N
j=1 a2

j
y2

j
dynamics in (b). The step function plots in (b) also illustrate the

dynamics of the offspring population size λ. Again the pcCMSAlr-ES and the pcCMSAmk-

ES result in similar dynamics. One observes that the pcCMSArd-ES realizes slightly larger

populations. While it may consume more function evaluations this behavior again leads to a

faster approach to the optimizer. The intervals of very steep decent stem from periods where

the pcCMSArd-ES adapts larger populations sizes than the other two algorithm variants.

Further, the λ-dynamics show that the populations sizes within all pcCMSA-ES variants

fluctuate around a rather small value. This illustrates that the strategies are able to adapt the

appropriate populations sizes needed to comply with Eq. (18) rather than simply increasing

it arbitrarily. The parental population size µ = 12 is large enough to overcome the huge

noise influence of σ∗ǫ = 5 in great distance from the optimizer.

In contrast to the previous case (constant noise strength) the mutation strength dynamics
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Figure 10: Comparison of the pcCMSA-ES variants on the noisy sphere model with noise

of constant normalized variance σ∗ǫ = 5. The λ dynamics are incorporated in (b) for vi-

sualization of the population size adaptation behavior of the algorithms. Regarding the

illustrated run, pcCMS Amk-ES and pcCMS Alr-ES exhibit similar dynamics and the cor-

responding curves (blue and red) overlap.

in Fig. 10(c) indicate a successive reduction of the noise strength σ. This is due to the

decreasing influence of the fitness proportional noise as the strategies approach the optimizer.

As a result the corresponding normalized mutation strength dynamics in (d) are subject to

rather large fluctuations.

Turning to the ellipsoid model ai = i in Fig. 11 the dynamics resulting from pcCMSAlr-

ES as well as pcCMSAmk-ES show no obvious qualitative changes. But in contrast to the

sphere model the pcCMSArd-ES using the residual decision method seems not to stop the

process of increasing the population size, see (b). An explanation might be the much lower

progress established on the ellipsoid model. Because of the slower decent huge fluctuations

bias the decision within the residual decision mechanism. That is, the detection routine re-

peatedly identifies significant stagnations. Conclusively, the pcCMSArd-ES continuously

raises the population size. This leads to a smoother long-term decline of the
√

∑N
j=1 a2

j
y2

j
dy-

namics in (b). However, it could also yield in wasting function evaluations since pcCMSAlr-

ES and pcCMSAmk-ES obtain comparable results using smaller populations. The corre-

sponding mutations strength dynamics on the ellipsoid model show no apparent qualitative

deviations from those obtained on the sphere model, cf. Fig. 10.
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Figure 11: Comparison of the pcCMSA-ES variants on the ellipsoid model being subject to

noise of constant normalized variance σ∗ǫ = 5. The λ dynamics are incorporated in (b) for

visualization of the population size adaptation behavior of the algorithms.

6.3 Actuator noise

Focusing on actuator noise, the respective dynamics are displayed in Fig. 12 and Fig. 13.

On the noisy sphere as well as on the noisy ellipsoid model with ai = i they qualitatively

resemble the constant noise variance case in Sec. 6.1. With growing number of function

evaluations the fitness dynamics in (a) show a continuous decline. From (b) we infer that

the strategies do recognize stagnations within the fitness dynamics. These stagnations cor-

respond to fluctuations around a certain residual distance which is determined by the actual

population sizes and the noise strength. Concerning actuator noise the residual distance is

presented in Eq. (21) and is represented within the figures by the colored step functions.

Accordingly, the parental centroid’s distance to the optimizer is steadily reduced as the al-

gorithm variants increase the population sizes. Alike the case of additive fitness noise of

constant variance the mutation strength dynamics approach a steady state. In (d) the corre-

sponding normalized quantities are ascending.

On the ellipsoid model pcCMSAlr-ES and pcCMSAmk-ES overlap again. This is due

to the similar nature of their inner detection mechanism which investigates the slope of the

underlying trend. The pcCMSArd-ES on the other hand does not show a quantifiable better

performance. Again the original CMSA-ES in Fig. 1 would only approach the residual

distance governed by the initial population sizes (µ = 3, λ = 9). That is, the three pcCMSA-

ES algorithms generate candidate solutions in much closer vicinity to the optimizer. Thus

the choice of the detection method within the pcCMSA-ES is not substantial to generate

beneficial solutions in the presents of actuator noise on the ellipsoid model.
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Figure 12: Comparison of the pcCMSA-ES variants on the noisy sphere model applying

actuator noise of variance σǫ = 1.

7 Discussion

In this paper, an algorithm for the treatment of noisy optimization problems has been devel-

oped. The algorithm is based on the well-known CMSA evolution strategy which represents

one of the state-of-the-art evolutionary algorithms. Within its concept we integrated mech-

anisms for the recognition of stagnations. Stagnations in the strategy’s progress indicate

the presence of noise. In addition to identifying noise related stagnations the developed

algorithm also applies appropriate countermeasures. To ensure the discovery of improved

candidate solution the algorithm increases the size of the parental as well as the offspring

population as soon as stagnations are found. If no further stagnations are discovered in

subsequent tests the population size is slowly reduced again to avoid unnecessary function

evaluations. This way the algorithm is capable to adapt the appropriate populations size. Ac-

cordingly, the adjusted CMSA-ES algorithm is denoted population control covariance matrix

self-adaptation evolution strategy, briefly pcCMSA-ES.

