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A Covariance Matrix Self-Adaptation Evolution

Strategy for Optimization under Linear Constraints
Patrick Spettel, Hans-Georg Beyer, and Michael Hellwig

Abstract—This paper addresses the development of a co-
variance matrix self-adaptation evolution strategy (CMSA-ES)
for solving optimization problems with linear constraints. The
proposed algorithm is referred to as Linear Constraint CMSA-
ES (lcCMSA-ES). It uses a specially built mutation operator
together with repair by projection to satisfy the constraints. The
lcCMSA-ES evolves itself on a linear manifold defined by the
constraints. The objective function is only evaluated at feasible
search points (interior point method). This is a property often
required in application domains such as simulation optimization
and finite element methods. The algorithm is tested on a variety
of different test problems revealing considerable results.

Index Terms—Constrained Optimization, Covariance Matrix
Self-Adaptation Evolution Strategy, Black-Box Optimization
Benchmarking, Interior Point Optimization Method

I. INTRODUCTION

THE Covariance Matrix Self-Adaptation Evolution Strat-

egy (CMSA-ES) [1] variant called Constraint CMSA-ES

(cCMSA-ES) was proposed in [2]. It showed promising re-

sults in portfolio optimization applications. Therefore, further

research on ES design principles for constrained optimization

problems is of interest. The CMSA-ES and linear constraints

are chosen as a first step. This is because the CMSA-ES is

arguably one of the most simple variants of Covariance Matrix

Adaptation (CMA) ESs [3], [4]. In addition, linear constraints

are the most simple constraints after box constraints. But this

does not mean that it is only of theoretical interest. Such

problems occur in practical applications. Examples include

risk management in finance [5], [6], [7], agriculture [8], hybrid

dynamic systems [9], model predictive control [10], controlled

perturbation for tabular data [11], and optimization of heat

exchanger networks [12]. Further, the CEC 2011 real world

optimization problem competition contains an electrical trans-

mission pricing problem based on the IEEE 30 bus system [13,

Prob. 9 in Sec. 8]. Another example is a problem from the area

of chemistry. The chemical composition of a complex mixture

under chemical equilibrium conditions has to be determined.

This problem is described in detail in [14, pp. 47-49].

Evolutionary Algorithms (EAs) in general are well-suited

for scenarios in which objective function and/or constraint
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functions cannot be expressed in terms of (exact) mathematical

expressions. Moreover, if that information is incomplete or if

that information is hidden in a black-box, EAs are a good

choice as well. Such methods are commonly referred to as

direct search, derivative-free, or zeroth-order methods [15],

[16], [17], [18]. In fact, the unconstrained case has been

studied well. In addition, there is a wealth of proposals in the

field of Evolutionary Computation dealing with constraints in

real-parameter optimization, see e.g. [19]. This field is mainly

dominated by Particle Swarm Optimization (PSO) algorithms

and Differential Evolution (DE) [20], [21], [22]. For the case

of constrained discrete optimization, it has been shown that

turning constrained optimization problems into multi-objective

optimization problems can achieve better performance than

the single-objective variant with a penalty approach for some

constrained combinatorial optimization problems, e.g., [23],

[24], [25].

ESs for constrained optimization have not yet been studied

extensively. Early work includes the (1 + 1)-ES for the

axis-aligned corridor model [26], the (1, λ)-ES for the same

environment [27], and the (1+1)-ES for a constrained, discus-

like function [28]. Moreover, a stochastic ranking approach

was proposed in [29]. An ES for constrained optimization

was proposed in [30]. For the CMA-ESs, in addition to

the cCMSA-ES [2], a (1 + 1)-CMA-ES based on active

covariance matrix adaptation is presented in [31]. There exists

an extension of this idea to a (µ, λ)-CMA-ES motivated by

an application in the area of rocket design [32]. In [33] an

Active-Set ES that is able to handle constraints is described.

Further, an ES with augmented Lagrangian constraint handling

is presented in [34]. The cCMSA-ES [2] uses two mechanisms

to ensure the feasibility with respect to box and equality

constraints. First, mutations are generated in such a way that

they lie on the hypersurface defined by the equality constraint.

Second, a repair mechanism is applied to offspring violating

the box-constraints.

Being based on these ideas, the contribution of this work

is a theoretically motivated and principled algorithm design.

The proposed algorithm is an interior point ES. It is able

to optimize a black-box objective function subject to general

linear constraints. The peculiarity of this design is that the

algorithm treats the function f to be optimized as a black-

box. However, only feasible candidate solutions are used to

query the black-box f . This is in contrast to most of the

evolutionary algorithms proposed for constrained black-box

optimization. However, it is a property often required in
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the field of simulation optimization, e.g. in Computational

Fluid Dynamics (CFD) optimizations. In CFD optimizations,

constraint violations on simulator input parameters may result

in simulator crashes.1 In [35], concrete real-world examples

are provided for different constraint types. Among those

examples, a ground water optimization problem [36] is pro-

vided for which (some) constraints are not allowed to be

violated. Because the simulator only supports extraction but

not injection, the lower bounds on the pumping rate values

must hold for the simulation. Physical requirements like that

usually prohibit the violation of (some) constraints. Further,

it is an important property for problems that cannot tolerate

even small infeasibility rates. Such problems can be a topic

in finance or business applications, i.e., the optimization of a

function subject to a constant amount of total money in the

system. Moreover, the mutation operator and the repair method

are specially designed. The ES moves completely on a linear

manifold defined by the constraints. For this design, the theory

is an essential part.

The rest of the paper is organized as follows. In Sec. II

the optimization problem is presented. Then, the proposed

algorithm is described in Sec. III and simulation results are

presented in Sec. IV. Finally, Sec. V summarizes the main

results and provides an outlook.

