
1

The Dynamics of Self-Adaptive Multi-Recombinant
Evolution Strategies on the General Ellipsoid Model

Hans-Georg Beyer and Alexander Melkozerov

Abstract—The optimization behavior of the self-adaptation
(SA) evolution strategy (ES) with intermediate multi-
recombination (the (µ/µI , λ)-σSA-ES) using isotropic mutations
is investigated on convex-quadratic functions (referred to as
ellipsoid model). An asymptotically exact quadratic progress
rate formula is derived. This is used to model the dynamical
ES system by a set of difference equations. The solutions
of this system are used to analytically calculate the optimal
learning parameter τ . The theoretical results are compared and
validated by comparison with real (µ/µI , λ)-σSA-ES runs on
two ellipsoid test model cases. The theoretical results clearly
indicate that using a model-independent learning parameterτ
leads to suboptimal performance of the(µ/µI , λ)-σSA-ES on
objective functions with changing local condition numbers as
often encountered in practical problems with complex fitness
landscapes.

Index Terms—Evolution strategy, ellipsoid model, progress
rate, self-adaptation

I. I NTRODUCTION

Theoretical analyses of Evolution Strategies have a long-
standing tradition starting with Rechenberg’s early work con-
cerning the(1 + 1)-ES on the sphere model published in
[22]. While in the last decade of the 20th century parts of
more complex ES algorithms such as(µ, λ)- and(µ/µ, λ)-ES
have been analyzed, the treatment of the complete algorithm
including σ mutation strength control started with the turn of
the century [9]. It was continued by different authors such
as Arnold [1], Auger [5], and Jägersküpper [16]. Considering
test functions beyond the sphere model was the next step. In
[17], Jägersküpper considered the(1 + 1)-ES with 1/5-rule
on a subset of positive definite quadratic forms (PDQFs). The
complementing analysis of the(µ/µI , λ)-ES has been done in
[10]. Furthermore, the Cigar as a special PDQF [3] and ridge
functions [21], [19] have been analyzed so far. However, unlike
the acronym PDQF suggests, the general PDQF case has not
been treated so far. Since the level set of this general case
defines an ellipsoid in theN -dimensional space, we refer to
this kind of test function asgeneral ellipsoid model.

The analysis of the dynamics of the(µ/µI , λ)-ES on
ellipsoid models may be regarded as a milestone on the way to
a full analysis of covariance matrix adaptation ES (CMA-ES).
While these strategies are currently among the best-performing
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direct search methods [14], their theoretical analysis is still
in its infancy. A full analysis that considers the real CMA-
ES [15] or the CMSA-ES [12] requires the analysis of the
covariance learningand the mutation strength adaptation. This
paper provides the solution for the second problem in the case
of the self-adaptive mutation control as used in CMSA-ES. A
similar analysis concerning the cumulative step-size adaptation
would solve the respective problem for the CMA-ES. Besides
being a step towards the analysis of CMA-like strategies,
the analysis to be presented finalizes the chapter of theoret-
ical analyses regarding the dynamical systems approach on
quadratic fitness functions started in the 1990s. Furthermore,
the analysis approach extends the standard analysis methodby
utilizing quadratic progress rate measures.

The paper is organized as follows. First, the(µ/µI , λ)-σSA-
ES algorithm, the ellipsoid model and previous results on the
topic are presented in the remaining parts of the introduction.
The quadratic progress rate is introduced and derived in
Section II. This new progress measure is the basis for the
dynamical systems approach in this paper. In Section III, a
system of discrete nonlinear difference equations is derived
and solved for the steady-state limit. The obtained solutions are
compared with real(µ/µI , λ)-σSA-ES experiments. Based on
these results, in Section IV the problem regarding the optimal
choice of the learning parameterτ is tackled yielding an
approximate learning parameter formula. The paper concludes
with a discussion of the results and their implications for future
work.

A. ES Algorithm

The (µ/µI , λ)-σSA-ES algorithm investigated in this work
is presented in Fig. 1. The parental mutation strengthσ(0) and
the parental parameter vector, orparental centroidy(0), are
initialized in Lines 1 and 2.λ offspring individuals are gen-
erated from Line 5 to Line 11 in the following way. For each
offspring, the mutation ofσ(g) is performed in Line 6 using
the log-normal operatoreτNl(0,1), whereNl (0, 1) is a standard
normally distributed random scalar. The learning parameter τ
in the log-normal operator controls the self-adaptation rate. In
Line 7, an isotropic mutation direction is generated by means
of a random vectorN l (0, I) the components of which are
standard normal variates. This direction vector is scaled with
the individual’s mutation strength̃σl in Line 8 forming the
mutation. The offspring vector̃yl is generated in Line 9 and
used in the calculation of the objective function valueF̃l in
Line 10.

After creation, theλ offspring are ranked according to their
F̃l values in Line 12. The intermediate recombination of off-
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1 σ(0) ← σinit
2 y(0) ← yinit

3 g ← 0
4 do
5 for l = 1, . . . , λ begin
6 σ̃l ← σ(g)eτNl(0,1)

7 zl ←N l (0, I)
8 xl ← σ̃lzl
9 ỹl ← y(g) + xl

10 F̃l ← F (ỹl)
11 end
12 F̃sort ← sort

(

F̃1...λ

)

13 σ(g+1) ← 1
µ

∑µ
m=1 σ̃m;λ

14 y(g+1) ← 1
µ

∑µ
m=1 ỹm;λ

15 g ← g + 1
16 until termination criterion fulfilled

Figure 1: The algorithm of the(µ/µI , λ)-σSA-ES

spring mutation strengths and parameter vectors is performed
in Lines 13 and 14 to obtain a new parental mutation strength
σ(g+1) and a new parental vectory(g+1). The subscriptm;λ
refers to themth best ofλ offspring (i.e., the offspring with
themth smallestF -value in the case of minimization).

After the termination criterion is fulfilled, the current
parental parameter vector is considered as an approximation
of the optimizer of the objective functionF (y).

B. Fitness Environment

The (µ/µI , λ)-σSA-ES analysis in this work is performed
for the ellipsoid model

F (y) =
∑N

i=1 aiy
2
i , ai > 0, (1)

whereN is the search space dimensionality andai are the
coefficients of the ellipsoid model. Its optimizerŷ = 0 resides
at the origin of coordinates. Special cases of the ellipsoid
model (1) include cigar function (a1 = 1, ai = ξ for
i = 2, . . . , N , where ξ > 1 is the condition number), a
subset of PDQF (ai = ξ for i = 1, . . . , ⌊Nϑ⌋ and ai = 1
for i = ⌊Nϑ⌋ + 1, . . . , N , whereϑ ∈ [0, 1] is the partition
parameter), and the sphere model (ai = 1). Note, the model
(1) already represents thegeneral case of positive definite
quadratic forms for the(µ/µI , λ)-σSA-ES. This is due to the
isotropy of the mutations used in Line 9: The algorithm is
invariant w.r.t. arbitrary rotations of the coordinate system.

Applying the (µ/µI , λ)-σSA-ES of Fig. 1 to the objective
function (1) results in a dynamic behavior approaching the
optimizer aty = 0. Figure 2 shows the dynamics of typical
runs considering some squared components of they(g) vector.
As one can see, starting from an initialy(0) = (1, . . . , 1),
σ(0) = 1, the y-component belonging to the largestai, i.e.
yN , exhibits the sharpest drop whereasy1 is only slowly
decreasing. Remarkably, after a transient phase, ally2-curves
exhibit log-linear behavior with the same declination angle.
Additionally, the σ-dynamics also approach a log-linear be-
havior, however, with a different declination rate. The aimof
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Figure 2: Dynamics of the(µ/µI , λ)-σSA-ES on a fitness
function (1) withai = i andN = 40. The quadratic deviation
of yi from the optimizer is displayed for the components
i = 1, 2, 3, 10, 40. Additionally, the mutation strengthσ has
been plotted. ES parameters areµ = 3, λ = 10, τ = 1/

√
N .

Note, the graphs are averages over 1000 independent runs.

this analysis is to provide formulae that are able to predictthis
behavior quantitatively. The analysis is based on the dynamical
systems approach developed in [9] considering mean value
dynamics. As for most of the ES analyses performed, the
assumptionN → ∞ must be made. Actually, this makes the
analysis tractable at all. However, the results obtained can and
will be used as approximations for the finiteN case, thus
providing insights for the real-world case. The analysis tobe
presented requires an extension of the techniques developed so
far: Unlike previous analyses [9], [1], [19], [13] where separate
search space dimensions have been lumped together and the
objective function has been treated as function of a single or
two state variables, each axis of the ellipsoid model (1) must
be considered separately. Due to this distinction, the definition
of the measure for the ES progress in the object parameter
space of the ellipsoid model – referred to asprogress rate
ϕ – differs from that of the sphere model. For the parental
parameter vectory(g) =

(

y
(g)
1 , y

(g)
2 , . . . , y

(g)
N

)T
in generation

g (the symbolT stands for the transposition of the vector),N
progress ratesϕ1, . . . , ϕN must be calculated. Theϕi formula
has been derived previously [18] and is presented in the next
section along with other published results.

