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Abstract—The optimization behavior of the self-adaptation direct search methods [14], their theoretical analysistils s
(SA) evolution strategy (ES) with intermediate multi- jn jts infancy. A full analysis that considers the real CMA-
recombination (the (/pur, A)-oSA-ES) using isotropic mutations - £g 15] or the CMSA-ES [12] requires the analysis of the
Is investigated on convex-quadratic functions (referred to as covariance learningndthe mutation strength adaptation. This
ellipsoid model). An asymptotically exact quadratic progress . 9 . g p N
rate formula is derived. This is used to model the dynamical Paper provides the solution for the second problem in the cas
ES system by a set of difference equations. The solu_tionsof the self-adaptive mutation control as used in CMSA-ES. A
of this system are used to analytically calculate the optimal similar analysis concerning the cumulative step-size tadiam
learning parameter 7. The theoretical results are compared and 14 solve the respective problem for the CMA-ES. Besides
validated by comparison with real (u/jur, A)-0SA-ES runs on being a step towards the analysis of CMA-like strategies
two ellipsoid test model cases. The theoretical results clearly 9 X p ° y i gies,
indicate that using a model-independent learning parameterr ~ the analysis to be presented finalizes the chapter of theoret
leads to suboptimal performance of the(u/su1,A)-0SA-ES on ical analyses regarding the dynamical systems approach on
objective functions with changing local condition numbers as quadratic fitness functions started in the 1990s. Furthegmo
;)ftedn encountered in practical problems with complex fitness o analysis approach extends the standard analysis meghod
ancscapes. utilizing quadratic progress rate measures.

Index Terms—Evolution strategy, ellipsoid model, progress The paper is organized as follows. First, the/ 17, \)-0SA-
rate, self-adaptation ES algorithm, the ellipsoid model and previous results @ th
topic are presented in the remaining parts of the introdacti
The quadratic progress rate is introduced and derived in
] ) ) Section II. This new progress measure is the basis for the

Theoretical analyses of Evolution Strategies have a longgnamical systems approach in this paper. In Section Ill, a
standing tradition starting with Rechenberg's early wook€ system of discrete nonlinear difference equations is ddriv
cerning the(1 + 1)-ES on the sphere model published iyng solved for the steady-state limit. The obtained sabstiare
more complex ES algorithms such @s A)- and 1/, A)-ES  these resuilts, in Section IV the problem regarding the caitim
have been analyzed, the treatment of the complete algorit@fpice of the learning parameter is tackled yielding an
including o mutation strength control started with the turn ofpnroximate learning parameter formula. The paper coeslud

the century [9]. It was continued by different authors sucith a discussion of the results and their implications fdufe
as Arnold [1], Auger [5], and Jagerskipper [16]. Considgringgrk.

test functions beyond the sphere model was the next step. In
[17], Jagerskiipper considered the+ 1)-ES with 1/5-rule A. ES Algorithm
on a subset _of positive_ definite quadratic forms (PDQFs). _TheThe (1)1, \)-0SA-ES algorithm investigated in this work
complementing analysis of thig:/ .1, A)-ES has been done inig hresented in Fig. 1. The parental mutation strendfh and
[10]. Furthermore, the Cigar as a special PDQF [3] and ridgge parental parameter vector, parental centroidy(©), are
functions [21], [19] have been analyzed so far. Howeveikenl jnisiajized in Lines 1 and 2 offspring individuals are gen-
the acronym PDQF suggests, the general PDQF case hasdigleq from Line 5 to Line 11 in the following way. For each
been treated so far. Since the level set of this general C¥Hpring, the mutation o) is performed in Line 6 using
defines an ellipsoid in théV-dimensional space, we refer Othe log-normal operatmTM(0=1) where); (0, 1) is a standard
this kind of test function ageneral ellipsoid model normally distributed random scalar. The learning paramete
The analysis of the dynamics of th@./us,A)-ES on in the |og-normal operator controls the self-adaptatida.ri
ellipsoid models may be regarded as a milestone on the way {ie 7, an isotropic mutation direction is generated by nsean
a full analysis of covariance matrix adaptation ES (CMA-ES)¢ 5 random vectotV; (0,T) the components of which are
While these strategies are currently among the best-peirigrmgiandard normal variates. This direction vector is scalit w

the individual's mutation strength; in Line 8 forming the
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15 geg+1 Flgur_e 2: Dyr_1am|cs of theu /s, X\)-0SA-ES on a flt_ne?ss
16 until termination criterion fulfilled function (1) witha; = ¢ and N = 40. The quadratic deviation
of y; from the optimizer is displayed for the components
Figure 1: The algorithm of thé/ur, \)-oSA-ES i = 1,2,3,10,40. Additionally, the mutation strength has

been plotted. ES parameters are= 3, A\ = 10, 7 = 1/v/N.
Note, the graphs are averages over 1000 independent runs.
spring mutation strengths and parameter vectors is peefrm
in Lines 13 and 14 to obtain a new parental mutation strength
ot and a new parental vectgrl9t!). The subscriptn; A this analysis is to provide formulae that are able to prettiist
refers to themth best of A offspring (i.e., the offspring with behavior quantitatively. The analysis is based on the dycelm
the mth smallest/’-value in the case of minimization). systems approach developed in [9] considering mean value
After the termination criterion is fulfilled, the currentdynamics. As for most of the ES analyses performed, the
parental parameter vector is considered as an approximatéssumptionN — oo must be made. Actually, this makes the

of the optimizer of the objective functiof(y). analysis tractable at all. However, the results obtainedacel
will be used as approximations for the finifé case, thus
B. Fitness Environment providing insights for the real-world case. The analysib&o
The (u/pur, A)-cSA-ES analysis in this work is pencormedpresent.ed requ_ires an extension of the techniques dewksape
for the ellipsoid model far: Unlike previous analyses [9], [1], [19], [13] where seate
search space dimensions have been lumped together and the
Fy) =N a2, a; >0, (1) Objective function has been treated as function of a single o

) ) . ] two state variables, each axis of the ellipsoid model (1)tmus
where N is the search space dimensionality andare the pe considered separately. Due to this distinction, the itiefin
coefficients of the ellipsoid model. Its optimizgr= 0 resides o the measure for the ES progress in the object parameter
at the origin of coordinates. Special cases of the eIIipsofgigace of the ellipsoid model — referred to pgress rate

model (1) include cigar functiona{ = 1, a; = & for , _ differs from that of the sphere model. For the parental
i = 2,...,N, where¢ > 1‘ is the condition number), aparameter vectoy(®) = (y%g),ygg),...,yﬁ))T in generation
subset of PDQF«; = & for i = 1,...,[N9] anda; = 1 g (the symbolI" stands for the transposition of the vectak),

for i = [N9J +1,...,N, whered € [0,1] is the partition 5qreqs rates,, .. ., on must be calculated. The; formula

parameter), and the sphere mode] € 1). Note, the model . s"heen derived previously [18] and is presented in the next
(1) already represents thgeneral case of positive definite qqqion along with other published resuits.