Stagnation has been identified within the pcCMSA-ES in three different ways. On the

one hand it becomes noticeable by the absence of a clearly negative trends within the noisy

fitness dynamics. Therefore, the slope of the respective trend can be determined in two

ways. The first method analyzes the fitness dynamics searching for a negative linear trend.

That is, the trend is estimated to a predefined confidence level by use of linear regression

analysis. Integrating this method in the pcCMSA-ES it is referred to as pcCMSAlr-ES. The

second method is denoted pcCMSAmk-ES. It is based on the Mann-Kendall test which relies

on the relative ranking of the analyzed data. The Mann-Kendall test statistically assess if

a monotonic downward trend exists within the observations. Due to the proximity of the
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Figure 13: Comparison of the pcCMSA-ES variants on the noisy ellipsoid model with actu-

ator noise of variance σǫ = 1.

Mann-Kendall tests to regression analysis, both methods yield very similar results. On the

other hand we investigate a third method, which separates the fitness dynamics into their

trend and residual components. The residuals are then tested for autocorrelation by use of

the Ljung-Box hypothesis test. We suppose that the presence of significant autocorrelations

within the residual series indicates ongoing progress, i.e. a continuing trend within the fitness

values. Conversely, we interpret the absence of autocorrelation as follows. The residuals

appear independent and identically distributed around the associated trend components. This

behavior is particularly observed when the fitness values fluctuate around a stable attractor.

Thus the slope of the trend is approximately zero and the fitness dynamics are stationary. We

refer to this method as residual decision and the associated algorithm as pcCMSArd-ES.

We have tested the algorithm variants on the noisy ellipsoid model. The noise is modeled

in three different ways. As additive fitness noise with constant variance σǫ and with constant

normalized variance σ∗ǫ , respectively. As well as by use of the actuator noise model. Con-

clusively, the pcCMSA-ES represents an advantageous procedure to improve the outcome

of the noisy optimization problem. Regardless of the detection method algorithm 7 is able

to detect noise influence on the fitness values. Increasing the population sizes the algorithm

realizes further progress in direction of the optimizer.

The strategies require the determination of additional strategy parameters. This gives

rise to additional investigation concerning the optimal configuration of the pcCMSA-ES.

Regardless of the detection mechanism the interval length L of the fitness values considered

in a single test decision has to be examined more closely. Within the previous simulations an

interval of length L = 3N was considered on the sphere model and L = 5N on the ellipsoid,

respectively. The parameter L is connected to the search space dimension N. This choice
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has to be regarded as an initial guess to realize an efficient optimization procedure. How-

ever, a proper configuration rule still has to be developed since L has significant influence on

the identification of fitness stagnations. For the linear regression approach L has to be suffi-

ciently large to ensure the applicability of the central limit theorem. Also the Mann-Kendall

test need a sufficiently larger sample size to guarantee reliable test decisions. Especially

within the pcCMSArd-ES the parameter L has a great influence on the decomposition pro-

cess since it determines the estimation quality of the moving average filter. The interval

length L defines the length of the residual series rt which is tested for autocorrelation. It has

to be sufficiently long in order to provide reliable test results, see Sec. 4.3.2.

Additionally, the parameter L effects the lead time of the algorithm needed to establish

an initial interval of fitness observations Fint as well as the waiting time wait. The parameter

wait governs the length of the waiting period after a single population adjustment. After a

transient phase of wait generations the algorithm starts again with the analysis of the fitness

dynamics. It is not evident if the parameter wait needs to be depending on the length L of

the fitness interval. The waiting time is essential to prevent wrong test decisions based on

fitness dynamics resulting from different population specifications. A beneficial parameter

setting has to be determined in future empirical investigations.

Another parameter to be determined is the hypothesis test significance level α. In our

simulations it was set to α = 0.05. Other choices of α can potentially be used to strengthen

the reliability of test decisions. At last the population adaptation parameter cµ has to be set

appropriately. It controls the ascent of the population size and by implication the number of

function evaluations as well as the strategy’s approach to the optimizer. Using large values

of cµ reduces the residual distance rapidly, but on the other hand it might cause the strategy

to consume too much function evaluations at a time where smaller populations still would

realize a good performance. Also the factor by which the populations are reduced again when

no obvious stagnations are present has to be determined in further studies. Our first choice

max

(

µmin, ⌊µ/(1 + 1
cµ

)⌋
)

works well for cµ = 2 on the noisy ellipsoid model. But considering

different values of cµ effects this reduction factor and might impair the adaptation process of

the pcCMSA-ES.

Conclusively, empirical investigations concerning the appropriate strategy parameter set-

ting appear to be the next step. However, the application of the pcCMSA-ES to other noisy

fitness environments in order to validate its suitability might be interesting.
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