C. Previous Results

In this section, a summary of results concerning(µ/µI , λ)-
σSA-ES obtained in [18] are presented.

Definition 1. The self-adaptation response (SAR) functionof
the σSA-ES is the expected relative change of the parental
mutation strength from generationg to generation(g + 1)

ψ
(

σ(g)
)

= E

[

σ(g+1) − σ(g)

σ(g)

]

. (2)

Introducing the abbreviationΣa :=
∑N

i=1 ai and using the
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mutation strength normalization [18]

σ∗(g) :=
σ(g)Σa

√

∑N
j=1 a

2
jy

(g)2
j

, (3)

the SAR function formula for the(µ/µI , λ)-σSA-ES on the
ellipsoid model reads [18]

ψ (σ∗) = τ2
(

1

2
+ e1,1µ,λ − σ∗cµ/µ,λ

)

, (4)

whereea,bµ,λ are the generalized progress coefficients [9]

ea,bµ,λ =
λ− µ
√
2π

a+1

(

λ

µ

)

+∞
ˆ

−∞

(−t)b e− a+1
2 t2

× (1− Φ(t))
λ−µ−1

Φ(t)µ−adt, (5)

Φ(t) is the cumulative distribution function of the standard
normal variate and the progress coefficientcµ/µ,λ := e1,0µ,λ.
Note, surprisingly, Eq. (4) is equivalent to the known SAR
function of the(µ/µI , λ)-σSA-ES on the Sphere [20] except
the different mutation strength normalization.

The second published result of the(µ/µI , λ)-σSA-ES anal-
ysis on the ellipsoid model is the first-order progress rate:

Definition 2. The progress rate of the(µ/µI , λ)-ES along the
ith axis of the ellipsoid model (1) is the expected change of
the parental parameter vector componentyi from generation
g to generation(g + 1)

ϕi := E
[

y
(g)
i − y(g+1)

i | y(g)
]

. (6)

Note that the progress rate analysis usually neglects the
mutation of the mutation strengthσ (Line 6 in Fig. 1) since
the learning parameterτ is rather small. For example, for the
sphere model it was proven in [8] that for optimal ES perfor-
manceτ ∝ 1/

√
N must hold. That is, in the asymptotical limit

N → ∞ the exponential function approaches one in Line 6
of the ES in Fig. 1, thus keepingσ constant.

Taking into account thaty(g+1)
i = 1

µ

∑µ
m=1

(

ỹ
(g)
i

)

m;λ
is the

mean value of the parameter vector componentsỹ
(g)
i of theµ

best offspring in generationg, Eq. (6) transforms into

ϕi =
1

µ

µ
∑

m=1

E

[

y
(g)
i −

(

ỹ
(g)
i

)

m;λ
|y(g)

]

. (7)

Introducing the progress rate normalization [18]

ϕ∗
i := ϕiΣa (8)

the normalized progress rate formula reads [18]

ϕ∗
i (σ

∗) = σ∗cµ/µ,λaiyi. (9)

Eq. (9) is linear in the normalized mutation strengthσ∗. This
is an approximation for small mutation strengths typically
observed in the steady state regime of the evolution process.
The progress rate (9) can be used to describe the expected
approach to the optimizer for each component of the parental
centroid as long as the distance to the optimizer is sufficiently
large compared to the respective progress rate values. If
this condition is not fulfilled, the mean value dynamics are

significantly overlaid by the fluctuations of the evolutionary
process. As a result, the predictive quality deteriorates when
approaching the optimizer. This is the reason why a new, more
stable mean value quantity is needed. It turned out that the
appropriate progress measure is the quadratic progress rate
which is introduced in the next section.

II. QUADRATIC PROGRESSRATE ϕII

Definition 3. The quadratic progress rate of the(µ/µI , λ)-ES
along theith axis of the ellipsoid model (1) is the expected
change of the squared componenty2i of the parental parameter
vector from generationg to generation(g + 1)

ϕII
i := E

[

(

y
(g)
i

)2 −
(

y
(g+1)
i

)2 | y(g)
]

. (10)

As one will see below, this progress measure shares the
typical properties of well-defined progress measures: it con-
tains gain as well as loss terms which depend on the mu-
tation strength. Therefore, there exists an optimal mutation
strength maximizing the progress towards the optimizer. Fur-
thermore, it seems a natural measure because it also allows
for the direct calculation of the quality gainQ [9]. The
latter is defined as the expected parental fitness changeQ :=
E
[

F (y(g+1))− F (y(g))
]

. Taking (1) and (10) into account,
this leads to

Q = E

[

N
∑

i=1

ai(y
(g+1)
i )2 −

N
∑

i=1

ai(y
(g)
i )2

]

= −
N
∑

i=1

aiϕ
II
i .

(11)

A. On the Derivation ofϕII
i

To derive a formula forϕII
i , the (µ/µI , λ)-ES recombi-

nation stepy(g+1) = 1
µ

∑µ
m=1 ỹm;λ is considered. Theith

component of the parameter vectory(g+1) is calculated as
follows (cf. Lines 9 and 14 in Fig. 1)

y
(g+1)
i =

1

µ

µ
∑

m=1

(ỹi)m;λ = yi +
1

µ

µ
∑

m=1

(xi)m;λ , (12)

where indices(g) are omitted for brevity. Inserting (12) into
theϕII

i definition yields

ϕII
i = E



−2yi
1

µ

µ
∑

m=1

(xi)m;λ −
1

µ2

(

µ
∑

m=1

(xi)m;λ

)2

|y(g)



 ,

(13)

which is further transformed using the equalities(xi)m;λ =

(ỹi)m;λ − yi and (
∑µ

m=1 am;λ)
2
= 2

∑µ
l=2

∑l−1
k=1 ak;λal;λ +

∑µ
m=1 a

2
m;λ into

ϕII
i =− 2yi

1

µ

µ
∑

m=1

E
[

(ỹi)m;λ − yi|y(g)
]

− 2

µ2
E

[

µ
∑

l=2

l−1
∑

k=1

(xi)k;λ (xi)l;λ |y(g)

]

− 1

µ2
E

[

µ
∑

m=1

(xi)
2
m;λ |y(g)

]

. (14)
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Comparing the first line in (14) with Eq. (7), the progress rate
ϕi can be recognized. With expectations in the second and
third lines denoted byE1 andE2, Eq. (14) reads

ϕII
i = 2yiϕi −

2

µ2
E1 −

1

µ2
E2. (15)

The sums of product momentsE1 andE2 are calculated in the
Appendix, Eqs. (96) and (100). Inserting those results into(15)
leads after normalization using (8) to the normalized quadratic
progress rate formula1

ϕII∗
i (σ∗) = 2yiϕ

∗
i (σ

∗)− (σ∗)2

µΣa

×





N
∑

j=1

a2jy
2
j +

(

(µ− 1) e2,0µ,λ + e1,1µ,λ

)

a2i y
2
i



 , (16)

whereϕ∗
i (σ

∗) is given by (9).
The quadratic progress rate formula (16) depends on the

first-orderϕ∗
i as well as on a negative higher-order term which

corresponds to the progress rate loss. Due to the coefficient
proportional toyi, the influence ofϕ∗

i depends on how far
from the optimizer (yi = 0 for all i) the ES works. The loss
term is proportional to the squared mutation strength. Thatis,
the (µ/µI , λ)-ES progress rate grows for smallσ∗, reaches
a maximum and decreases after that. The loss term is also
inversely proportional to the parent numberµ. That is, the
genetic repair effectof recombination [9], first found for the
sphere model, does also hold for the ellipsoid: recombining
the µ > 1 best offspring reduces the loss part ofϕII∗

i .
Taking into account the complexity of Eq. (16), a simpler

ϕII∗
i formula will be used for the dynamical analysis to be

performed in Section III. Provided that there is not a domi-
nating ai coefficient, i.e., the condition∀i : ∑j 6=i a

2
j ≫ a2i

holds, andN ≫ µ, the expression
(

(µ− 1) e2,0µ,λ + e1,1µ,λ

)

a2i y
2
i

can be neglected in the loss term.2 Thus, taking Eq. (9) into
account, one obtains asymptotically

ϕII∗
i (σ∗) = 2σ∗cµ/µ,λaiy

2
i −

(σ∗)2

µΣa

N
∑

j=1

a2jy
2
j . (17)

The renormalized version of (17), obtained by applying (8)
and (3),

ϕII
i

(

σ(g)
)

=
2σ(g)cµ/µ,λaiy

(g)2
i

√

∑N
j=1 a

2
jy

(g)2
j

−
(

σ(g)
)2

µ
(18)

will be used to derive the evolution equations of the ES in
Section III.