quadratic forms for théu/ur, \)-oSA-ES. This is due to the
isotropy of the mutations used in Line 9: The algorithm is
invariant w.r.t. arbitrary rotations of the coordinate teys. C. Previous Results

Applying the (11/11, A)-cSA-ES of Fig. 1 to the objective ) )
function (1) results in a dynamic behavior approaching the N thiS section, a summary of results concernipg.r, A)-
optimizer aty = 0. Figure 2 shows the dynamics of typical"SA'ES obtained in [18] are presented.

runs considering some squared components ofthevector. Definition 1. The self-adaptation response (SAR) functioi
As one can see, starting from an initigl® = (1,...,1), the oSA-ES is the expected relative change of the parental

o = 1, the y-component belonging to the largest i.e. mutation strength from generatignto generation(g + 1)
yn, exhibits the sharpest drop whereas is only slowly

decreasing. Remarkably, after a transient phase;*atlurves (o) — B olot) — 5(9)
exhibit log-linear behavior with the same declination @&ngl lp(a ) - o9
Additionally, the o-dynamics also approach a log-linear be-

havior, however, with a different declination rate. The afm  Introducing the abbreviatioia := S | a; and using the

)



mutation strength normalization [18] significantly overlaid by the fluctuations of the evolutiopa
(9) process. As a result, the predictive quality deterioratesrw
*(g) L ag Za . . ..
o = ——_—— (3) approaching the optimizer. This is the reason why a new, more
SN a2yl? stable mean value quantity is needed. It turned out that the
' appropriate progress measure is the quadratic progress rat

the SAR function formula for thé/:/u;, A)-0SA-ES on the \,1ih'is introduced in the next section.

ellipsoid model reads [18]

* 1 *
P (0 ) =7’ (2 + 6;1;,1)\ -0 C;t/u,)\> » (4)

Il. QUADRATIC PROGRESSRATE ¢!/

Definition 3. The quadratic progress rate of the/ur, \)-ES
along theith axis of the ellipsoid model (1) is the expected

wheree“’g are the generalized progress coefficients [9]
o change of the squared compongptof the parental parameter

+o0 H i
v A <)\) / Copei vector from generation to generation(g + 1)
AT a+1 -
Vet e ol ;:E[(ylgg>)2_<y2(g+1>)2|y<g>]_ (10)
A—p—1 —a . .
x (1= ()" " @) *dt, (5)  As one will see below, this progress measure shares the

@ (t) is the cumulative distribution function of the standard/Pical properties of well-defined progress measures: - Co
1,0  tains gain as well as loss terms which depend on the mu-

normal variate and the progress coefficieny,, » = €\ ) ) ) :
Note, surprisingly, Eq. (4) is equivalent to the known gapation strength. Therefore, there exists an optimal mutati

function of the (j1/ i1, \)-cSA-ES on the Sphere [20] exceptStréngth maximizing the progress towards the optimizer- Fu
the different mutation strength normalization. thermore, it seems a natural measure because it also allows

The second published result of the/sr, \)-cSA-ES anal- for th_e dirgct calculation of the quality gai@ [9]. The
ysis on the ellipsoid model is the first-order progress rate: 1atter is defined as the expected parental fitness chghge
E [F(y“tY) — F(y¥)]. Taking (1) and (10) into account,
Definition 2. The progress rate of thg:/us, A)-ES along the this leads to
ith axis of the ellipsoid model (1) is the expected change of N

N
the parental parameter vector compongnfrom generation O=E ai(y9T2 _ (2| AT
. = i\Y; a;\Y; = a;P; -
g to generationg + 1) ; ( ) ; W) ;
(11)
pii=E [y =yt |y (6)

Note that the progress rate analysis usually neglects #he On the Derivation ofp/’
mutation of the mutation strength (Line 6 in Fig. 1) since  To derive a formula forp!?, the (u/pr, \)-ES recombi-
the learning parameter is rather small. For example, for thenation stepy(9+1) = %an:l Ym:» is considered. Theth
sphere model it was proven in [8] that for optimal ES perfokomponent of the parameter vectpfs+1) is calculated as
mancer o 1/v/N must hold. That is, in the asymptotical limitsg|iows (cf. Lines 9 and 14 in Fig. 1)
N — oo the exponential function approaches one in Line 6

IZ Iz
of the ES in Fig. 1, thus keeping constant. (g+1) _ 1 _ 1
o ' . i == mx = Yi T — Ti) o s 12
Taking into account thag'? ™ :i - (g§9>)m.A is the v ug;‘l(y) n =Y u,;( Jmsx (12)
mean value of the parameter vector compon@fﬁ_& of ther  where indices(g) are omitted for brevity. Inserting (12) into
best offspring in generation, Eq. (6) transforms into the o!1 definition yields
IS { (@ _ (o) " 5 2
pi=—) Ely" - (yi ) | () 1 1
I mz:; mi o' =E —2%; D (@) r — 2 D @) | ¥
Introducing the progress rate normalization [18] met m=l (13)
pi = piXa (8 which is further transformed using the equalities )., =
the normalized progress rate formula reads [18] () pyor — vi @ (X amn)? = 2500, S apnana +
V. . n a2 L into
@i (07) = 0" Ccpypaaiyi- 9) m=1"m;A
I
Eq. (9) is linear in the normalized mutation strength This ol — 2%1 Z E [(ﬂi) - yi|y(g):|
is an approximation for small mutation strengths typically ! — m
observed in the steady state regime of the evolution process 5 woI—1
The progress rate (9) can be used to describe the expected - SE Z (@) o, (T0) 1 |y(g>
approach to the optimizer for each component of the parental H =2 k1 7 '
centroid as long as the distance to the optimizer is suffilgien 1 Iz
large compared to the respective progress rate values. If — QE[ (xi)fmA |y(9)]. (14)
this condition is not fulfilled, the mean value dynamics are H m=1



Comparing the first line in (14) with Eq. (7), the progres®ratcan be shown easily using (11) together with the hormatnati
©; can be recognized. With expectations in the second a(8) in (17) takingFs,(y) = Zf-v:l y? (i.e.a; = 1) into account
third lines denoted byy; and Fs, Eq. (14) reads