Notations Boldface x ∈ R
D is a column vector with D real-

valued components. xT is its transpose. xd and equivalently

(x)d denote the d-th element of a vector x. x(k:D) and

equivalently (x)(k:D) are the order statistic notations, i.e., they

denote the k-th smallest of the D elements of the vector x.

||x|| =
√
∑D

d=1 xd
2 denotes the euclidean norm (ℓ2 norm)

and ||x||1 =
∑D

d=1 |xd| the ℓ1 norm. X is a matrix, XT its

transpose, and X+ its pseudoinverse. 0 is the vector or matrix

(depending on the context) with all elements equal to zero.

I is the identity matrix. N (µ,C) denotes the multivariate

normal distribution with mean µ and covariance matrix C.

N (µ, σ2) is written for the normal distribution with mean µ
and variance σ2. U [a, b] represents the continuous uniform

distribution with lower bound a and upper bound b. The

symbol ∼ means “distributed according to”,≫ “much greater

than”, and ≃ “asymptotically equal”. A superscript x(g) stands

for the element in the g-th generation. 〈x〉 denotes the mean

(also centroid) of a parameter of the µ best individuals of a

population, e.g. 〈z̃〉 = 1
µ

∑µ

m=1 z̃(m:λ).

II. OPTIMIZATION PROBLEM

We consider the (non-linear) optimization problem

f(x)→ min! (1a)

s.t. Ax = b (1b)

x ≥ 0 (1c)

where f : RD → R, A ∈ R
K×D, x ∈ R

D, b ∈ R
K . Note

that Eqs. (1b) and (1c) form a linear constraint system in

1Note that although interior point methods only run the simulator with
feasible input parameters, problems can still occur. Feasible input parameters
can lead to crashes because of possible parameter combinations that were
never thought of. And constraints are often defined on simulator outputs.
Such cases need a different treatment not subject of this paper.

standard form. Any linear inequality constraints and bounds

can be transformed into an equivalent problem of this form.

In particular, a vector satisfying the constraints in the trans-

formed system, also satisfies the constraints in the original

system. A method for this transformation is presented in the

supplementary material (Sec. VI-B).

III. ALGORITHM

Based on the Covariance Matrix Self-Adaptation Evolution

Strategy (CMSA-ES) [1], we propose an algorithm for dealing

with problem (1). In particular, we describe the design of the

linear constraint (µ/µI , λ)-CMSA-ES (lcCMSA-ES).

The (µ/µI , λ)-CMSA-ES makes use of σ-self-adaptation

and a simplified covariance update. It starts from a parental

individual x (line 5 in Alg. 3 corresponds to this step) and

an initial mutation strength σ (part of line 2 in Alg. 3). The

generational loop consists of two main steps. First, λ offspring

are generated. For every offspring l, its mutation strength σ̃l is

sampled from a log-normal distribution. Then, the offspring’s

parameter vector is sampled from a multi-variate normal

distributionN (x, σ̃lC) (lines 15 to 28 in Alg. 3 is the offspring

generation (extended for the constrained case)). Second, the

parental individual is updated for the next generation. For

this, the parameter vectors and the mutation strengths of the

best µ offspring are averaged. Then, the covariance is updated

(lines 29 to 34 in Alg. 3). This completes the steps for one

iteration of the inner loop.

The method proposed in this paper represents an interior

point method, i.e., the individuals evaluated in Eq. (1a) are

always feasible. In other words, the ES moves inside the

feasible region while searching for the optimum. Concretely,

this is realized by starting off with an initial centroid that is

feasible (Sec. III-A). Mutation (Sec. III-B) is performed in

the null space of A in order to keep the mutated individuals

feasible with respect to Eq. (1b). It is possible that after

mutation Eq. (1c) is violated. Repair (Sec. III-C) by projection

to the positive orthant is performed in such cases.

A. Initialization of the Initial Centroid

The problem for the initialization of the initial parental

centroid is to find an x such that Ax = b and x ≥ 0. For

the first part, the system of linear equations can be solved.

This solution x possibly violates the second part. In that

case the repair approach of the ES (Sec. III-C) is applied

to this initial solution. Under the assumption that the linear

system solver and the repair operator are deterministic, this

whole initialization is deterministic. This means that for the

same A the same x is computed every time. In order to use

the algorithm in a restarted fashion, random initialization is

important. For this, an initial random movement of x can be

obtained in a similar way as for the mutation (Sec. III-B).

B. Mutation

The goal of mutation is to introduce variation to the pop-

ulation of candidate solutions. In the unconstrained case one

could simply add a random vector to the parental centroid.
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But the constraints make this more complicated. Since the

proposed method is an interior point method, mutated in-

dividuals that violate the constraints must be repaired. One

option would be to design a mutation operator that does

not violate any constraints. Here, the approach is a mixture

of both. The mutation operator does not violate the linear

equality constraints but it does possibly violate the non-

negativity constraint. The latter case is handled through repair

by projection. For the former note that A(xinh + xh) = b

where xinh is an inhomogeneous and xh is a homogeneous

solution. Thus, xh ∈ null(A) and therefore Axh = 0. Let

N be the dimension and B ∈ R
D×N an orthonormal basis

of the null space null(A), i.e., BTB = I and AB = 0

hold. Mutations are performed in null(A) and therefore do

not violate Eq. (1b). This means that a mutation vector s in

the null space is sampled from a normal distribution with zero

mean and the covariance matrix C, i.e., s ∼ N (0,CN×N ).
Transforming this s into the parameter space and scaling it

with the mutation strength σ yields a mutation vector z = σBs

in the parameter space. This z can be added to the parental

centroid (or the initial centroid for initial value randomization)

x(g+1) = x(g) + z = x(g) + σBs. (2)

Assuming the parental centroid satisfies the linear constraints

Ax(g) = b, a short calculation shows that the mutated

offspring fulfills them as well:

Ax(g+1) = A(x(g) + σBs) = Ax(g) +A(σBs)

= Ax(g) + σ (AB)
︸ ︷︷ ︸

0K×N

s = b+ 0K×1 = b. (3)

C. Repair

Eq. (1b) is not violated through mutation. But violation of

Eq. (1c) must be dealt with. The approach followed here is

repair by projection onto the positive orthant.