The result (17) is in accordance with former findings includ-
ing the sphere model quality gainQsp introduced in [7]. This

1In order to obtain (16) from (15), theσ2/2 terms in the denomina-
tors of (96) and (100) have been dropped. This is admissible aslong as
(σ∗)2

(
∑

k a2k
)

/
(

2
(
∑

k ak
)2

)

≪ 1. For the casesai = i, i2, this is

fulfilled if (σ∗)2/N ≪ 1, as can be easily checked.
2The validity of this assumption also requires that they2i dynamics behave

“nicely”. This can be checked by reinserting the finaly2i results confirming
the consistency of the approach.

can be shown easily using (11) together with the normalization
(8) in (17) takingFsp(y) =

∑N
i=1 y

2
i (i.e.ai = 1) into account

Qsp = −
N
∑

i=1

ϕII
i = − 1

N

N
∑

i=1

ϕII∗
i = −2Fsp

N
ϕ∗
sp (19)

with

ϕ∗
sp = cµ/µ,λσ

∗ − (σ∗)2

2µ
. (20)

As one can see, this calculation also recovered the normalized
progress rateϕ∗

sp for the sphere model [9].

B. One-Generation Experiments

In this section, ES experiments are performed to check the
validity of the progress rate formulae (16) and (17). To gather
experimental data, so-called one-generation experiments[9]
are used which consist of the following operations:

1) One iteration of the(µ/µI , λ)-ES algorithm is executed
for a givenσ∗ value and initial parameter vectory(0).

2) The newly generated parameter vectory(1) is registered.
Its squared components

(

y
(1)
i

)2
are subtracted from the

squared components
(

y
(0)
i

)2
of the initial parameter

vectory(0) resulting inN quadratic progress samples.
3) Steps 1–2 are repeatedG times, gathered quadratic

progress samples are averaged and finally normalized
according to (8).

The one-generation experiments produceN experimentalϕII∗
i

values, where eachϕII∗
i is a normalized mean ofG randomly

generated quadratic progress samples. In order to obtain
significant results,G = 108 has been chosen to perform
experimental validation of Eqs. (16) and (17). The results of
the (µ/µI , 10)-ES one-generation experiments forai = i with
initial parameter vectory(0) = 1 are shown in Fig. 3 forµ = 1
(solid curves) andµ = 3 (dashed curves). Comparing Figs. 3a
and 3b, one can observe thatN = 400 theoretical curves match
the experimental points for largerσ∗ values better than in the
N = 40 case. This is in accordance with the assumptions
made in theϕII∗ derivation: It is to be expected that the
approximation error of Eq. (16) vanishes forN →∞.

Dot-dash curves in Fig. 3 represent the outcome of the
simplified formula (17). These curves can be regarded as a
satisfactory approximation of the more complex Eq. (16) for
sufficiently smallσ∗ in the N = 40 case (Fig. 3a) and for
most σ∗ considered in theN = 400 case (Fig. 3b). Note
that Eq. (17) curves reproduce the behavior of Eq. (16) even
for N = 40: ϕII∗

i grows until a maximum is reached, then
ϕII∗
i constantly decreases. Thus Eq. (17) can be used instead

of Eq. (16) as an upper bound estimate to study the maximal
attainable performance of the(µ/µI , λ)-ES as well as to select
optimal σ∗ values.

One can further infer from Fig. 3 that the quadratic
progress rate results correctly show the effect of the multi-
recombination: Since the loss term of Eq. (16) is inversely
proportional to µ, the single-parent(1, 10)-ES (µ = 1,
solid curves) reaches smaller maximalϕII∗

i values than the
multirecombinant(3/3I , 10)-ES (dashed curves). In contrast
to the first-order progress rate results in [18], whereϕ∗

i exhibit
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Figure 3: One-generation experiments for the(µ/µI , 10)-ES.
The solid lines and dashed curves depict theoretical predictions
of Eq. (16) forµ = 1 andµ = 3, respectively, while points
represent experimental results forN = 40 and N = 400:
+ ϕII∗

1 , ⋆ ϕII∗
N/4, ◦ ϕII∗

N/2 and♦ ϕII∗
N . Dot-dashed curves show

the results of the simplified formula (17).

saturation behavior forσ∗ → ∞, ϕII∗
i is in accordance with

the known results obtained for the sphere model [9].

III. E VOLUTION EQUATIONS

The progress rate (18) and the SAR function (4) describe
the expected change between two consecutive generations, i.e.,
the short-term ES behavior. The aim of this section is to derive
analytic formulae which predict the long-term(µ/µI , λ)-σSA-
ES behavior.

A. Deriving the Evolution Equations

In the framework of the dynamical systems approach [9],
the stochastic mapping of the ES state at(g) to that at(g+1)
can be described in the case of the general quadratic fitness
model by
{

(y
(g+1)
i )2 = (y

(g)
i )2 − ϕII

i

(

σ(g),y(g)
)

+ ǫi
(

σ(g),y(g)
)

,

σ(g+1) = σ(g)
(

1 + ψ
(

σ(g),y(g)
))

+ ǫσ
(

σ(g),y(g)
)

.
(21)
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x 10
4
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2 i
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i
=i2

 

 

σ

Figure 4: Iterative experiments for the(3/3I , 10)-σSA-ES
(N = 400, ai = i2, τ = 1/

√
N ). The solid lines depict

predictions of Eqs. (22) and (23), while points represent
experimental results averaged over105 runs: + y21 , ⋆ y2N/4,
◦ y2N/2 and ♦ y2N . Dot-dash curve and△ show theoretical
and experimentalσ, respectively.

This modelling subdivides the stochastic process into mean-
value parts and the fluctuation termsǫi and ǫσ. The mean-
value parts can be directly derived from the definitions of the
quadratic progress rate (10) and the SAR function (2). In order
to keep the analysis tractable, the fluctuation terms in (21)are
disregarded in the following. Using (18) and (4) one obtains
the iterative scheme

(

y
(g+1)
i

)2

=
(

y
(g)
i

)2













1− 2σ(g)cµ/µ,λai
√

N
∑

j=1

a2j

(

y
(g)
j

)2













+

(

σ(g)
)2

µ
,

(22)

σ(g+1) =σ(g)













1 + τ2













1

2
+ e1,1µ,λ − σ(g) cµ/µ,λΣa

√

N
∑

i=1

a2i

(

y
(g)
i

)2

























.

(23)

One can use (22) and (23) to check whether the modelling
approach yields meaningful results by iterating the systemand
comparing with real ES runs. Figure 4 shows a typical example
of the (µ/µI , λ)-σSA-ES long-term dynamics forai = i2

obtained by iterating (22) and (23) starting fromy(0) = 1,
σ = 1.

As one can see, there is a good agreement with the data
points obtained by running the real ES algorithm. Two phases
of the (µ/µI , λ)-σSA-ES dynamics can be distinguished in
Fig. 4: A transient period after the start of the optimization
is followed by a steady state behavior. The transient period
is characterized by a rapid decrease ofy2N/4, y2N/2, and y2N
curves andσ values (they21 curve decreases as well, albeit
at a much smaller rate). In the steady state,y2N/4, y2N/2, and
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Figure 5: Iterative experiments for the(3/3I , 10)-σSA-ES
(N = 400). The solid lines depict theoretical predictions of
Eqs. (22) and (23), while points represent experimentalσ∗

values averaged over105 runs: + ai = 1, ⋆ ai = i and
◦ ai = i2.

y2N curves diminish slower with the same rate and obey a
log-linear law (compare also Fig. 2).

Both phases are also observed in the normalizedσ∗ plot,
Fig. 5, where the end of the transition phase is clearly visible
becauseσ∗ values cease to change. Note that experimentalσ∗

points forai = i (stars) andai = i2 (circles) coincide due to
the mutation strength normalization. Note, there is a certain
deviation of the theoretical results from the experimentalones,
more pronounced for the sphere model case. This was also
observed for the(1, λ)-ES in [9] and is to be attributed to
(a) basically the neglection of theσ∗ fluctuations (only mean
value dynamics are considered) and (b) to a certain extend
to the approximation error made due to finite search space
dimensionalityN .

After having motivated qualitatively the validity of the
modelling approach, trying to get closed-form solutions tothe
system (22), (23) appears as a hard task given the fact that this
is a system ofN+1 nonlinear difference equations. Switching
to the corresponding differential equations does not improve
the situation. Yet, one can draw conclusions from (22), (23)
regarding general convergence conditions (also referred to as
evolution criteria). Since convergence in expectation necessar-
ily requires

(

y
(g+1)
i

)2 ≤
(

y
(g)
i

)2
, it follows from Eq. (22)

σ(g) ≤ 2µcµ/µ,λai
(

y
(g)
i

)2
/

√

∑N
j=1 a

2
j (y

(g)
j )2. (24)

Normalizing (24) using (3), multiplying withai and finally
taking the sum from1 to N on both sides of the inequality
yields the surprisingly simple convergence criterion

σ∗ ≤ 2µcµ/µ,λ. (25)

For example, Eq. (25) givesσ∗ ≤ 6.39 for µ = 3, λ = 10. As
one can check in Fig. 5, the ES is converging for the given set
of parameters. Parenthetically, it is to be mentioned that (25)
is identical to the evolution criterion of the(µ/µI , λ)-ES on

the sphere model (forN → ∞) as one can easily infer from
(20) demandingϕ∗

sp ≥ 0.
The prediction quality of Eqs. (22), (23) has been inves-

tigated in Fig. 4 where a satisfactory agreement between
theoretical and experimentaly(g)i results has been shown.
After an initial transient phase,y2i curves in Fig. 4 exhibit
a log-linear behavior and have the same slopes3. Looking at
Fig. 2 one also sees that theσ dynamics approaches a log-
linear behavior, however, with a different slope. Using this
observation, a closed form solution of (22) and (23) in termsof
exponential functions for sufficiently largeg comes into mind.
That is, the system might reach a linear systems behavior in
the asymptotic limit (g →∞). Therefore, the followingAnsatz
is used to solve (22), (23) in the steady state

(

y
(g)
i

)2
= bie

−νg, bi > 0, ν > 0 (26)

σ(g) = σ0e
− ν

2 g, σ0 > 0. (27)

This Ansatz takes already the peculiarity of the observed
different slopes ofσ andy2i correctly into account (cf. Fig. 2).
As a consequence, plugging (27) and (26) into the mutation
strength normalization formula (3), one obtains aconstant
normalized mutation strength

σ∗ = σ0Σa/
√

∑N
j=1 a

2
jbj =: σ∗

ss. (28)

This σ∗ is the normalized steady state mutation strengthσ∗
ss

observed in the right side of Fig. 5.
As a next step, the system (22), (23) will be solved for

the steady state using the Ansatz (26), (27). To this end, an
eigenvalue problem will be derived in the next section. Special
cases will be discussed in subsequent sections.