N
2 1 Qp=-) vi'= == Sp e (19)
11 = 2y1§01 - 72E1 — 72E2 (15) P ; Z P
Iz % .
The sums of product momenis and E, are calculated in the with (0%)2
Appendix, Egs. (96) and (100). Inserting those results (b&) ap = Cu/u A0 — 5, (20)
leads after normalization using (8) to the normalized gatalr o
progress rate formuta As one can see, this calculation also recovered the noreahliz
) progress rate, for the sphere model [9].
IT* * * * (0*)
@i (07) =25 (07) Sa

B. One-Generation Experiments

Za?y? n ((M _1) ei,(; " e,jx) 22|, (16) In 'this section, ES experiments are performed to check the

— ' ' validity of the progress rate formulae (16) and (17). To gath

! experimental data, so-called one-generation experimi@its
wherey? (0*) is given by (9). are used which consist of the following operations:

The quadratic progress rate formula (16) depends on thel) One iteration of thé/ur, \)-ES algorithm is executed
first-ordery} as well as on a negative higher-order term which for a giveno* value and initial parameter vectgr).
corresponds to the progress rate loss. Due to the coefficien) The newly generated parameter veqgtd? is registered.
proportional toy;, the influence ofy; depends on how far Its squared componentg'"))” are subtracted from the
from the optimizer {; = 0 for all i) the ES works. The loss squared componentéy(o))Q of the initial parameter
term is proportional to the squared mutation strength. Tat vectory(© resulting inJZV quadratic progress samples.
the (u/pu1,A)-ES progress rate grows for smail, reaches 3) Steps 1-2 are repeated times, gathered quadratic
a maximum and decreases after that. The loss term is also progress samples are averaged and finally normalized
inversely proportional to the parent number That is, the according to (8).

genetic repair effecof recombination [9], first found for the T i . N d0E . talo! T+
sphere model, does also hold for the ellipsoid: recombinin € one-genera |onI<Iai<per|men S prodicexperimen ab;
lues, where each; ' is a normalized mean & randomly

the . > 1 best offspring reduces the loss part@f’*. .
Tgklng into accor:mtgthe complexity of ng 2&1{6) a Slmplegenerated quadratic progress samples. In order to obtain

— 8
@!T* formula will be used for the dynamical analysis to b%;?nencrlﬁgat;?svlgﬁzimn olfOE r;as 1262':] dChf;enTr:Z &ir:;;mo
performed in Section Ill. Provided that there is not a dom P gs- (16) (17)

nating a; coefficient, i.e., the condmom : Zﬁs aj > a {he (1/1r,10)-ES one-generation experiments for= 4 with

) _
. , 5 initial parameter vectoy(®) = 1 are shown in Fig. 3 fop = 1
holds, andN >> 4, the expressiorf (u— 1) e} + ¢, A)“ Y (solid curves) angk = 3 (dashed curves). Comparing Figs. 3a

can be neglected in the loss te?nThus taklng Eq. (9) into 214 3b, one can observe thdt= 400 theoretical curves match

account, one obtains asymptotically the experimental points for larger values better than in the
(J*)z N N = 40 case. This is in accordance with the assumptions
eI (0%) = 20" naiy? — mZafyf. (17) made in thep!’* derivation: It is to be expected that the

approximation error of Eq. (16) vanishes f&f — oc.
Dot-dash curves in Fig. 3 represent the outcome of the

The renormalized version of (17), obtained by applying (85)|mplified formula (17). These curves can be regarded as a

and (3 N
@), satisfactory approximation of the more complex Eq. (16) for
(9) L (9)2 (9)\2 sufficiently smallo* in the N = 40 case (Fig. 3a) and for
ol (0(9)) _ 200 (9) (18) most o* considered in theV = 400 case (Fig. 3b). Note
PO a2y’ H that Eq. (17) curves reproduce the behavior of Eq. (16) even
for N = 40: ¢!%* grows until a maximum is reached, then

will be used to derive the evolution equations of the ES ip!!* constantly decreases. Thus Eq. (17) can be used instead
Section Il of Eg. (16) as an upper bound estimate to study the maximal

The result (17) is in accordance with former findings includattainable performance of thig /i, A)-ES as well as to select
ing the sphere model quality ga@,, introduced in [7]. This optimalo* values.

One can further infer from Fig. 3 that the quadratic

Lin order to obtain (16) from (15), the2/2 terms in the denomina- progress rate results correctly show the effect of the multi
tors of (96) and (100) have been dropped. This is admissiblas as  yecombination: Since the loss term of Eq. (16) is inversely
o 2(xa?)/ (2(Syar)®) < L For the cases; = i,i%, this is proportional to y, the single-parent(1,10)-ES (. = 1,
fulfiled if (o *)?/N < 1, as can be easily checked. solid curves) reaches smaller maximai’* values than the

The validity of this assumption also requires that fffedynamics behave multirecombinant(3/3;, 10)-ES (dashed curves). In contrast

“nicely”. This can be checked by reinserting the fn@@l results confirming ) 3 e
the consistency of the approach. to the first-order progress rate results in [18], whefeexhibit
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9 x 10*
2000} &y, |—w= Figure 4: Iterative experiments for th@/31_,10_)—aSA—E_S
< ¢ (N = 400, a; = i%, 7 = 1/v/N). The solid lines depict

predictions of Egs. (22) and (23), while points represent
experimental results averaged ovélr runs: + 32, 3/12\,/4,

© Yy, and & y%. Dot-dash curve and\ show theoretical
and experimentad, respectively.

This modelling subdivides the stochastic process into mean
value parts and the fluctuation termas and ¢,. The mean-
value parts can be directly derived from the definitions & th
quadratic progress rate (10) and the SAR function (2). Ieord
to keep the analysis tractable, the fluctuation terms in §24)
disregarded in the following. Using (18) and (4) one obtains
Figure 3: One-generation experiments for the/y;, 10)-ES. the iterative scheme

The solid lines and dashed curves depict theoretical pieds

of Eqg. (16) forpu = 1 and . = 3, respectively, while points )
represent experimental results fof = 40 and N = 400: ( (gﬂ))? - (y(g))2 - 209 ¢, 1, 2ai N (o)