Although repair by minimal change is intuitively the most

plausible approach, it is worth noting that the repair in the ES

does not have to be optimal. It is enough to find a point on

the positive orthant that is approximately at minimal distance

to the infeasible point and the evolution strategy is still able to

move. Regarding the minimal distance, there come different

distance definitions into mind, e.g. the ℓ2 and the ℓ1 norm,

respectively. We use the latter instead of the squared euclidean

distance (squared ℓ2 norm). In addition, we propose another

projection method based on random reference points.

The projection formulated as the minimization of the

squared ℓ2 norm leads to a Quadratic Program (QP). This is,

however, computationally expensive. In particular, if the evo-

lution strategy moves near the boundary of the feasible region

the probability of repair is high. For this reason minimizing the

ℓ1 distance for repair and a new projection approach based on

random reference points are investigated with the goal of hav-

ing a projection method with a faster asymptotic runtime. The

runtime scaling behavior of the different projection approaches

has been experimentally compared. The comparison plot is

provided in the supplementary material (Fig. 4). Additionally,

the projection quality has been experimentally compared for

the different projection approaches (see Fig. 9).

Algorithm 1 Initialization of the set P of reference points for

the Iterative Projection.

1: function initReferencePointsForIterativeProjection(x ∈
R

D, numberOfPoints, A,b)

2: BD×N ← orthonormalize(null(A))
3: for k ← 1 to numberOfPoints do

4: pk ←
projectToPositiveOrthant(U [−||x||, ||x||],A,b)

5: end for

6: return({pk|k ∈ {1, . . . , numberOfPoints}})
7: end function

1) Projection by minimizing the ℓ1 norm: Projection by

minimizing the ℓ1 norm results in a Linear Program (LP) and

thus an LP solver can be used. The optimization problem is

x̂ = argmin
x′

‖x′ − x‖1 = argmin
x′

(
∑

k

|x′
k − xk|

)

(4)

where x is the individual to be repaired. We introduce the

convenience function

x̂ = projectToPositiveOrthant(x,A,b) (5)

returning the solution x̂ of the problem (4). Technically,

problem (4) can be turned into an LP

1T z→ min!

s.t. z− x′ ≥ −x
z+ x′ ≥ x

Ax′ = b

x′ ≥ 0.

(6)

The introduced vector z is used to deal with the cases of the

absolute value operator in (4). If x′
k−xk > 0, then −x′

k+xk <
0, if x′

k − xk < 0, then −x′
k + xk > 0 and if x′

k − xk = 0,

then −x′
k+xk = 0. Consequently, the absolute value operator,

the linear constraints, and the non-negativity constraint are

handled. Depending on the format the LP solver expects as

input, additional slack variable vectors can be introduced to

turn it into an LP in standard form.

2) Projection based on random reference points: We pro-

pose a further alternative projection idea, the “Iterative Projec-

tion”. The main idea is to create a set of one or more points

P = {pk|k ∈ {1, . . . ,#points},Apk = b,pk ≥ 0} (7)

inside the feasible region once in the beginning. These points

are computed as follows. For each one a random point in the

null space is chosen. It is then projected by the ℓ1 minimization

approach to get pk fulfilling the constraints (Alg. 1 shows

the pseudo-code). With this pre-processing in mind, we now

consider a point x that needs to be repaired. For this point,

movement in the null space towards a randomly chosen p ∈ P
is possible without violating the linear constraints. As soon

as the positive orthant is reached, the point is considered

repaired. Intuitively, the points in P should be “far” inside the

feasible region. This results in a movement that yields different

points on the boundary for different points outside the positive
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orthant. In other words, the positive orthant should be reached

before getting “too close” to p. More formally, let d = p−x

be the direction of the movement towards p. If the movement’s

starting point x fulfills Ax = b movement in the null space

to the positive orthant is possible without violating the linear

constraints. Since all the negative elements should be zero, a

factor α is necessary to compute

xprojected = x+ αd (8)

such that

xprojected ≥ 0. (9)

The projection xprojected fulfills the linear equality constraints

Axprojected = A(x+ αd) = Ax+ αA(p− x)

= b+ α(b− b) = b.
(10)

Note that the target point p ∈ P is located in the positive

orthant and satisfies the linear equality constraints Ap = b.

Consequently, there exists an α that fulfills2 Eqs. (8) and (9).

One way would be to approach the positive orthant iteratively

in the direction of d with a small α. But note that the α
can also be computed such that all the negative elements are

non-negative after the projection. The idea is to move towards

the chosen reference point with an α that yields 0 for the

component with the largest deviation from 0. This leads to an

algorithm with a running time that is linear in the dimension

of the vector. Alg. 2 shows the pseudo-code. The input is an x

that needs to be projected and the linear constraint system A

and b (Line 1). The precondition is checked by the assertion in

Line 2. The result xprojected is initialized with x (Line 3) and the

direction vector d is computed (Line 5) using a p ∈ P that is

chosen randomly according to a uniform distribution (Line 4).

Then, the worst alpha is computed in Lines 6 to 11. After the

loop, the final projected vector is computed in Line 12 using

the calculated α. The loop requires D steps. Every statement

inside the loop can be implemented in constant time. This

leads to a running time of O(D).

Algorithm 2 Iterative Projection (runtime O(D)).