B. Eigenvalue Problem

The Ansatz (26), (27) allows for a direct connection of
the y(g+1)

i and σ(g+1) states to those at(g). For example,
(y

(g+1)
i )2 = bie

−νge−ν = (y
(g)
i )2e−ν . As one can infer from

the y2i slopes in Figs. 2 and 4,ν is rather small.4 Therefore,
the e−ν can be further simplified using Taylor expansion
e−ν = 1− ν +O(ν2). Thus, one obtains for (26) and (27)

(

y
(g+1)
i

)2
=(1− ν) bie−νg +O

(

ν2
)

, (29)

σ(g+1) =
(

1− ν

2

)

σ0e
− ν

2 g +O
(

ν2
)

. (30)

Plugging (29) and (30) into (22) and (23) leads after simplifi-
cation to

νbi = 2σ0cµ/µ,λ
ai

√

N
∑

j=1

a2jbj

bi −
σ2
0

µ
+O

(

ν2
)

, (31)

ν = τ2













2σ0
cµ/µ,λΣa
√

N
∑

j=1

a2jbj

− 2e1,1µ,λ − 1













+O
(

ν2
)

. (32)

3Note, the transition period fory21 is much longer than the transition period
for y2

N/4
, y2

N/2
, andy2N .

4Actually, it decreases with increasingN andν
N→∞

−→ 0.
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Substitutingσ0 in (31) and (32) by means of Eq. (28) results
in a nonlinear system of(N + 1) equations (neglecting higher-
orderν terms)

νbi = 2σ∗
sscµ/µ,λ

ai
Σa

bi −
(σ∗

ss)
2

N
∑

j=1

a2jbj

µ (Σa)
2 , (33)

ν = τ2
(

2σ∗
sscµ/µ,λ − 2e1,1µ,λ − 1

)

, (34)

where ν, bi, and σ∗
ss are unknowns. Rewriting Eq. (33)

in matrix form reveals that this set of equations builds an
eigenvalue problem

A · b = νb, (35)

whereb = (b1, b2, . . . , bN )
T ,

(A)ii = 2σ∗
sscµ/µ,λ

ai
Σa
− (σ∗

ss)
2
a2i

µ (Σa)
2 , (36)

(A)ij = − (σ∗
ss)

2
a2j/

(

µ (Σa)
2
)

, i 6= j, (37)

andσ∗
ss = const is the steady state mutation strength.

Matrix A in (35) hasN eigenvaluesν andN eigenvectors
b of which only the solutions∀i : bi > 0 and ν > 0 are
admissible due to the conditions in the Ansatz (26), (27).
Moreover, it follows from the Ansatz that largerν values lead
to a faster decay of

(

y
(g)
i

)2
and σ(g). That is, for g → ∞

theseν values will have a neglectable impact in comparison
to the smallestν. The second smallestν determines the rate at
which the slowest mode (corresponding to the smallestν) is
reached. Consequently, the reciprocal of the second smallest
ν determines the transient time.

Therefore, the smallest positive eigenvalueν should be
found such that the condition∀i : bi > 0 is satisfied by the
corresponding eigenvectorb. The solution of the eigenvalue
problem (35) for the particular caseai = 1 will be presented
in the next section and thereafter the ellipsoidal case willbe
tackled.

C. Solution of the Eigenvalue Problem for the Sphere Model

Since the approach to the ES dynamics presented in this
paper is new, it will be first applied to the sphere modelai = 1
in order to a) compare with the classical sphere model results
and b) to prepare for the general ellipsoidal case. Equation(33)
yields with ai = 1 for the sphere model

(

2σ∗
ss

cµ/µ,λ

N
− ν
)

bi − (σ∗
ss)

2
N
∑

j=1

bj/
(

µN2
)

= 0. (38)

Since (38) holds for anyi, one can subtract the equation for the
kth component ofb from those of theith component leading
to
(

2σ∗
ss

cµ/µ,λ

N
− ν
)

bi −
(

2σ∗
ss

cµ/µ,λ

N
− ν
)

bk = 0. (39)

It follows from (39) thatbi = bk = b. Note that there exist
other eigenvectors of (35) forai = 1, but since these must
be orthogonal to the eigenvectorb = (b, b, . . . , b)

T
, b > 0,

under consideration, they necessarily have componentsbi < 0
and thus do not satisfy the condition∀i : bi > 0.

With the solutionbi = b, Eq. (38) can be solved for the
eigenvalueν yielding

ν (σ∗
ss) =

2

N

(

cµ/µ,λσ
∗
ss −

(σ∗
ss)

2

2µ

)

. (40)

This eigenvalue (40) is proportional to the normalized progress
rate (20),ν (σ∗

ss) = 2
Nϕ

∗
sp (σ

∗
ss), and connects the dynamic

quantities with the local performance measures. Its maximum
is reached atσ∗

ss = µcµ/µ,λ =: σ∗
opt and is equal to

νmax = ν
(

σ∗
opt

)

= µc2µ/µ,λ/N. (41)

Insertingσ∗
opt and (41) into (34) yields the optimal learning

parameter for the sphere model

τoptsp =

√

√

√

√

µc2µ/µ,λ

2N
(

µc2µ/µ,λ − e
1,1
µ,λ − 1/2

) . (42)

Eq. (42) agrees with the knownτopt formula derived in [19]
for the(µ/µI , λ)-σSA-ES on the sphere model. Therefore, the
solution (40) substantiates the appropriateness of the Ansatz
(26), (27). Actually, Eq. (40) is in fact another expressionof
the sphere model steady state condition [20]

ϕ∗
sp (σ

∗
ss) /N = −ψ (σ∗

ss) . (43)

Indeed, it follows from comparison of Eqs. (34) and (4) that

ν = −2ψ (σ∗
ss) . (44)

Finally, replacingϕ∗
sp, Eq. (20), for the sphere model progress

expression in the rhs of Eq. (40) yields the steady state
condition (43).

D. Solutions of the Eigenvalue Problem for the Ellipsoid
Model

A straightforward approach to the eigenvalue problem (35)
for arbitraryai is to find its solutions numerically. An example
of ν values obtained numerically for the(3/3I , 10)-σSA-ES
is shown in Fig. 6 forN = 40 considering the three models
ai = 1, i, i2.

Interestingly, as for the casesai = i (stars) andai = i2

(circles), the numerically obtained data points grow linearly
with the normalized mutation strengthσ∗ over a wide range
of σ∗ values before they exhibit a sudden sharp drop. This
observation paves the way for an analytical calculation of
ν(σ∗) for sufficiently smallσ∗ values and later on for the
estimation of the optimalτ parameter.

In order to get the linear part of theν(σ∗) function one has
to neglect the quadraticσ∗ terms in (35). Considering (36) and
(37) one finds(A)ii = 2σ∗

sscµ/µ,λai/Σa andAij = 0, ∀i 6= j.
As a result, the problem is diagonalized and one can directly
read off the eigenvaluesνi = 2σ∗

sscµ/µ,λai/Σa. Taking into
account that the steady state dynamics are governed by the
smallest positive eigenvalue, one gets the linear part for that
ν that belongs to the smallestai

νlin(σ
∗
ss) = 2σ∗

sscµ/µ,λ min (ai) /

N
∑

k=1

ak. (45)
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Figure 6: Numerical solutionsν (N = 40) of the eigenvalue
problem (35) multiplied byΣa =

∑N
i=1 ai (points) as a

function of the normalized mutation strength compared with
analytical solutions obtained using Eqs. (40) for the sphere
(parabolic arc,+ numerical data) and (45) (straight ascending
line and⋆ ai = i and◦ ai = i2 for the numerical data.