(b) a; =4, N = 400

+ I« pllx o ol and /", Dot-dashed curves show \¥i N 2 wo
the results of the simplified formula (17). 5 a2 (y§g>)
j=1 ‘
(22)
saturation behavior for* — oo, ¢!7* is in accordance with
the known results obtained for the sphere model [9].
P o] o) —p@) 14,2 [ L4 ott  pe) Cumaa
2 N @)
[1l. EVOLUTION EQUATIONS >oa; (yig )
=1
The progress rate (18) and the SAR function (4) describe (23)

the expected change between two consecutive generatiens, i ]
the short-term ES behavior. The aim of this section is tovderi One can use (22) and (23) to check whether the modelling

analytic formulae which predict the long-terin/s.;, \)-cSA-  @pproach yields meaningful results by iterating the sysiamh
ES behavior. comparing with real ES runs. Figure 4 shows a typical example

of the (u/ur, \)-0SA-ES long-term dynamics fou; = i?
obtained by iterating (22) and (23) starting from®) = 1,
A. Deriving the Evolution Equations o=1.
In the framework of the dynamical systems approach [9], AS One can see, there is a good agreement with the data
the stochastic mapping of the ES statég@tto that at(g+ 1) points obtained by running the real ES algorithm. Two phases
can be described in the case of the general quadratic fitnesghe (u/pr, A)-oSA-ES dynamics can be distinguished in

model by Fig. 4: A transient period after the start of the optimizatio
is followed by a steady state behavior. The transient period
(T2 = (yl9)2 _ I (0@, y@)) +¢ (09, y@), is characterized by a rapid decreasey®f,,, yx/,, andy
olot) = 5 (1 + (g(g),y(g))) +e, (g(g),y(g)) . curves ands values (they? curve decreases as well, albeit

(21) at a much smaller rate). In the steady st@@’@w yzzv/Q, and



3 N0 the sphere model (foN — o0) as one can easily infer from

(20) demandingpy, > 0.

e+ttt FtrFr A+ The prediction quality of Egs. (22), (23) has been inves-

1 tigated in Fig. 4 where a satisfactory agreement between

theoretical and experimentaygg) results has been shown.

After an initial transient phase;? curves in Fig. 4 exhibit

a log-linear behavior and have the same sldpkeoking at

Fig. 2 one also sees that tledynamics approaches a log-

ttﬁ q linear behavior, however, with a different slope. Usingsthi
eoeeovooonteRRee observation, a closed form solution of (22) and (23) in teafns

05l | exponential functions for sufficiently largecomes into mind.

That is, the system might reach a linear systems behavior in

the asymptotic limit § — oc). Therefore, the following\nsatz

is used to solve (22), (23) in the steady state

2.5

2

1.5

05 1 15 2 25 3 35 4
4
g x 10 (yz(g))z =bie ", b;>0,v>0 (26)
Figure 5: Iterative _exp_eriments_ for th@/_31,10)-a_SA_-ES @ = gpe™59. 55 > 0. 27)
(N = 400). The solid lines depict theoretical predictions of o
Egs. (22) and (23), while points represent experimental This Ansatz takes already the peculiarity of the observed

values averaged ovet0® runs: +a; = 1, »a; = i and different slopes ot andy? correctly into account (cf. Fig. 2).
o a; = i> As a consequence, plugging (27) and (26) into the mutation

. strength normalization formula (3), one obtainscanstant
normalized mutation strength

y3 curves diminish slower with the same rate and obey a
log-linear law (compare also Fig. 2).

Both phases are also observed in the normalizécplot, This o* is the normalized steady state mutation strength
Fig. 5, where the end of the transition phase is clearly lgsibobserved in the right side of Fig. 5.
becauser* values cease to change. Note that experimerital As a next step, the system (22), (23) will be solved for
points fora; = i (stars) anch; = i? (circles) coincide due to the steady state using the Ansatz (26), (27). To this end, an
the mutation strength normalization. Note, there is a @erteeigenvalue problem will be derived in the next section. Sgec
deviation of the theoretical results from the experimeatss, cases will be discussed in subsequent sections.
more pronounced for the sphere model case. This was also
observed for the(1,A\)-ES in [9] and is to be attributed to B, Eigenvalue Problem

(a) basically the neglection of the* fluctuations (only mean The Ansatz (26), (27) allows for a direct connection of
value dynamics are considered) and (b) to a certain extetrﬁ% 0t and U(g+’1) <tates 1o thoss alg). For oxample
to the approximation error made due to finite search spa@qg;ﬁ))Q ~ bo—VIe—v (y(g))zew As oné can infer frorr,1
. . . i = 04 = i .
dlmen3|onaI!tyN. . I - the y? slopes in Figs. 2 and 4 is rather smalf. Therefore,
After having motivated qualitatively the validity of the i T . !
the e can be further simplified using Taylor expansion

modelling approach, trying to get closed-form solutionshee "7 ~ 9 .
system (22), (23) appears as a hard task given the fact ikat th = 1 —v+0(v7). Thus, one obtains for (26) and (27)

is a system ofV +1 nonlinear difference equations. Switching (y§9+1>)2 =(1-v)be ™9 +0 (V2) ’ (29)
to the corresponding differential equations does not ivgro (g+1) v _ug 9
the situation. Yet, one can draw conclusions from (22), (23) g - (1 - 5) aoe 27+ 0 (V7). (30)

regarding general convergence conditions (also refeneabt pjygging (29) and (30) into (22) and (23) leads after simplifi
evolution crlterla). Since convergence In expectatloreaear- cation to

0" =o0pXa/ Zjvzl azb; =: ol (28)

ily requires (y§g+1))2 < (yfg))2, it follows from Eq. (22) o 2
) l/bi = 2006'”/”7)\ : bz -0 + @ (1/2) 5 (31)
N
o9 < 2HCp ) 2 (Zli(g)) / ij:1 a?(l/](-g))z- (24) > a2b; a
j=1

Normalizing (24) using (3), multiplying withz; and finally
taking the sum froml to NV on both sides of the inequality
yields the surprisingly simple convergence criterion Cpfpa2a

v=r2 20¢

@ &
j=1

For example, Eq. (25) gives* < 6.39 for u = 3, A = 10. As

one can check in Fig. 5, the ES is converging for the given se8Note, the transition period faj? is much longer than the transition period
of parameters. Parenthetically, it is to be mentioned tA&) ( for ¥% .. ¥x;/2 andyy-

is identical to the evolution criterion of th@:/su;, \)-ES on  “Actually, it decreases with increasing andv “—5° 0.