1: function projectToPositiveOrthantIter(x ∈ R
D,A,b, P )

2: assert(D > 0 ∧Ax = b)

3: xprojected ← x

4: Choose a p uniformly at random from P
5: d← p− x

6: α← 0
7: for k ← 1 to D do

8: if (xprojected)k < 0 ∧ |(d)k| > 0 then

9: α← max(α,− (x)k
(d)k

)
10: end if

11: end for

12: xprojected ← xprojected + αd
13: return(xprojected)

14: end function

Experimental results for the different projection methods

regarding runtime and projection quality are provided in the

2With α = 1 we get xprojected = x+ (p − x) = p. And by construction
we know that Ap = b and p ≥ 0.

supplementary material (Sec. VI-E1). Fig. 4 shows the scaling

behavior of the different projection methods. Fig. 9 shows the

quality of the different projection methods. For this, Alg. 3

was configured with the different projection methods and run

on different test problems.

D. lcCMSA-ES Pseudo-Code

Alg. 3 shows the lcCMSA-ES in pseudo-code for the

optimization problem described in Sec. II. It makes use of

the ideas described in Secs. III-A to III-C.

An individual is represented as a tuple a. It consists of

the objective function value f(x), the parameter vector x for

achieving this function value f(x), the null space mutation

vector s, the mutation vector z and the mutation strength

σ. The best-so-far (bsf) individual is tracked in absf and the

corresponding generation in gbsf (lines 11, 27, and 32 of

Alg. 3).

In line 2 of Alg. 3 all the necessary parameters are ini-

tialized. The covariance matrix C is initialized to the identity

matrix with dimension of the null space N (line 4). The initial

solution is found by solving the linear system of equations

Ax = b for an xinh in line 5. It is then randomized in line 7

as described in Sec. III-A. In case the non-negativity constraint

(Eq. (1c)) is violated, the initial solution is repaired (lines 8

to 10). Next, the generation loop is entered in line 13.

In every generation λ offspring are created (lines 15 to 28).

The offspring’s mutation strength is sampled from a log-

normal distribution (line 16). The mutation direction in the null

space is sampled from a normal distribution with the learned

covariance and zero mean (line 17). Transformation of this

mutation direction in the null space into the problem space

yields the mutation direction in the problem space (line 18).

Using this, the new offspring solution is calculated in line 19.

It is repaired if it violates the non-negativity constraint. This

is done by projection. The projection yields a new solution

(line 21). From this, the mutation vector and the mutation

vector in the null space are calculated back (lines 22 and 23).

The offspring are ranked according to the order relation “≻”

(line 29) to update the values x, σ, and C. They are updated

with the mean values (denoted by 〈·〉) of the corresponding

quantities of the µ best individuals in lines 30, 33, and 34.

Since the goal is to minimize f and f(x) is stored in the

individual, the order relation is defined as

al ≻ am ⇔ f(x̃l) < f(x̃m). (11)

There are multiple termination criteria (line 36). The genera-

tion loop is terminated if a maximum number of generations is

reached or the σ value falls below a threshold. In addition, the

loop is stopped if the absolute or relative difference of x(g)

and x(g−G) is below the threshold εabs or εrel, respectively.

Further, if the best-so-far individual has not been updated for

the last Glag generations, the generational loop is quit.

The runtime of the generational loop of Alg. 3 is mainly

dominated by two computation steps. The first expen-

sive step is the eigendecomposition in the computation of

(
√
C)normalized. Second, the offspring generation step can be

bounded as O(λ·tproj). This represents the worst case assuming
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every generated offspring has to be repaired. The runtime cost

of the repair step is denoted as tproj. Consequently, assuming

λ = O(D), the projection starts to matter if tproj gets about

asymptotically quadratic in D.

Details concerning the covariance matrix C are explained

in the following two subsections.

1) Computation of
√
C: The covariance matrix C is sym-

metric and positive definite. Therefore, it holds that C =
MMT where M =

√
C. The computation of (

√
C)normalized

for line 14 can be done every ⌊τc⌋-th generation to save time.

This is possible because the changes to the covariance matrix

are small in between these generations. Alg. 4 outlines the
√
C

calculation steps. Note that det(Mr)
− 1

N is a normalization

factor such that the determinant of (
√
C)normalized is one. The

idea behind this is that the resulting transformation is volume-

preserving.

2) Regularization of C for Computing
√
C:

When the strategy approaches the boundary, the selected (and

repaired) mutation steps toward the boundary decrease rapidly.

But the other directions are not affected. Consequently, the

condition number of C increases rapidly.

Therefore, regularization of C to delimit the condition

number is a way to overcome this. This prevents the ES

from evolving in a degenerated subspace of the null space

when approaching the boundary. The regularization is done

by adding a small positive value to the diagonal elements if

the condition number exceeds a threshold t, i.e.,

Mr =
√
C+ rI with r = 0 if cond(C) ≤ t. (12)

The regularized covariance matrix C̃ is then MrM
T
r . Let λi

denote the i-th eigenvalue3 of C such that λ1 ≤ λi ≤ λN . Ac-

cordingly, the i-th eigenvalue of
√
C is

√
λi. The eigenvalues

of Mr and MrM
T
r are

√
λi+ r and (

√
λi+ r)2, respectively.

In case the condition number exceeds the threshold t, i.e.,

cond(C) = cond(MMT ) = λN/λ1 > t, the factor r is chosen

to limit the condition number to t. That is, the corresponding

r value is determined by

cond(C̃) = cond(MrM
T
r ) =

(
√
λN + r)2

(
√
λ1 + r)2

!
= t (13)

The detailed steps solving Eq. (13) for r are provided in the

supplementary material (Sec. VI-A). They result in

r =

√
λN

t
−
√

λ1 +

√

λN

t2
+

λN

t
− 2
√
λ1λN

t
. (14)

IV. EXPERIMENTAL EVALUATION

The lcCMSA-ES is tested on a variety of different test

functions. Linear objective functions are considered as a first

step and non-linear objective functions as a second step. For

the linear objective function tests, the Klee-Minty cube [37]

is used. For the non-linear objective function experiments,

the BBOB COCO framework [38] with adaptions is used. In

addition, the performance of the lcCMSA-ES is compared with

other methods that are able to deal with problem (1).