While (45) offers an approximation for the steady state
mode eigenvalue that agrees well for sufficiently smallσ∗

values (see Fig. 6), the strengthsbi of the differenty2i modes in
Ansatz (26) remain to be determined. To this end, eigenvalue
perturbation technique will be used noting that (35) can be
written in terms of

(A1 +A2)bβ = νβbβ , (46)

where(A1)ij = 0 for any i 6= j and

(A1)ii = 2σ∗
sscµ/µ,λ

ai
Σa

, (A2)ij = −
(σ∗

ss)
2
a2j

µ(Σa)2
. (47)

SinceA1 is diagonal dominating compared toA2, the solution
to the subproblem

A1hβ = γβhβ (48)

can be used for the eigenvalue perturbation. One immediately
obtains for the solution of the eigenvalue problem (48)

γβ = 2σ∗
sscµ/µ,λ

aβ
Σa

= (A1)ββ , (49)

hβ = eβ = (0, . . . , 1, . . . , 0)
T (50)

where eβ is the unit vector with 1 at positionβ. An ap-
proximate solution to (46) can be constructed by adding
perturbationsδβ anddβ to the solution (49), (50), i.e.,

νβ = γβ + δβ , (51)

bβ = hβ + dβ . (52)

Inserting (52) and (51) into (46) yields

A1hβ+A2hβ+A1dβ+A2dβ = γβhβ+δβhβ+γβdβ+δβdβ .
(53)

Taking (48) into account and assuming thatA2dβ and δβdβ

are small compared to the other terms, Eq. (53) simplifies to

A1dβ +A2hβ = γβdβ + δβhβ +O
(

(σ∗
ss)

2
)

. (54)

It follows further from the solutions (49) and (50) that

(A1)ii (dβ)i+(A2)iβ = (A1)ββ (dβ)i+δβδiβ+O
(

(σ∗
ss)

2
)

,

(55)

whereδiβ =

{

1, i = β

0, i 6= β
is Kronecker’s delta. Settingi = β

in Eq. (55) leads toδβ = (A2)ββ+O
(

(σ∗
ss)

2
)

. This equation
yields with Eqs. (51) and (49) the eigenvalue formulaνβ

νβ =(A1)ββ + (A2)ββ +O
(

(σ∗
ss)

2
)

= 2σ∗
sscµ/µ,λ

aβ
Σa
−

(σ∗
ss)

2
a2β

µ(Σa)2
+O

(

(σ∗
ss)

2
)

. (56)

Having obtained an analytical approximation for the eigen-
values, one can calculate the corresponding eigenvectors.As
have been explained, the solution to the smallest eigenvalue
is of interest for the steady state behavior of the ES. The
eigenvectorb = (b1, . . . , bN )T is determined up to a scalar
factor. That is, it suffices to consider thebk/bi ratio depending
on νβ . To this end, Eq. (33) is used in its original form for
bi and in a second form replacingbi by bk. Subtracting both
equations from each other and resolving for thebk/bi ratio
yields

bk
bi

=
2σ∗

sscµ/µ,λai − νβΣa
2σ∗

sscµ/µ,λak − νβΣa
. (57)

Since ∀k : bk > 0, Eq. (57) should be positive for all
k, νβ . This requirement is satisfied only ifνβ is chosen as
small as possible. Asσ∗

ss = const in Eq. (56), the smallest
eigenvalueνβ is determined by the smallestaβ value. That
is, aβ = min (ai) =: ǎ yields the steady state eigenvalue
approximation5

ν (σ∗
ss) =

2

Σa

(

ǎcµ/µ,λσ
∗
ss −

(σ∗
ss)

2
ǎ2

2µΣa

)

. (58)

Inserting Eq. (58) into (57) yields the steady statebk/bi ratio

bk
bi

=
ai − ǎ+ σ∗

ssǎ
2

2µcµ/µ,λΣa

ak − ǎ+ σ∗

ssǎ
2

2µcµ/µ,λΣa

. (59)

Specifying i = 1 and ǎ = 1 in (57), one obtains an
approximation for thebk values of the steady state eigenvector

bk = b1

σ∗

ssa
2
1

2µcµ/µ,λΣa

ak − a1
(

1− σ∗

ssa1

2µcµ/µ,λΣa

) . (60)

Using (58) and (60), the (smallσ∗) approximation for the
example caseai = i (ǎ = 1) reads

ν (σ∗
ss) =

4

N (N + 1)

(

cµ/µ,λσ
∗
ss −

(σ∗
ss)

2

µN (N + 1)

)

, (61)

bk = b1
σ∗
ss

σ∗
ss + µcµ/µ,λ (ak − 1)N (N + 1)

. (62)

5Note that the term with negative sign in (58) cannot be neglected, otherwise
the numerator of Eq. (57) would be equal to zero for the casek : ak = ǎ.
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As the length of the eigenvectorb can be chosen arbitrarily,
Eq. (62) completely describesb. For ai = i2, one obtains

ν (σ∗
ss) =

12
(

cµ/µ,λσ
∗
ss − 3(σ∗

ss)
2

µN(N+1)(2N+1)

)

N (N + 1) (2N + 1)
, (63)

bk = b1
3σ∗

ss

3σ∗
ss + µcµ/µ,λ (ak − 1)N (N + 1) (2N + 1)

. (64)

Equations (61) and (63) can be further simplified by neglecting
the (σ∗

ss)
2 term assuming thatσ∗

ss is sufficiently small. This
linear approximation has already been obtained in Eq. (45).It
reads for the two casesai = i andai = i2

ai = i : νlin (σ
∗
ss) = 4σ∗

ss

cµ/µ,λ

N (N + 1)
(65)

ai = i2 : νlin (σ
∗
ss) = 12σ∗

ss

cµ/µ,λ

N (N + 1) (2N + 1)
. (66)

To check the correctness of the analytic solutions of the eigen-
value problem (35), its numerical solution for the(3/3I , 10)-
σSA-ES is compared with the results of Eqs. (40) and (58)
in the next section.

E. Experiments and Discussion

Figure 6 presents the comparison of the numerical and an-
alytical solutions of the eigenvalue problem (35) for different
normalized mutation strengthσ∗

ss values. As expected, the
exact solution (40) for the sphere model (parabolic arc in
Fig. 6)6 coincides with the numerically calculated solutions
(crosses) for allσ∗

ss considered.
The generalν approximation (58) yields predictions (ai =

i: “⋆” and ai = i2: “◦” in Fig. 6) which coincide with the
predictions of the linear approximations (65) and (66). These
predictions describe the real behavior of the ES quite well as
long as the mutation strength is not too large. Ifσ∗

ss gets larger,
one observes a sharp drop of the realν values andν finally
changes its sign atσ∗

ss ≈ 6.4. That is, the(3/3I , 10)-σSA-ES
does not converge anymore. This is in full accordance with
the evolution criterion (25).

Analogously toν, the correctness of the eigenvectors for-
mula (60) is checked in Fig. 7 by comparison with the
numerical solution of (35) for the(3/3I , 10)-σSA-ES (b1 = 1,
ai = i). In Fig. 7 (N = 40), theoretical curves forb2, bN/2,
bN are close to the numerically obtained points (stars, circles,
and diamonds) for sufficiently smallσ∗

ss < 2, while the trivial
caseb1 = 1 (crosses) coincides with the numerical solution
up to σ∗

ss = 6. For theσ∗
ss > 6.4 region, where there is no

convergence andν < 0, the behavior of numerical solutions
qualitatively changes for allbi. The same behavior can be ob-
served forN = 400 (not displayed due to space restrictions).
The question is whether these deviations are relevant for the
real (µ/µI , λ)-σSA-ES. To answer this question, the actual
steady stateσ∗

ss realized by the ES must be calculated.

6Note that Eq. (58) describes the behavior of the sphere model for small
σ∗

ss values only.

0 1 2 3 4 5 6 7
−25

−20

−15

−10

−5

0

σ*
ss

ln
(b

i)

N = 40

 

 

b1
b2
bN/2

bN

Figure 7: Numericalbi solutions (points) as a function ofσ∗
ss

compared with analytical solutions Eq. (60) (solid curves)for
N = 40: + b1, ⋆ b2, ◦ bN/2 and♦ bN (b1 = 1, ai = i).

To this end, the linear approximation (45) withǎ = min(ai)
is inserted into (34). After rearrangement one obtains

σ∗
ss =

1/2 + e1,1µ,λ

cµ/µ,λ
· 1

1− ǎ/ (τ2Σa) . (67)

Taking experimental settingsai = i2 andτ = 1/
√
N , used to

produce Fig. 4, one obtains

σ∗
ss|ai=i ≈

1/2 + e1,1µ,λ

cµ/µ,λ
. (68)

Analogously, Eq. (67) leads forai = i to (68) under assump-
tion thatN → ∞. For the(3/3I , 10)-σSA-ES considered in
Fig. 7, σ∗

ss = 0.95. bi values calculated using Eq. (60) for
σ∗
ss = 0.95 agree comparatively well with the numerical solu-

tions of (35) in Fig. 7. Therefore, Eq. (60) can be compared
with the (µ/µI , λ)-σSA-ES experimental runs.

In order to obtain the experimental eigenvector components
bi, the (3/3I , 10)-σSA-ES with the same settings as in Fig. 4
has been run for105 generations forN = 40 and 109

generations forN = 400. The y2i values of the last 25% of
generations have been averaged over105 independent runs.
After that, a linear polynomialln y2i = −νg + ln bi has
been fitted to the experimentaly2i data yieldingbi which are
compared in Fig. 8 with the predictions of Eq. (60) forai = i2

(σ∗
ss is given by Eq. (68)).
The experimental points in Fig. 8 (ai = i2) are located in

the vicinity of the theoretical curves depicting the results of
Eq. (60) both forN = 40 (“+”) and N = 400 (“◦”). The
same observation is valid forai = i (not shown due to space
restrictions).