—2e,5 -1 +0(). (32)



Substitutingog in (31) and (32) by means of Eq. (28) results With the solutionb; = b, Eq. (38) can be solved for the
in a nonlinear system ¢fV + 1) equations (neglecting higher-eigenvaluev yielding

orderv terms) ) (o )2
Ogq
N v (O:S) =5 | ¢ s U:s - - . (40)
(03)? S a2, N ( PR )
* a; j=1
vb =205 ch/urnabi — ————, 33 i o ; . .
wHAT, B (Ea)g (33) This eigenvalue (40) is proportional to the normalized pesg

rate (20),v (o) = %gog‘p (0%,), and connects the dynamic

v=r? (20;;0#/,1,A - 26,1;’& - 1) , (34) quantities with the local performance measures. Its maximu

. is reached ab’, = =: 0}, and is equal to
where v, b;, and ¢, are unknowns. Rewriting Eq. (33) ss = HCu/u\ = Topt d

in matrix form reveals that this set of equations builds an Vmax =V (00,0) = “ci/u,A/N' (41)
eigenvalue problem

A-b=uib (35) Insertingo;,. and (41) into (34) yields the optimal learning
’ parameter for the sphere model
whereb = (bl,bg,...,bN)T, 5
a; (o) a2 Topt,, = i (42)
P g i Wss) @i OPbsp 2 1,1 '
(A)u QUssCu/u,A ECL 1 (Za)2 ) (36) 2N (‘LLCIL/HJ\ — GM’/\ - 1/2)
Eq. (42) agrees with the known,,; formula derived in [19]
N £\2 2 2 . . p
(A)ij = —(05,)" a5/ ('“ (¥a) ) » 1F T, G7) for the (i1/ur, A)-cSA-ES on the sphere model. Therefore, the
ando* = const is the steady state mutation strength. solution (40) substantiates the appropriateness of thetans

Matrix A in (35) hasN eigenvalues’ and N eigenvectors (26), (27). Actually, Eq. (40) is in fact another expressan
b of which only the solutions?i : b; > 0 andv > 0 are the sphere model steady state condition [20]
admissible_ due to the conditions in the Ansatz (26), (27). 0% (0%) /N = = (0%,) . (43)
Moreover, it follows from the Ansatz that largervalues lead
to a faster decay o(yz(g))Q and ¢@. That is, forg — oo Indeed, it follows from comparison of Egs. (34) and (4) that
theser values will have a neglectable impact in comparison v=—20(c). (44)
to the smallest. The second smallestdetermines the rate at 5
which the slowest mode (corresponding to the smaligss  Finally, replacingyy,, Eq. (20), for the sphere model progress
reached. Consequently, the reciprocal of the second sshallexpression in the rhs of Eq. (40) yields the steady state
v determines the transient time. condition (43).

Therefore, the smallest positive eigenvalueshould be
found such that the conditiowi : b; > 0 is satisfied by the [ ggjutions of the Eigenvalue Problem for the Ellipsoid
corresponding eigenvectds. The solution of the eigenvalue pjoqel
problem (35) for the particular case = 1 will be presented
in the next section and thereafter the ellipsoidal case lvll
tackled.

A straightforward approach to the eigenvalue problem (35)
for arbitrarya; is to find its solutions numerically. An example
of v values obtained numerically for th&/3;,10)-cSA-ES
, , is shown in Fig. 6 forN = 40 considering the three models
C. Solution of the Eigenvalue Problem for the Sphere Modg! — 1,42

Since the approach to the ES dynamics presented in thignterestingly, as for the cases = i (stars) anda; = i°
paper is new, it will be first applied to the sphere madek 1 (circles), the numerically obtained data points grow liea
in order to a) compare with the classical sphere model ®suliith the normalized mutation strengtht over a wide range
and b) to prepare for the general ellipsoidal case. EQu&BBN of o* values before they exhibit a sudden sharp drop. This
yields with a; = 1 for the sphere model observation paves the way for an analytical calculation of

N v(o*) for sufficiently smallo* values and later on for the
(ZU;M — u) b; — (0:5)2 ij/ (MNQ) =0. (38) estimation of the optimat parameter.

N i In order to get the linear part of thgo*) function one has
do neglect the quadratie* terms in (35). Considering (36) and
(37) one flndiA)” = 20‘:30#/#7)\0@/2@ andAij =0,Vi # j.
As a result, the problem is diagonalized and one can directly
L L Cupn read off the eigenvalues; = 2ag‘scu/u7%ai/2a. Taking into
(2USS - V) b; — <2USS N 1/) by =0. (39) account that the steady state dynamics are governed by the

N - . .
.. smallest positive eigenvalue, one gets the linear partHat t
It follows from (39) thatb;, = by = b. Note that there exist v that belongs to the smallest

other eigenvectors of (35) fa#; = 1, but since these must

Since (38) holds for any, one can subtract the equation for th
kth component ob from those of theith component leading
to

be orthogonal to the eigenvectbr = (b, b,...,b)T, b >0, N
under consideration, they necessarily have comporignrts0 Vin(0%) = 20%,¢,/,,» min (a;) /Zak. (45)
and thus do not satisfy the conditiofi : b; > 0. k=1




N =40

15 ‘ ; ; ; ; ; It follows further from the solutions (49) and (50) that

(A1), (da); +(A2)ys = (A1)g (da); +0301+0 ((a:sf&) :
*0 (55)
10¢ * 1, i=0. , -
o whered;g = 0 is Kronecker's delta. Setting= g
S * )
@ Yo in Eq. (55) leads td = (A2);5+ 0 ((0:5)2). This equation
S5 % yields with Egs. (51) and (49) the eigenvalue formuja
o *
2 Vs = (A1)gs + (A2) g5 + O ((02)°)
_ * ag (0:3)2 CL% O *\2 56
o 1 2 3 4 5 6 7 = 20uCu/urgy T u(Sa)? + ((USS) ) - (58)

o*
85

. ] . . . Having obtained an analytical approximation for the eigen-
Flgz:e 6: l;lgmerlﬁ:_il l_so(ljuttl)or;:xs (]X ~ 4,9) of the _eI?envaIue values, one can calculate the corresponding eigenved@agrs.
problem (35) multiplied byXa = >;_, a; (points) as a .have been explained, the solution to the smallest eigeavalu

function of the normalized mutation strength compared W'ﬁg of interest for the steady state behavior of the ES. The
analytical solutions obtained using Eqgs. (40) for the sphe

. ) . ) éigenvectorb = (b1,...,bn)T is determined up to a scalar
(_parabollc arc:t numerical dg\ta) and (45) (st_ralght ascendm\%ctor. That is, it suffices to consider thg/b; ratio depending
line andx a; =7 ando a; = i* for the numerical data.

on vg. To this end, Eq. (33) is used in its original form for
b; and in a second form replaciig by b;. Subtracting both

While (45) offers an approximation for the steady stafgauations from each other and resolving for thgb; ratio

mode eigenvalue that agrees well for sufficiently smail ylelds b 929+ .