3Note that we use λi here to denote an eigenvalue. In Alg. 3 we use λ to
denote the number of offspring.

Algorithm 3 The (µ/µI , λ)-lcCMSA-ES.

1: Input A,b, f
2: Initialize parameters µ, λ, σ, τ , τc, G, Glag, gstop, σstop,

ǫabs, ǫrel, t
3: BD×N ← orthonormalize(null(A))
4: C← IN×N

5: x(0) ← findInhomogeneousSolution(A,b)

6: P ← initReferencePointsForIterativeProjection(x(0),

10N , A, b)

7: Randomize x(0),

e.g.: x(0) ← x(0) + ||x(0)||BN (0, IN×N )
8: if

(
x(0)

)

1:D
< 0 then

9: x(0) ← projectToPositiveOrthantIter(x(0), A, b, P )

10: end if

11: (absf, gbsf)←
(
(f(x(0)),x(0),0,0, σ), 0

)

12: g ← 0
13: repeat

14: (
√
C)normalized ← computeSqrtCNormalized(C, t)

15: for l← 1 to λ do

16: σ̃l ← σeτNl(0,1)

17: s̃l ← (
√
C)normalizedNl(0, I

N×N )
18: z̃l ← σ̃lBs̃l
19: x̃l ← x(g) + z̃l
20: if (x̃l)1:D < 0 then

21: x̃l ←
projectToPositiveOrthantIter(x̃l, A, b, P )

22: z̃l ← x̃l − x(g)

23: s̃l ← BT z̃l/σ̃l

24: end if

25: f̃l ← f(x̃l)
26: ãl ← (f̃l, x̃l, z̃l, s̃l, σ̃l)

27: (absf, gbsf)←
{

(ãl, g + 1) if ãl ≻ absf

(absf, gbsf) otherwise

28: end for

29: rankOffspringPopulation(ã1, . . . , ãλ)

acc. to “≻”(Eq. (11))

30: x(g+1) ← x(g) + 〈z̃〉
31: a←

(
f(x(g+1)),x(g+1), 〈z̃〉, 〈s̃〉, 〈σ̃〉

)

32: (absf, gbsf)←
{

(a, g + 1) if a ≻ absf

(absf, gbsf) otherwise

33: σ ← 〈σ̃〉
34: C←

(

1− 1
τc

)

C+ 1
τc
〈s̃s̃T 〉

35: g ← g + 1
36: until g > gstop ∨ σ < σstop ∨ ||x(g) − x(g−G)|| < ǫabs ∨∣
∣
∣

||x(g)||
||x(g−G)|| − 1

∣
∣
∣ < ǫrel ∨ g − gbsf ≥ Glag

The algorithms are implemented in Octave with mex-

extensions4 and the experiments were run on a cluster with 5

nodes. Every node has an Intel 8-core Xeon E5420 2.50GHz

processor with 8GiB of RAM running a GNU/Linux system.

For the BBOB COCO tests, the post-processing tool with

slight adjustments was used to generate the figures. This post-

processing tool is part of the BBOB COCO framework.

4We provide the code in a GitHub repository (https://github.com/patsp/
lcCMSA-ES).
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Algorithm 4 Computation of (
√
C)normalized.

1: function computeSqrtCNormalized(C, t)
2: C← 1

2

(
C+CT

)

3: Perform eigendecomposition to get U and D such that

C = UDUT with D being the diagonal matrix of

eigenvalues and the columns of U being the corre-

sponding eigenvectors
4: (λ1, . . . , λN )T ← diag(D)
5: r ← 0
6: if cond(C) > t then

7: r =
√
λN

t
−
√
λ1 +

√

λN

t
+ λN

t2
− 2

√
λ1λN

t

8: end if

9: Mr ← U
√
D+ rI

10: (
√
C)normalized = det(Mr)

− 1
N Mr

11: return((
√
C)normalized)

12: end function

TABLE I
PARAMETER SETTINGS FOR THE LCCMSA-ES EXPERIMENTS.

Core ES param. Stopping criteria param.

λ 4D G 10

µ ⌊λ
4
⌋ Glag 50N

σ (initial value) 1
√

D
gstop 10000

τ 1
√

2N
σstop 10−6

τc 1 +
N(N−1)

2µ
ǫabs 10−9

t 1012 ǫrel 10−9

In the experiments, the parameters for the lcCMSA-ES are

set as shown in Table I. The six parameters G, Glag, gstop,

σstop ǫabs, and ǫrel are used for the stopping criteria. The chosen

values turned out to be good choices in initial experiments. The

initial σ, τ , and τc were set according to the suggestions in [1].

The parameters µ and λ were chosen to have a truncation

ratio µ/λ = 1/4 (similar as in [1]). The value of t was set as

a trade-off between numerical accuracy and the toleration of

approaching the boundary in the ES.

The sum of objective and constraint function evaluations are

considered for the performance measure. In the BBOB COCO

framework one call to the constraint evaluation function yields

the values of all the constraints for a given query point.

A. Performance on the Klee-Minty cube

Klee and Minty formulated a special LP [37] to show

that the Simplex algorithm [39], although working well in

practice, has an exponential runtime in the worst case. To

this end, they invented the so-called Klee-Minty cube. The

n-dimensional Klee-Minty cube is a distorted hypercube with

2n corners. The inside of the cube represents the feasible

region. The objective function is constructed in such a way

that the Simplex algorithm visits all the corners in the worst

case and thus its worst case runtime is exponential. Formally,

the inequalities of the feasible region write

x1 ≤ 5
4x1 + x2 ≤ 25

...
...