The analytic solution of the eigenvalue problem (35) for
ν – the eigenvalue formula (58) – should be verified exper-
imentally as well. To this end, the(3/3I , 10)-σSA-ES with
the same settings as used in Fig. 8 has been run for fixedσ∗

ss

(σ∗
ss has been renormalized toσ(g) in each generation). The

gathered data points have been used to obtainN experimental
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Figure 8: Experimentalbi values (points) for the(3/3I , 10)-
σSA-ES (points) compared with analytical solution Eq. (60)
(curves) forai = i2: + N = 40, ◦ N = 400.

ν values – one for eachy2i curve. Theν values corresponding
to
(

y
(g)
1

)2
are plotted in Fig. 9 because the deviations ofν for

othery2i from the data shown in Fig. 9 are small. For example,
the maximal deviation forai = i andN = 40 is 2%.

In Fig. 9a, the experimentalν values (points) are compared
with the outcome of Eq. (58) (solid lines) forN = 40. The
theoretical predictions match the experimental points forsmall
values ofσ∗

ss < 4 for ai = 1 (black crosses) andσ∗
ss < 3

for ai = i, i2 (“⋆” and “◦”, respectively). The reason is
that Eq. (58) is the solution of the eigenvalue problem (35)
based on the system of equations (22). Equation (22) contains
the asymptotically exact quadratic progress rate formula (18)
which is an approximation forN < ∞. The quality of
(18) decreases with increasingσ∗. Since the quality of (18)
increases for largerN , the experimental points in Fig. 9b
(N = 400) match the theoretical curves forσ∗

ss < 6 for ai = 1
andσ∗

ss < 5 for ai = i, i2. Thus, the analytical solution (58)
is increasingly correct in the limitN →∞.

For comparison, Fig. 9 includes the numerical solutions
ν (dashed curves) which move forN = 400 closer to the
solid lines. They show that the errors due to assumptions
in the derivation of Eq. (58) diminish forN → ∞. Still,
Eq. (58) reproduces the linear part of the numericalν curve
only. Consequently, it can not yield a formula for the optimal
σ∗
ss value which is required to obtain an analytical expression

for the optimal learning parameterτopt.
To illustrate this problem, real(3/3I , 10)-σSA-ES runs with

differentτ values have been performed for106 generations and
N = 40, 400 in order to obtain an experimentalν = f (τ) data
set. This set is compared with the analytical solution (58) in
Fig. 10.

The solid curves represent the analytical solution (58).
These curves forN = 40, 400 coincide due to the normal-
ization of the abscissa. They reproduce the behavior of the
experimental points forτ > 1.5/N well. For smallerτ values,
the (58) curves go to infinity. That is, there is not an optimum
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Figure 9: Experimentalν values (points) for the(3/3I , 10)-
σSA-ES compared with analytical solution (58) (solid lines)
for fixedσ∗

ss: + ai = 1, ⋆ ai = i and◦ ai = i2. Dashed curves
depict numerical solutions of the eigenvalue problem (35).

point which could be used to determine theν maximum. Note
that the numericalν solutions of the eigenvalue problem (35)
(depicted by the dashed curves which also coincide due to
the normalization) have a maximum and decrease to zero for
τ → 0 showing that Eq. (35) correctly represents the behavior
of the (µ/µI , λ)-σSA-ES on the ellipsoid model. To bracket
the τ optimum analytically, an alternative method will be
developed in the next section.

IV. OPTIMAL LEARNING PARAMETER

Looking at the µ = 1 and µ = 3 curves in Fig. 3,
one observes that theσ∗ value leading to the maximal
quadratic progress rate grows withµ. However, Eq. (68) yields
σ∗|ai=i ≈ 1 for τ = 1/

√
N in the limitN →∞. While it has

been shown that the choice ofτ = 1/
√
2N is asymptotically

optimal for the sphere model [19], usingτ ∝ 1/
√
N can

seriously hinder the(µ/µI , λ)-σSA-ES performance on non-
spherical problems. Furthermore, as Fig. 10 suggests, the
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Figure 10: Experimentalν values (points) for the(3/3I , 10)-
σSA-ES (ai = i) as a function ofτN compared with the
analytical solution (58) (solid lines) for+ N = 40 and
◦ N = 400. Dashed curves depict numerical solutions of
the eigenvalue problem (35).
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Figure 11: Numerical (points) and analytical (solid curves)
solutionsν for the (3/3I , 10)-σSA-ES as a function ofσ∗

ss

(N = 10): + ai = 1 and⋆ ai = i.

maximal ν can sensitively depend on the learning parameter
τ .

Choosing τ correctly leads to the highest possible con-
vergence rate, i.e., the negative slope of the progress rate
determined byν in the exponent of Eq. (26) is maximized
for the optimalτopt. As shown in Fig. 11, Eq. (58) correctly
predicts the linear region ofν only and can not be used
to determine the maximizer̂σ∗ : ν

(

σ̂∗) = max (ν (σ∗))
(indicated by the arrowmax (ν) in Fig. 11) in the general
case of arbitraryai.

As a workaround, an upper bound heuristic estimateσ̂∗
est >

σ̂∗ is calculated in the following by looking at the intersection
of the sphere model curve (black curve in Fig. 11) with
ellipsoid model line (indicated by the arrowσ∗

est in Fig. 11).
This approach is justified by the observation that theν(σ∗)
curves of non-spherical models are below that of the sphere

model (40). Actually, according to (40) the slope of the sphere
modelν is 2cµ/µ,λ/N at σ∗ = 0 (recall ai = 1) while that of
the ellipsoid model is given by (45)2cµ/µ,λ/Σa. Therefore,
considering the casesai = i, i2, it always holds1/N > ǎ/Σa
for N > 1. That is, the realν curve must be below of
that of the linear approximation (45). Furthermore, according
to (25) all ν curves (including the sphere model case) must
pass the horizontal axis atσ∗ = 2µcµ/µ,λ. Looking again at
Fig. 11, it becomes clear that the intersection of the linearν
curve with that of the sphere model (black curve) yields an
estimateσ̂∗

est for the optimalσ∗. Actually, since the linear
slope of the non-spherical model drops faster than that of
the sphere model for increasingN , this estimate improves
with increasingN . Numerical investigations considering the
relative error|ν(σ̂∗) − ν(σ∗

est)|/ν(σ̂∗) using (72) as estimate
also confirm this statement (not shown here).

A. Approximateτopt Formulae

In this section,̂σ∗
est is calculated. First, Eq. (45) is equated

to the ν formula of the sphere model (40) to calculate the
intersection point

σ̂∗
est = 2cµ/µ,λµ (1−Nǎ/Σa) . (69)

Sinceσ̂∗
est is an upper bound approximation ofσ̂∗, they differ

from each other by an unknown positive value(σ̂∗
est − σ̂∗).

To account for this difference, a coefficient0 < ασ < 1 is
introduced such that

σ̂∗ = ασσ̂
∗
est (70)

and (σ̂∗
est − σ̂∗) = (1− ασ) σ̂

∗
est. With (70), Eq. (69) trans-

forms into an exact formula fornon-sphericalmodels (keeping
in mind thatασ is close to1)

σ̂∗ = 2ασcµ/µ,λµ (1−Nǎ/Σa) . (71)

One obtains the correspondingν value by inserting (71) into
(45) (note,min(ai) = ǎ)

ν (σ̂∗) =
4ασc

2
µ/µ,λµǎ

Σa

(

1− Nǎ

Σa

)

. (72)

Finally, inserting Eqs. (71) and (72) into (34) yields

τopt =

√

√

√

√

ǎ

Σa
· 1

1− 1+2e1,1µ,λ

4ασc2µ/µ,λ
µ(1−Nǎ/Σa)

. (73)

To apply Eq. (73),ασ must be chosen. Having a look
at Fig. 11, ασ = 1 seems to be a reasonable choice. It
can be additionally verified by comparison with a known
τopt formula for the special PDQF model [10] (ǎ = 1 and
Σa = N (ϑ (ξ − 1) + 1)). In the limit N → ∞, ξ ≫ 1 and
largeµ, Eq. (73) simplifies to

τopt|PDQF ≃
1√
N

1
√

ϑ (ξ − 1)
(74)

which matches theτopt formula obtained in [10].
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Figure 12: Optimal learning parameterτopt of the(µ/µI , 3µ)-
σSA-ES forai = i as a function of the number of parentsµ.
Curves depict the theoretical predictions of Eq. (73), while
points represent experimental results for+ N = 40 and
◦ N = 400.

As for the ellipsoid examples considered, the approximate
τopt formula (ασ = 1, N →∞, µ→∞) reads forai = i

τopt|ai=i ≃
√
2/N (75)

and forai = i2

τopt|ai=i2 ≃
√

3/N3. (76)

Note, the learning parameter formulae (75) and (76) deviate
from the known sphere model resultτopt|sp ≃

√

1/2N .