values (see Fig. 6), the strengthf the differenty? modes in * = Uisc“/“’kal vs a. (57)
Ansatz (26) remain to be determined. To this end, eigenvalue bi 203Cu/unan — VaXa

perturbation technique will be used noting that (35) can I®ince Vk : b, > 0, Eq. (57) should be positive for all

written in terms of k,vg. This requirement is satisfied only ifs is chosen as
small as possible. Ag*, = const in Eq. (56), the smallest
A1+ As)bg =15b 46 . . sS
(AL + A2)bp = vsbs, (46) eigenvaluevs is determined by the smallesi value. That
where(Al)ij =0 for anyi # j and iS, ag = min(a;) =: a yields the steady state eigenvalue
(02)2 approximation
a; o.. -
Ay).. =20} - ) 47 y
()i = 205Cuungy (Aol =~ m ) v (07) = 2 (e, no (03,)" & (58)
ss) — AVss T T o |
SinceA; is diagonal dominating compared £0,, the solution Xa o 2puXa
to the subproblem . . : .
Aihy = yshy (48) Inserting Eq. (58) into (57) yields the steady statéb; ratio
can be used for the eigenvalue perturbation. One immediatel by %~ a-+ %i/ﬁ 59
obtains for the solution of the eigenvalue problem (48) b 4 —at ora? (59)
20¢, . a2a
_g.* ag _
V8 = 205Cu/uny, = (A)gg 49 specifyingi = 1 anda = 1 in (57), one obtains an
approximation for theé, values of the steady state eigenvector
T
hﬂ:eB:(O,...,l,...,O) (50) 5
Oss7
where eg is the unit vector with 1 at positiors. An ap- _ 2uCu/u 2B
) _ . b, = by - . (60)
proximate solution to (46) can be constructed by adding ap — a (1_ 5 assalz )
perturbationsss andd to the solution (49), (50), i.e., Hou/u A0
Vg =5 + s, (51) Using (58) and _(60), the (smadt*) approximation for the
by — hy + dy. (52) example case; =i (a = 1) reads
*\2
Inserting (52) and (51) into (46) yields Y 4 . () 61
V(Uss) N (N n 1) Cru/p,\Oss UN (N n 1) y ( )
A1h5+A2hﬁ+A1dﬁ+A2d5 = ’yghﬁ+5@hﬁ+’ygdg+55d@.
(53) o,
b =10 = (62)

Taking (48) into account and assuming thetdz and dzdg 10; + 1 (g — )N (N +1)°
are small compared to the other terms, Eq. (53) simplifies to ’

5 . S .
2 Note that the term with negative sign in (58) cannot be négte®therwise
Aqdg + Azhg = 9pdg +dghg + O ((‘7:5) ) : (54)  the numerator of Eg. (57) would be equal to zero for the dasey, = a.



As the length of the eigenvectdr can be chosen arbitrarily,

Eq. (62) completely describds. For a; = i2, one obtains o
*
. 3(0%)° x ﬂ
(o2) = — (cntmats ~ o) (63) B T Sl
Y\ = N(N+1)(2N+1) ’ 09 ?
-10t 099 09?2 3
g_ v
30 £
b, =10 o . (64 -
BT 305 + ey (a — ) N (N +1) (2N + 1) (©4) 15
Equationzs (61) and (63) can be fu.rther ;implified by neg1gcti 20k : 21
the (oZ,)” term assuming that’, is sufficiently small. This ° bfm
linear approximation has already been obtained in Eq. (45). 5 : o by |
reads for the two cases =i anda; = i2 2% 1 2 3 . 4 5 6 7
(0}
L. . €\ * CH/N'a)‘ s
@ =1 Vi (05) = 4USSN (N +1) (65) Figure 7: Numericab; solutions (points) as a function ef’,
a5 =% v (00) = 1207 Cpufp\ . (66) compared with analytical solutions Eq. (60) (solid curvies)

“N(N+1)(2N +1) N = 40: + by, * by, 0 byjp and O by (by = 1, a; = ).

To check the correctness of the analytic solutions of thereig
value problem (35), its numerical solution for th#&/3;,10)-
oSA-ES is compared with the results of Egs. (40) and (55@
in the next section.

To this end, the linear approximation (45) with= min(a;)
inserted into (34). After rearrangement one obtains

1,1
. L2+e) 1
. . . Oss = : - 2 .
E. Experiments and Discussion Cuur  1—a/(r*Ea)

Figure 6 presents the comparison of the numerical and %‘king experimental settings — i2 andr = 1/v/N, used to
alytical solutions of the eigenvalue problem (35) for diffiet produce Fig. 4, one obtains ’

normalized mutation strength?, values. As expected, the

exact solution (40) for the sphere model (parabolic arc in . 1/2+6;1/1A

Fig. 6§ coincides with the numerically calculated solutions Ogslai=i ® ———==.

(crosses) for alb, considered.
The generab approximation (58) yields predictions,(= Analogously, Eq. (67) leads far; = i to (68) under assump-

i “<” and a; = i% “o” in Fig. 6) which coincide with the tion that N — oo. For the(3/31710)—aSA-E$ considered in

predictions of the linear approximations (65) and (66). SheFig- 7, o5 = 0.95. b; values calculated using Eq. (60) for

predictions describe the real behavior of the ES quite weell g = 0-95 agree comparatively well with the numerical solu-

long as the mutation strength is not too largerlf gets larger, tions of (35) in Fig. 7. Therefore, Eq. (60) can be compared

one observes a sharp drop of the reatalues andv finally ~With the (u/ur, A)-0SA-ES experimental runs.

(67)

(68)

Cr/p,A

changes its sign at’, ~ 6.4. That is, the(3/3;, 10)-0SA-ES In order to obtain the experimental eigenvector components
does not converge anymore. This is in full accordance with the (3/31,10)-0SA-ES with the same settings as in Fig. 4
the evolution criterion (25). has been run forl0° generations forN = 40 and 10°

Analogously tov, the correctness of the eigenvectors foidenerations forV' = 400. The y? values of the last 25% of
mula (60) is checked in Fig. 7 by comparison with th@enerations ha_lve been avera_lged ;)1/@? independent runs.
numerical solution of (35) for thés/3;,10)-0SA-ES ¢, = 1, After that, a linear polynomialny; = —vg + Inb; has
a; = i). In Fig. 7 (V = 40), theoretical curves foby, by been fitted to the experimentgf data yieldingb; which are
by are close to the numerically obtained points (stars, drdéo*m_pargd in Fig. 8 with the predictions of Eqg. (60) for= i*
and diamonds) for sufficiently smatt, < 2, while the trivial (75 is given by Eq. (68)). Y .
caseb, = 1 (crosses) coincides with the numerical solution The experimental points in Fig. &= ") are located in
up to o, = 6. For theo’, > 6.4 region, where there is no the vicinity of the theoretical curves depicting the resudt
convergence ang < 0, the behavior of numerical solutionsEd- (60) both forV-= 40 (*+7) and N = 400 (*0"). The
qualitatively changes for ali;. The same behavior can be obSa@me observation is valid far; = 7 (not shown due to space
served forN = 400 (not displayed due to space restrictionsy€strictions). _ .