...
...

2nx1 + 2(n−1)x2 + · · · + 4xn−1 + xn ≤ 5n

(15)

where x1 ≥ 0, . . . , xn ≥ 0. The objective function is

2(n−1)x1 + 2(n−2)x2 + · · · + 2xn−1 + xn → max!. The

maximum is reached for the vector xopt = (0, 0, . . . , 0, 5n)
T

yielding f(xopt) = 5n. The Klee-Minty problem has been

chosen because it is known to be also a hard problem for

interior point methods [40], [41].

Table II shows the results of single runs of the lcCMSA-ES

with the Iterative Projection on the Klee-Minty problem with

different dimensions. The optimal value is reached up to a

small error for all the dimensions from 1 to 15. For dimensions

larger than 15 we have observed numerical instabilities.

We also tested interior point LP solvers on the Klee-Minty

problem. We applied glpk’s interior point LP algorithm using

Octave and Mathematica’s interior point LP algorithm to the

Klee-Minty problem. We have observed that the absolute

error to the optimum increases with increasing dimension for

both LP solvers. The supplementary material contains detailed

results (Sec. VI-E3). Tables III and IV display the results of

single runs of the glpk LP solver and the Mathematica LP

solver, respectively. Both solvers were run with default param-

eters and interior point methods. The number of generations

and the number of function evaluations are not comparable.

For example, according to the documentation, the default

number of maximum iterations for the interior point algorithm

glpk in Octave is 200. This is independent of the number of

variables and constraints.

B. Performance on the BBOB COCO constrained suite

For the non-linear objective function experiments the BBOB

COCO framework [38] with adaptions is used. The adapted

version5 is based on the code in the branch development6

in [42]. A documentation can be found in [43] under docs/

bbob-constrained/functions/build after building

it according to the instructions.

The BBOB COCO framework provides a test suite, bbob-

constrained, for constrained black-box optimization bench-

marking. It contains 48 constrained functions with dimen-

sions D ∈ {2, 3, 5, 10, 20, 40}. For every problem, random

instances can be generated. The 48 problems are constructed

by combining 8 functions of the standard BBOB COCO suite

for single-objective optimization with 6 different numbers of

constraints, namely 1, 2, 6, 6 + D/2, 6 + D, and 6 + 3D

5We provide the adapted code in a GitHub fork of the BBOB COCO
framework, https://github.com/patsp/coco. The changes are in the new branch
development-sppa-2. This branch is based on the development

branch of https://github.com/numbbo/coco with changes up to and including
Dec 10, 2017. A list of the changes is also provided in the supplementary
material (Sec. VI-F).

6Because the bbob-constrained suite is still under development, we
provide a fork. This makes our results reproducible. Even though it is still
under development, this suite gives a good indication of the algorithm’s
performance in comparison to other methods. We use this suite instead of
defining our own test problems with linear constraints for this work.
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TABLE II
RESULTS OF SINGLE RUNS OF THE LCCMSA-ES WITH THE ITERATIVE PROJECTION (LINEAR RUNTIME VERSION) ON THE KLEE-MINTY CUBE.

Name fopt ESfbest
|fopt − ESfbest

| |fopt − ESfbest
|/|fopt| #generations #f-evals

Klee-Minty D = 1 -5.000000 -5.000000 2.910383e-11 5.820766e-12 97 874
Klee-Minty D = 2 -25.000000 -25.000000 2.693810e-10 1.077524e-11 104 1769
Klee-Minty D = 3 -125.000000 -125.000000 1.987161e-09 1.589729e-11 153 3826
Klee-Minty D = 4 -625.000000 -625.000000 2.280285e-08 3.648456e-11 201 6634
Klee-Minty D = 5 -3125.000000 -3125.000000 2.121087e-07 6.787479e-11 251 10292
Klee-Minty D = 6 -15625.000000 -15625.000003 2.568122e-06 1.643598e-10 301 14750
Klee-Minty D = 7 -78125.000000 -78125.000030 3.049150e-05 3.902912e-10 351 20008
Klee-Minty D = 8 -390625.000000 -390625.000303 3.030710e-04 7.758617e-10 403 26196
Klee-Minty D = 9 -1953125.000000 -1953125.001656 1.656145e-03 8.479462e-10 451 32924
Klee-Minty D = 10 -9765625.000000 -9765625.000914 9.139776e-04 9.359131e-11 501 40582
Klee-Minty D = 11 -48828125.000000 -48828125.000000 0.000000e+00 0.000000e+00 551 49040
Klee-Minty D = 12 -244140625.000000 -244140625.000000 2.980232e-08 1.220703e-16 602 58395
Klee-Minty D = 13 -1220703125.000000 -1220703125.000000 0.000000e+00 0.000000e+00 650 68251
Klee-Minty D = 14 -6103515625.000000 -6103515625.000001 9.536743e-07 1.562500e-16 735 83056
Klee-Minty D = 15 -30517578125.000000 -30517578125.000004 3.814697e-06 1.250000e-16 755 91356

constraints. The 8 functions are Sphere, Separable Ellipsoid,

Linear Slope, Rotated Ellipsoid, Discus, Bent Cigar, Sum of

Different Powers, and the Separable Rastrigin. The constraints

are linear with nonlinear perturbations and defined by their

gradient. These constraints are generated by sampling their

gradient vectors from a normal distribution and ensuring

that the feasible region is not empty. The generic algorithm

of generating a constrained problem is outlined in [43],

docs/bbob-constrained/functions/build.