B. Experiments and Discussion

In order to evaluate the prediction quality of (73), real
(µ/µI , 10)-σSA-ES runs have been performed over periods
of Gmax generations using differentτ values. TheF

(

y(g)
)

values for generationsg = Gmax/2 to g = Gmax have been
recorded in order to empirically estimate the normalized local
quality gain [9, p.132] using

Q
∗
y
≈ − Σa

Gmax/2

Gmax
∑

g=Gmax/2

F
(

y(g)
)

− F
(

y(g−1)
)

2
∑N

i=1 a
2
i

(

y
(g−1)
i

)2 . (77)

The obtainedQ
∗
y

data have been averaged over 30 independent
runs. These runs have been performed for a set of equidistantly
chosenτ values. Theτ value producing the maximumQ

∗
y

has
been considered optimal.

The τopt dependency on the population sizeλ is compared
with experiments on theai = i ellipsoid in Fig. 12, where the
(µ/µI , λ)-σSA-ES used a truncation ratio of1/3, i.e.λ = 3µ.
Theoretical curves obtained using Eq. (73) are located close
to each other and follow the same rule: A relatively large
τopt value for smallµ decreases down toτopt ≈ 1.4/N and
approaches a constant value forµ > 10. As expected, the
empirically determined values of theN = 400 case (circles)
are closer to the theoretical curves than theN = 40 points
(crosses).

According to Fig. 12, the(µ/µI , λ)-σSA-ES is insensitive
to the choice of the population size parameter for sufficiently
largeµ ≥ 10. This property is useful for global optimization
of objective functions with multiple local optima: To increase
the chance of global convergence on such functions, ES-
restarts in conjunction with population size increase are often
employed [6]. Only a weakτopt dependency on the population
size allows for the usage of a fixedτopt when increasing
the population size. Moreover, the corresponding steady state
mutation strength (71) increases in proportion toµ. This also
helps in global search. However, unlike the population size
parameter, according to Eq. (73) the local landscape of the
objective function has strong influence on theτopt value. This
also holds for the often used test functions Cigar:Fc(y) :=
y21 + ξ

∑N
i=2 y

2
i and Hansen’s ellipsoid:FH(y) :=

∑N
i=1 aiy

2
i

with ai := 10α
i−1
N−1 [15], [14]. However, in these cases the

N -scaling behavior is similar to the Sphere. Using (73) and
Σa = 1+(N−1)ξ, one easily finds the asymptotic expression
τopt|Cigar ≃ 1√

Nξ
. For FH a somewhat longer calculation7

yields τopt|H ≃
√

α ln 10
10αN .

V. SUMMARY AND CONCLUSIONS

The behavior of the self-adaptation evolution strategy with
intermediate multirecombination, the(µ/µI , λ)-σSA-ES, on
the ellipsoid model (1) has been investigated using the dynam-
ical systems approach. To this end, a novel progress quantity
measuring the expected quadratic progress of single parent
vector components – the quadratic progress rateϕII

i – has been
introduced in this paper. The derivation of the asymptotically
exactϕII

i formula (16) has been sketched. Being based onϕII
i

and the self-adaptation response functionψ (4), a system of
N+1 nonlinear evolution equations (22), (23) has been derived
that governs the mean value dynamics of the(µ/µI , λ)-
σSA-ES. Due to the nonlinearity of the system (22), (23),
closed-form solutions of the dynamics do not exist. However,
considering the steady state that is reached in the asymptotic
generation limitg → ∞, the system can be solved using a
special Ansatz. Having used the Ansatz (26), the steady state
problem turned into the eigenvalue problem (35). While such
eigenvalue problems can be solved numerically, the primary
goal of the paper was to provide closed form expressions for
the smallest eigenvalue and the corresponding eigenvector. An
approximate solution has been found that describes the steady
state behavior of the ES well. In turn, this solution allowed
the determination of the optimal learning parameterτ in terms
of a closed form expression (73).

The steady state mean value dynamics derived rest on a
set of approximations. These (a) neglectσ∗ fluctuations and
(b) express the progress rates and self-adaptation response
function by asymptotically exact expressions the quality of
which improves for largerN and smallerσ∗ provided that
the mutation induced fitness is normally distributed. This is
guaranteed through the Central Limit Theorem of Statistics
which in turn requires Lyapunov’s condition to be fulfilled.
This basically means that there is no dominating component

7Here we have usedΣa =
∑N

i=1 ai =
10αN/(N−1)

−1

10α/(N−1)
−1

≃ 10αN
ln(10α)

.
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in the sum of random variates contributing to the fitness
fluctuations. In order to ensure non-dominating contributions,
ai/Σa (∀i = 1, . . . , N) should be small and vanish asymp-
totically asN → ∞. For the examples considered in detail:
Sphere,ai = i, ai = i2 as well as for well-known models like
Cigar, Discus, and Hansen’s ellipsoid this is fulfilled. Yet, one
can construct ellipsoids, e.g. a discus where the dominating
eigenvalue scales with the search space dimensionalityN , e.g.,
max(ai) = N2. In that case one never reaches normality and
the formulae derived remain approximations even forN →∞.

The steady state dynamics are governed by exponentially
decreasingyi components given by (26) where the inverse
time constantν is determined by (45). Having a closer look at
(45) and the corresponding fitness model (1), it becomes clear
that the result does also hold for the general fitness model
F (y) = yTQy with Q as positive definite matrix (minimiza-
tion considered). The parameterǎ = min(ai) is simply the
smallest eigenvalueκ of the corresponding eigenvalue problem
Qu = κu. Since the sum of the eigenvalues ofQ is the trace
of Q, Σa = Tr[Q], (45) can be expressed in terms of

ν = 2σ∗cµ/µ,λ min(κi)/Tr[Q]. (78)

The steady state fitness dynamics can be determined using
(1) and (26) starting from generationg0 for an evolution
interval g

F
(

y(g0+g)
)

=
∑N

i=1 aibie
−ν(g0+g) = F

(

y(g0)
)

e−νg. (79)

That is, the objective function drops exponentially fast with
time constant1/ν. Equation (79) can be used to estimate
the expected running timeG needed to improve the result
by a factor of2−β . ConsideringF

(

y(g0+G)
)

/F
(

y(g0)
)

, one
immediately obtains from (79)e−νG = 2−β . Resolving forG,
one getsG = β ln(2)/ν and with (45)

G =
β ln(2)

2σ∗
sscµ/µ,λ

·
∑N

i=1 ai
min(ai)

. (80)

That is,G is asymptotically proportional to the quotient of the
trace ofQ and its smallest eigenvaluěκ: G ∝ Tr[Q]/min(κi).
Using (71), the minimal expected running time becomes

Ǧ =
β ln(2)

4ασµc2µ/µ,λ
·
∑N

i=1 ai
min(ai)

· 1

1−Nǎ/∑N
i=1 ai

(81)

for non-spherical ellipsoid models provided that the optimal
learning parameterτ , Eq. (73), is used.

Considering (80), one finds that the expected running time
increases with orderN2 for the ellipsoid modelai = i,
with N3 for ai = i2, and with N for the Cigar and
Hansen’s ellipsoid. The latter results might come as a surprise:
From viewpoint of asymptotic runtime complexity, Cigar and
Hansen’s ellipsoid yield the same complexity as the Sphere
model, i.e.O(N) (w.r.t. function evaluations). However, un-
like the Sphere, these two ellipsoid models have usually
large factors,ξ and 10α/ ln(10α), respectively, obscured by
the order notation. Since the runtime predictions made by
(80) might be somewhat astonishing, experiments have been
conducted to check its validity for real ES runs. Figure 13
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Figure 13: Expected runtime experiments for the ellipsoid
modelsai = i, i2, and Hansen withα = 5. The predictions
of (80) are displayed by curves.

shows theN scaling behavior of the(3/3I , 10)-σSA-ES,
τ = 1/

√
N , on the ellipsoidsai = i, i2, and Hansen’s with

α = 5 for β = 2. There is a good agreement between
theory and experiments. While Hansen’s ellipsoid requires the
largest number of generations for the smallN cases (even
for the condition number10α, α = 5, considered here), for
sufficiently largeN the ellipsoids withai = i andi2 are harder
to optimize for theσSA-ES.

The runtime results are also in agreement with findings of
Jägersküpper [17] for the(1+1)-ES with1/5-rule. While his
approach provided a rigorous proof of runtime bounds, the
analysis presented here yields results for multirecombinant ES
including the quantitative influence of the strategy parameters
such as the learning parameterτ and the truncation ratioµ/λ.

Comparing Eqs. (80) and (81), one can assess the influence
of the choice ofτ on the expected running time. The learning
parameter controls the steady stateσ∗, Eq. (67). Usingτopt,
Eq. (73), one can gain approximately a factor ofµ compared
to the choiceτ = const. Note, even the standard recommen-
dationτ ∝ 1/

√
N , that is optimal for the sphere model, does

not provide a runtime reduction. For example, considering the
ellipsoids withai = i and i2, τ must be chosen according to
Eqs. (65) and (66), respectively. This reveals a dilemma for
real world applications: Since the local structure of the real
fitness landscape is not known, there is a priori no way to fix
τ for optimal ES performance. Therefore, any choice ofτ will
be a compromise.