The question is whether these deviations are relevant for th The analytic solution of the eigenvalue problem (35) for
real (1u/p1, \)-0SA-ES. To answer this question, the actudl — the eigenvalue formula (58) — should be verified exper-

steady stater”, realized by the ES must be calculated. ~ imentally as well. To this end, the3/3;,10)-0SA-ES with
the same settings as used in Fig. 8 has been run for figed

SNote that Eq. (58) describes the behavior of the sphere modedrhall (03 has been renormalized t09) in each generatipn). The
o values only. gathered data points have been used to obtaixperimental
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Figure 8: Experimentab; values (points) for the€3/3;, 10)-
oSA-ES (points) compared with analytical solution Eq. (60) 15
(curves) fora; = i%: + N = 40, o N = 400.

N =400

v values — one for eacl? curve. Thev values corresponding 10
to (y§9>)2 are plotted in Fig. 9 because the deviations ¢br

othery? from the data shown in Fig. 9 are small. For example, °
the maximal deviation for; = ¢ and N = 40 is 2%. @

In Fig. 9a, the experimentad values (points) are compared 5
with the outcome of Eq. (58) (solid lines) fa¥ = 40. The
theoretical predictions match the experimental pointsfoall
values ofo, < 4 for a;, = 1 (black crosses) and}, < 3
for a; = i,3° (“¥" and “o”, respectively). The reason is 0
that Eq. (58) is the solution of the eigenvalue problem (35)
based on the system of equations (22). Equation (22) cantain
the asymptotically exact quadratic progress rate formi8 (
which is an approximation forN < oo. The quality of Figure 9: Experimental values (points) for th€3/3;,10)-

(18) decreases with increasing. Since the quality of (18) ¢SA-ES compared with analytical solution (58) (solid lines)
increases for largefV, the experimental points in Fig. 9bfor fixed o’ + a; = 1, x a; = i ando a; = 2. Dashed curves
(N = 400) match the theoretical curves fof, < 6 fora; =1 depict numerical solutions of the eigenvalue problem (35).
ando?, < 5 for a; = i,i?. Thus, the analytical solution (58)

is increasingly correct in the limiv — oc.

For comparison, Fig. 9 includes the numerical solutior@pint which could be used to determine thenaximum. Note
v (dashed curves) which move fa¥ = 400 closer to the that the numerical solutions of the eigenvalue problem (35)
solid lines. They show that the errors due to assumptiofféepicted by the dashed curves which also coincide due to
in the derivation of Eq. (58) diminish fo?' — oo. Still, the normalization) have a maximum and decrease to zero for
Eq. (58) reproduces the linear part of the numericalurve 7 — 0 showing that Eq. (35) correctly represents the behavior
only. Consequently, it can not yield a formula for the optimef the (11/u1, A)-0cSA-ES on the ellipsoid model. To bracket
o, value which is required to obtain an analytical expressidhe 7 optimum analytically, an alternative method will be

1
1
]
]
]
]
]
]
i
]
i
]
o
i
¥
L]
]
L]
L]
%
L
:

(b) N = 400

for the optimal learning parameter,,;. developed in the next section.
To illustrate this problem, re&B/3;, 10)-0SA-ES runs with
differentr values have been performed fdl® generations and IV. OPTIMAL LEARNING PARAMETER

N = 40,400 in order to obtain an experimental= f (7) data Looking at thepy = 1 and p = 3 curves in Fig. 3,
set. This set is compared with the analytical solution (38) bne observes that the* value leading to the maximal
Fig. 10. guadratic progress rate grows wjthHowever, Eq. (68) yields
The solid curves represent the analytical solution (58)*|,,—; ~ 1 for 7 = 1/4/N in the limit N — co. While it has
These curves folV = 40,400 coincide due to the normal- been shown that the choice of= 1/v/2N is asymptotically
ization of the abscissa. They reproduce the behavior of thptimal for the sphere model [19], using « 1/v/N can
experimental points for > 1.5/N well. For smallerr values, seriously hinder thé./u;, \)-cSA-ES performance on non-
the (58) curves go to infinity. That is, there is not an optimurspherical problems. Furthermore, as Fig. 10 suggests, the
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model (40). Actually, according to (40) the slope of the sphe
modelv is 2c,/,, »/N ato* = 0 (recalla; = 1) while that of
the ellipsoid model is given by (48)c, /., »/%a. Therefore,
considering the cases = 4,42, it always holdsl /N > a/%a

for N > 1. That is, the realr curve must be below of
that of the linear approximation (45). Furthermore, actayd

to (25) all v curves (including the sphere model case) must
pass the horizontal axis at* = 2yc,/, . Looking again at
Fig. 11, it becomes clear that the intersection of the linear
curve with that of the sphere model (black curve) yields an
estimates,, for the optimals*. Actually, since the linear
slope of the non-spherical model drops faster than that of
the sphere model for increasiny, this estimate improves
with increasing/N. Numerical investigations considering the
relative error|v(6*) — v(oky)|/v(6*) using (72) as estimate
also confirm this statement (not shown here).

Figure 10: Experimentat values (points) for th¢3/3;, 10)-
oSA-ES @; = i) as a function ofr N compared with the
analytical solution (58) (solid lines) fo- N = 40 and
o N = 400. Dashed curves depict numerical solutions oh. Approximater,,; Formulae

the eigenvalue problem (35). In this sectiong?,, is calculated. First, Eq. (45) is equated
to the v formula of the sphere model (40) to calculate the
intersection point

Oost = 2¢, /it (1 — Na/%a) . (69)

Sinced},, is an upper bound approximation &f, they differ
from each other by an unknown positive val(@:,, — ¢*).
To account for this difference, a coefficietit< a, < 1 is
introduced such that

A~k Ak

0" = ap05y (70)

and (6%, — %) = (1 — o) 6%, With (70), Eq. (69) trans-

forms into an exact formula faron-sphericamodels (keeping
in mind thata, is close tol)