The optimization problem in the BBOB COCO framework

is stated as

f ′(x)→ min! (16a)

s.t. g(x) ≤ 0 (16b)

x̌ ≤ x ≤ x̂ (16c)

where f ′ : RD′ → R and g : RD′ → R
K′

. In order for the

lcCMSA-ES to be applicable this must be transformed into

f(x)→ min! (17a)

s.t. Ax = b (17b)

x ≥ 0 (17c)

where f : R
D → R, A ∈ R

K×D, x ∈ R
D, b ∈ R

K . It

is known that the constraints in the bbob-constrained suite

of the BBOB COCO framework are linear with non-linear

perturbations. Using this fact in addition with the enhanced

ability to disable the non-linear perturbations, a pre-processing

step is used. It transforms Eq. (16) into Eq. (17). This pre-

processing step is based on the idea of querying the constraint

function at enough positions in the parameter space. This

allows constructing a system of equations that can be solved

for the underlying coefficients of the linear constraints. The

resulting coefficients and the bounds can be put into matrix

form. Slack variables are added for transforming the inequal-

ities into equalities to arrive at the form in Eq. (17). Due to

space limitations, Secs. VI-C and VI-D in the supplementary

material describe how this can be done and show pseudo-code.

In the following, the performance of different algorithms

is visualized by use of bootstrapped Empirical Cumulative

Distribution Functions (ECDF). These plots show the percent-

ages of function target values reached for a given budget of

function and constraint evaluations per search space dimen-

sionality. The x-axis shows the sum of objective function and

constraint evaluations normalized by dimension (log-scaled).

The y-axis shows the percentage of so-called targets that were

reached for the given sum of objective function and constraint

evaluations. Every target is defined as a particular distance

from the optimum. In the plots shown, the standard BBOB

ones are used: ftarget = fopt + 10k for 51 different values

of k between −8 and 2. The crosses indicate the medians

of the sum of objective function and constraint evaluations

of instances that did not reach the most difficult target. Note

that the steps at the beginning of the lines of some variants

are due to the pre-processing step that requires an initial

amount of constraint evaluations. Furthermore, the top-left

corner in every plot shows information about the experiments.

The first line indicates the functions of the BBOB COCO

framework that have been used in the experiment. The second

line specifies the targets. The number of runs (instances) are

indicated in the third line. A line (with a marker) to every

entry in the legend is drawn. This shows which line in the

plot belongs to which entry in the legend.

The ECDF plots shown in Figs. 1 and 2 show results

aggregated over multiple problems. For this, the results of

an algorithm over all the problems are considered for a

specific dimension. It is referred to [44] for all the details. In

the supplementary material, we provide single function plots

(Figs. 5 and 6).

Fig. 1 presents the ECDF of runs of the lcCMSA-ES

with the Iterative Projection. All the constrained problems

of the BBOB COCO bbob-constrained test suite are shown

aggregated. The considered dimensions are 2, 3, 5, 10, 20, 40.

For these, the performance of the algorithm is evaluated on 15

independent randomly generated instances of each constrained

test problem. Based on the observed run lengths, ECDF graphs

are generated. Every line corresponds to the aggregated ECDF

over all problems of a dimension (2, 3, 5, 10, 20, 40 from top

to bottom).

Additional simulation results of the lcCMSA-ES are pre-

sented in the supplementary material (Sec. VI-E2). They

include ECDF and average runtime graphs of the lcCMSA-ES

for all the single functions of the BBOB COCO constrained



1089-778X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2018.2871944, IEEE
Transactions on Evolutionary Computation

8 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, MONTH XXXX

0 2 4 6 8

log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti

o
n
 o

f 
fu

n
c
ti

o
n
,t

a
rg

e
t 

p
a
ir

s

40-D

20-D

10-D

5-D

3-D

2-Dbbob-constrained f1-f48
51 targets: 100..1e-08
15 instances

v2.0.805

Fig. 1. Bootstrapped empirical cumulative distribution function of the number
of objective function and constraint evaluations divided by dimension for the
lcCMSA-ES with the Iterative Projection.

suite. Graphs showing the evolution dynamics of the lcCMSA-

ES are presented as well.

We see that for the dimensions 2, 3, and 5 the most difficult

target is reached with about 105D function and constraint

evaluations. For the higher dimensions the most difficult target

is not reached. But about 90% of the targets are reached

with about 106D function and constraint evaluations. One

can see that the performance in the higher dimensions is

low in particular for the Rastrigin functions (functions 43-

48 shown in the last six subplots of Fig. 6). The Rastrigin

function is multimodal. In order to deal with such a function,

an extension of the lcCMSA-ES is possible. An example could

be an integration of the lcCMSA-ES into a restart meta ES.

C. Comparison with other approaches

To compare the lcCMSA-ES proposed in this work a

selection of other algorithms is benchmarked on the same

adapted BBOB COCO suite. Three variants of DE that showed

promising results in benchmarks are tested, namely “Self-

adaptive Differential Evolution Algorithm for Constrained

Real-Parameter Optimization” (conSaDE) [20], “Differential

Evolution with Ensemble of Constraint Handling Techniques”

(ECHT-DE) [21], and “Constrained Optimization by the

ε Constrained Differential Evolution with an Archive and

Gradient-Based Mutation” (εDEag) [22]. Further, an Active-

Set ES [33], an ES with augmented Lagrangian constraint

handling [34] and a method based on surrogate modeling with

adaptive parameter control [45] (SACOBRA) are benchmarked

and compared to the approach presented in this work.

For the conSaDE, the ECHT-DE, the εDEag, the Active-Set

ES, the ES with augmented Lagrangian constraint handling,

and the SACOBRA algorithm, the implementations provided

by the respective authors were used7 (adapted for the BBOB

COCO framework). All the algorithms for the comparison

were run with default parameters.