Having learned that the(µ/µI , λ)-σSA-ES performs sub-
optimally, the question arises how alternativeσ control tech-
niques do behave. There the cumulative step-size adaptation
(CSA) of the CMA-ES [15] comes into mind. Its analysis on
the ellipsoid model is still pending. Another alternative would
be Meta-ES where theoretical treatment has just begun for
simple fitness models [4], [11].

The analysis presented can be regarded as a first step
towards the analysis of ES with covariance matrix adaptation,
especially for the CMSA-ES. While the covariance matrix
learning has not been analyzed so far, the current work
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provides the modeling approach for the general step-size
adaptation: Any standard covariance matrix adaptation ES can
be regarded as an ES operating with isotropic mutations on a
composite function comprising a linear transformation (con-
trolled by the evolving covariance matrix) and the objective
function. That is, if the objective function is a quadratic form,
the ES simply “sees” another, but also quadratic form. That
is why, the approach presented can also be applied to such
cases.
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APPENDIX

DERIVATION OF THE QUADRATIC PROGRESSRATE ϕII
i

In this section, the product moments in Eq. (15),E1 andE2,
are calculated. For sake of simplicity, the coordinate index i
labeling theith component of the mutation vectorx (note, only
i andj are used to mark vector components in this appendix)
and the corresponding progress rateϕII is omitted as long
as there is no danger of a mix-up. That is,xk;λ refers to the
ith component of the mutation vectorx producing thekth
best offspringỹk;λ = y+xk;λ = y+ σ̃k;λzk;λ. The offspring
are ranked according to the offspring objective function values
F̃ (ỹ) andz ∼N (0, I) (cf. Fig. 1, Line 7). Since theN →∞
case is considered, it holds̃yk;λ = y + σzk;λ. Thus,E1 and
E2 in (14) can be expressed in terms of

E1 = σ2E

[

µ
∑

l=2

l−1
∑

k=1

zk;λzl;λ|y
]

, (82)

E2 = σ2E

[

µ
∑

m=1

(zm;λ)
2|y
]

. (83)

In order to calculateE1 and E2, the zk;λ noisy order
statistics must be considered for each component of thezk;λ
vector. In a first step,zi must be related to the local quality
changeQy(x) = F (ỹ)− F (y) of the mutationx.

A. Local Quality Change

Using (1), the quality change of the offspring individual
reads

Qy(x) =
N
∑

j=1

aj(yj + σzj)
2 − Σay2j

= 2σaiyizi + 2σ

N
∑

j 6=i

ajyjzj + σ2
N
∑

j=1

ajz
2
j , (84)

where in the 2nd line terms are rearranged in such a manner
that theith component(zi) of the z vector is separated from
the rest. Dividing both sides by2σaiyi already isolates thezi
variate. Introducingvi for the quotient

Qy(x)

2σaiyi
=: vi, (85)

one obtains

vi = zi +

N
∑

j 6=i

ajyj
aiyi

zj +
σ

2

N
∑

j=1

aj
aiyi

z2j . (86)

This is a sum of anN (0, 1) standard normal variatezi and two
additional sums havingN − 1 andN addends, respectively.
The latter is non-centrallyχ2 distributed. Since the caseN →
∞ is considered, the central limit theorem can be applied and
the two sums can be approximated by a normal distribution.
The parameters of that distribution can be easily obtained.One
immediately reads from (86) that the expected value is given
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by σ(
∑N

j=1 aj)/2aiyi. Due to the stochastic independence
of the mutation components, the variance can be calculated
as the sum of the variances of the individualz components.
Using the simple formula8 Var[Az + Bz2] = A2 + 2B2 (for
z ∼ N (0, 1)), one obtains for the variance of the two sum
expressions in (86)

ϑ2i =
1

a2i y
2
i





N
∑

j 6=i

a2jy
2
j +

σ2

2

N
∑

j=1

a2j



 . (87)

As a result, (86) can be expressed as

vi ∼ zi +N





σΣa

2aiyi
,

1

a2i y
2
i





N
∑

j 6=i

a2jy
2
j +

σ2

2

N
∑

j=1

a2j







 (88)

Let us consider the distribution ofzk;λ (note, the indexi has
been dropped here) belonging to thekth bestQ value, i.e.vk;λ.
The variateszk;λ are noisy order statistics (also referred to as
concomitants ofvk;λ) due to theN term in (88). Calculating
sums of product moments of these statistics, such as (82) and
(83), is a technically involved task. However, that has already
been solved in [2] for the general caseE[SA], where

SA :=
∑

· · ·
∑

zα1

n1;λ
. . . zαν

nν ;λ
(89)

is a ν-fold sum andA = (α1, . . . , αν) is the vector of
exponentsαn. Under the condition thatz ∼ N (0, 1), it has
been proven in [2] that

E [SA] =
µ!

(µ− ν)!
ν
∑

n=0

∑

k≥0

[

ζ
(A)
n,0 (k) +

γ1
6
ζ
(A)
n,1 (k)

+
γ2
24
ζ
(A)
n,2 (k) + . . .

]

hν−n,k
µ,λ . (90)

Hereγ1 andγ2 are the coefficients of skewness and kurtosis
of the noise. Theζ(A)

n,l (k) are special polynomials of the
correlation coefficient9

ρ = 1/
√

1 + ϑ2 (91)

derived in [2]. Theh coefficients are defined as

hm,k
µ,λ := (λ− µ)

(

λ

µ

)
ˆ ∞

−∞
Hek (x) [φ (x)]

m+1

× [Φ (x)]
λ−µ−1

[1− Φ(x)]
µ−m

dx, (92)

whereHek (x) is the kth Hermite polynomial andφ(x) and
Φ(x) are the pdf and cdf, respectively, of the standard normal
distribution.

In the following,E1 andE2 will be calculated using (90).
Since the noise is approximated by a normal distribution in
(88), the coefficients of skewness and kurtosis,γ1 and γ2,
are zero in (90). That is, only theζ(A)

n,0 (k) functions must be
considered in the next sections.

8Note that forz ∼ N (0, 1), it holds E[z] = 0, E[z2] = 1, E[z3] = 0,
andE[z4] = 3.

9Recall thatρ[v, z] = Cov[v, z]/
√

Var[v]Var[z].

B. ExpectationE1

Comparing the double sum in (82) with (89), one sees that
ν = 2, A = (α1, α2) = (1, 1) and thus,

E1 = σ2E
[

S(1,1)

]

. (93)

Applying (90), one gets

E
[

S(1,1)

]

=
µ!

(µ− 2)!

2
∑

n=0

∑

k≥0

ζ
(1,1)
n,0 (k)h2−n,k

µ,λ

= µ(µ− 1)
ρ2

2
h2,0µ,λ, (94)

because, according to Table 1 in [2], allζ(1,1)n,0 (k) are identi-

cally zero exceptζ(1,1)0,0 (0) = ρ2/2 and γ1 = γ2 = 0. Taking
He0 (x) = 1 into account and the pdfφ(x) = e−

1
2x

2

/
√
2π

of the standard normal variate, a comparison of (92) with (5)
reveals thath2,0µ,λ = e2,0µ,λ. Taking (91) into account, one obtains
E1 = µ(µ − 1)σ2ρ2e2,0µ,λ/2. As a final step,ρ2 for the ith
coordinate is calculated using (87) and (91). This yields

ρ2 =
a2i y

2
i

a2i y
2
i +

N
∑

j 6=i

a2jy
2
j +

σ2

2

N
∑

j=1

a2j

=
a2i y

2
i

N
∑

j=1

a2j
(

y2j +
σ2

2

)

(95)

and finally

E1 = µ (µ− 1)
σ2

2

a2i y
2
i e

2,0
µ,λ

N
∑

j=1

a2j
(

y2j +
σ2

2

)

(96)

C. ExpectationE2

The sum in theE2 formula (83) can be expressed using
(89) by ν = 1 andA = (α1) = (2)

E2 = σ2E
[

S(2)

]

. (97)

Applying (90), one obtains by means of Table 1 in [2]

E
[

S(2)

]

=
µ!

(µ− 1)!

1
∑

n=0

∑

k≥0

ζ
(2)
n,0(k)h

1−n,k
µ,λ

= µ





∑

k≥0

ζ
(2)
0,0(k)h

1,k
µ,λ +

∑

k≥0

ζ
(2)
1,0(k)h

0,k
µ,λ





= µ
(

ρ2h1,1µ,λ + h0,0µ,λ

)

(98)

since all ζ(2)n,0(k) = 0 exceptζ(2)0,0(1) = ρ2 and ζ(2)1,0(0) = 1.
Noting thatHe1(x) = x, one easily finds using (92) and (5)
that h1,1µ,λ = e1,1µ,λ. Furthermore,h0,0µ,λ = 1, thus one obtains

E2 = µσ2
(

1 + ρ2e1,1µ,λ

)

. (99)

Finally plugging (95) into (99), one gets

E2 = µσ2











1 +
a2i y

2
i e

1,1
µ,λ

N
∑

j=1

a2j
(

y2j +
σ2

2

)











. (100)