7conSaDE: http://web.mysites.ntu.edu.sg/epnsugan/PublicSite/
Shared%20Documents/Codes/2006-CEC-Const-SaDE.rar, ECHT-DE:
http://web.mysites.ntu.edu.sg/epnsugan/PublicSite/Shared%20Documents/
Codes/2010-TEC-Ens-Con-EP-DE.zip, εDEag: http://www.ints.info.
hiroshima-cu.ac.jp/%7etakahama/download/eDEa-2010.0430.tar.gz,
Active-Set ES: https://web.cs.dal.ca/%7edirk/AS-ES.tar, SACOBRA:
https://cran.r-project.org/web/packages/SACOBRA/index.html, ES with
augmented Lagrangian constraint handling: Code provided by Asma Atamna.

The goal is to have a direct comparison to the method

proposed in this work. The non-linear transformations are

turned off in order to be able to compare the approaches to the

lcCMSA-ES. For the lcCMSA-ES the inequality constraints

are first pre-processed to transform the problem into one

that the lcCMSA-ES is able to handle. Hence, the lcCMSA-

ES solves (17). Similarly, for the active-set ES, the linear

constraints are determined but no slack variables are added

because inequalities can be handled by the algorithm. The

optimization problem

f(x)→ min! (18a)

s.t. Ax ≤ b (18b)

x̌ ≤ x ≤ x̂ (18c)

is passed to the active-set ES, i.e., the active-set ES solves (18).

A and b represent the BBOB COCO constraint system of the

current problem and f is the current problem’s objective func-

tion. As the DE variants, the CMA with augmented Lagrangian

handling and the SACOBRA are able to handle the form of the

BBOB COCO problem directly, no problem transformation is

necessary for them. Therefore, they solve (16).

Fig. 2 shows ECDF graphs for all the different algorithms.

For every algorithm the ECDF aggregated over all functions

and dimensions in the BBOB COCO constrained suite is

displayed. Our approach (named itprojlccmsaes for the

variant with Iterative Projection and l1lpsolvelccmsaes

for the variant with the ℓ1 projection in the plots) is among the

best for all the dimensions. The CMA-ES with augmented La-

grangian constraint handling (named cma_es_augmented_

lagrangian in the plots) is able to reach about 50-60%

of the targets. The Active-Set ES (named activesetES

in the plots) performs similarly to our approach for all the

dimensions. The DE variants, the Active-Set ES, and the

SACOBRA approach perform similarly as our approach in the

smaller dimensions but not as well in the larger dimensions.

The exception to this is the conSaDE that performs better for

dimension 20 and similarly as our algorithm for dimension

40. Similar to Fig. 1, a closer look at the single function

ECDF plots for all the algorithms (not shown here) reveals

more insight. The lower performance in the higher dimensions

20 and 40 is mainly due to the Rastrigin problem for all

the algorithms. The CMA-ES with augmented Lagrangian

constraint handling is only able to solve a subset of the

problems for all dimensions. In particular, it is able to solve the

Sphere, the Linear Slope, and the Different Powers problems

with 1, 2, and 6 constraints. The SACOBRA algorithm has

problems with the higher number of constraints as well.

Fig. 3 shows ECDF graphs for all the different algorithms

for the Klee-Minty problem with dimensions 9, 12, and 15
(plots for all the dimensions are presented in the supplemen-

tary material (Sec. VI-E3)). The SACOBRA approach, the

εDEag, and the CMA with augmented Lagrangian constraint

handling are only able to reach 20% of the targets. All the

other approaches perform well with some difficulties in higher

dimensions (13-15). In the large dimensions it is worth noting

that the numbers get large quickly and therefore numerical

stability can become an issue.
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Fig. 2. Bootstrapped empirical cumulative distribution function of the number of objective function and constraint evaluations divided by dimension: comparison
of all the approaches.
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Klee-Minty problem with dimensions D = 9, D = 12 and D = 15: comparison of all the approaches.

V. CONCLUSION

We have proposed the lcCMSA-ES; a CMSA-ES for solving

optimization problems with linear constraints. The algorithm

is based on the CMSA-ES. It is an interior point approach

that repairs infeasible candidate solutions if necessary. The

mutation operator and repair method are specially designed.

They allow the ES to evolve itself on a linear manifold. This

distinguishes the proposed algorithm from the other methods

considered for the comparison. It has been experimentally

shown that the method works well on the Klee-Minty op-

timization problem as well as the bbob-constrained suite of

the BBOB COCO framework (with disabled non-linear per-

turbations). Additionally, the proposed lcCMSA-ES has been

compared to other evolutionary approaches for constrained

optimization. Experiments have shown that the lcCMSA-ES

is among the best for the BBOB COCO constrained suite

and the Klee-Minty problem. It is worth noting that not

all algorithms that have been compared are interior point

methods. Consequently, they have the advantage of evaluating

the objective function outside the feasible region. In particular,

they do not move on the linear manifold defined by the

constraints. All the three DE variants considered (conSaDE,

ECHT-DE, and εDEag) allow infeasible candidates. The ES

with augmented Lagrangian constrained handling works with

a penalty. Thus, infeasible candidates are involved during

the evolution as well. The surrogate modeling with adaptive

parameter control does most of the optimization work on the

surrogate models. But already the computation of the initial

surrogate models involves evaluating objective and constraint

functions. For the initialization this is done at random points

in the search space. Those random points are not necessarily

feasible. The optimization on the surrogate models involves

infeasible solutions with respect to the real functions. But the

results of the optimization on the surrogate models are tried

to be repaired if necessary with respect to the real functions.

The Active-Set ES only considers feasible candidates. It starts

with an initial feasible candidate solution and uses repair by

projection for dealing with infeasible solutions. This repair

approach is not designed to move on the linear space defined

by the constraints. This is in contrast to our proposed ES.

Consequently, the objective function is only evaluated for

feasible candidate solutions.
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