6 =20,/ (1 — Ni/Sa) . ‘ (71)

ins th [ I i i 71) i
Figure 11: Numerical (points) and analytical (solid cubve%%? &tgzr:iii(zlgzc:rz)spondlmgva ue by inserting (71) into

solutionsv for the (3/3;,10)-0SA-ES as a function ob,

(N =10); + a; =1 andx a; = i. 4oy - .
% oCu/p A Na
=" (1—-—=—. 72
(7)== (1 ) (72)
maximal v can sensitively depend on the learning parametgfnally, inserting Egs. (71) and (72) into (34) yields
T.
Choosing r correctly leads to the highest possible con- a 1
: i Topt = | = - (73)
vergence rate, i.e., the negative slope of the progress rate P Ya 142¢07
determined byv in the exponent of Eq. (26) is maximized 1- da,c,  u(1-Na/Sa)

for the optimalr,,.. As shown in Fig. 11, Eq. (58) correctly
predicts the linear region of only and can not be used To apply Eq. (73),a, must be chosen. Having a look

to determine the maximize* : v(6*) = max(v(c*)) at Fig. 11,a, = 1 seems to be a reasonable choice. It
(indicated by the arrowmax () in Fig. 11) in the general can be additionally verified by comparison with a known
case of arbitrarys,. Topt formula for the special PDQF model [10% (= 1 and

As a workaround, an upper bound heuristic estingdgte > *a = N (J(§ — 1) +1)). In the limit N' — oo, £ > 1 and
&* is calculated in the following by looking at the interseatio large u, Eq. (73) simplifies to
of the sphere model curve (black curve in Fig. 11) with | 1 1
ellipsoid model line (indicated by the arrowg,, in Fig. 11). Topt [PDQF =~ = o
This approach is justified by the observation that thie™*) VN VI(E—1)
curves of non-spherical models are below that of the sphevkich matches the,,; formula obtained in [10].

(74)
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According to Fig. 12, they/pr, A)-0SA-ES is insensitive
to the choice of the population size parameter for suffityent
large i > 10. This property is useful for global optimization
of objective functions with multiple local optima: To inase
the chance of global convergence on such functions, ES-
restarts in conjunction with population size increase dteno
employed [6]. Only a weak,,; dependency on the population
1t ] size allows for the usage of a fixed,, when increasing
the population size. Moreover, the corresponding steaatg st
mutation strength (71) increases in proportionutoThis also
helps in global search. However, unlike the population size
0 parameter, according to Eq. (73) the local landscape of the
: ‘ ‘ ‘ ‘ ‘ objective function has strong influence on thg, value. This
5 10 15u 2025 30 also holds for the often used test functions Cigy(y) :=

2 N 2 ) ; ; N e\ 2
Figure 12: Optimal learning parametey,; of the (u/pr, 3u)- Y1 2 i Vi ?Pd Hansen's ellipsoidth (y) := 3 ;- aiy;

oSA-ES fora; = i as a function of the number of parents With a; := 10%~=1 [15], [14]. However, in these cases the
Curves depict the theoretical predictions of Eq. (73), whillV-Scaling behavior is similar to the Sphere. Using (73) and

points represent experimental results ferN = 40 and @ = 1+(N—1), one easily finds the asymptotic expression
o N = 400. Topt|Cigar ™ ﬁ For F; a somewhat longer calculatibn
alnl10

102N *

Topt N

yields Top¢ i =~

As for the ellipsoid examples considered, the approximate

; V. SUMMARY AND CONCLUSIONS
Topt fOrmula (@, =1, N — oo, u — o0) reads fora; =i

The behavior of the self-adaptation evolution strategyhwit
ai=i = V2/N (75) intermediate multirecombination, th@:./s;, A)-0SA-ES, on
the ellipsoid model (1) has been investigated using the myna
ical systems approach. To this end, a novel progress quantit
o JaIN3 measuring the expected quadratic progress of single parent
a=iz = V3/N?. (76) vector components — the quadratic progressgate- has been
Note, the learning parameter formulae (75) and (76) devidtdgroduced in this paper. The derivation of the asymptditica
from the known sphere model result,|sp ~ \/1/2N. exactp!! formula (16) has been sketched. Being basegdn
and the self-adaptation response functior{4), a system of
N+1 nonlinear evolution equations (22), (23) has been derived
that governs the mean value dynamics of the/ur, \)-

In order to evaluate the prediction quality of (73), reakSA-ES. Due to the nonlinearity of the system (22), (23),
(1/11,10)-0SA-ES runs have been performed over periodgosed-form solutions of the dynamics do not exist. However
of Gimax generations using different values. TheF (y(9))  considering the steady state that is reached in the asyimptot
values for generationg = Giax/2 10 g = Gmax have been generation limity — oo, the system can be solved using a
recorded in order to empirically estimate the normalizezhlo special Ansatz. Having used the Ansatz (26), the steadyg stat
quality gain [9, p.132] using problem turned into the eigenvalue problem (35). While such

G N eigenvalue problems can be solved numerically, the primary
. Yo JF FEY)-FEY) | of th to provide closed f ions f
Q, ~ e 5 e (77) 9oal of the paper was to provide closed form expressions for

max/ 9=Gman )2 2 D oisy G (yl ) the smallest eigenvalue and the corresponding eigenveéator

. approximate solution has been found that describes thdystea
The obtainedy, data have been averaged over 30 independestate behavior of the ES well. In turn, this solution allowed
runs. These runs have been performed for a set of equidistanihe determination of the optimal learning parametén terms
chosenr values. Ther value producing the maximu@; has of a closed form expression (73).
been considered optimal. The steady state mean value dynamics derived rest on a

The 7.+ dependency on the population sixés compared set of approximations. These (a) neglect fluctuations and
with experiments on the; = i ellipsoid in Fig. 12, where the (b) express the progress rates and self-adaptation respons
(/pr, A)-cSA-ES used a truncation ratio of3, i.e. A\ = 3. function by asymptotically exact expressions the quality o
Theoretical curves obtained using Eq. (73) are locatedecloghich improves for largerN and smallero* provided that
to each other and follow the same rule: A relatively largthe mutation induced fitness is normally distributed. Tlsis i
Topt Value for smally decreases down ta,,, ~ 1.4/N and guaranteed through the Central Limit Theorem of Statistics
approaches a constant value for> 10. As expected, the which in turn requires Lyapunov’s condition to be fulfilled.
empirically determined values of th¥ = 400 case (circles) This basically means that there is no dominating component
are closer to the theoretical curves than tiie= 40 points
(crosses). "Here we have usefla = 3N | a; =

7-opt

and fora; = 2

7—opt

B. Experiments and Discussion

100N/ (N-1) 1 10N
10/ (N=1)_1 — In(10%)"
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in the sum of random variates contributing to the fitness
fluctuations. In order to ensure non-dominating contrimsi
a;/Ya (Vi = 1,...,N) should be small and vanish asymp-
totically as N — oo. For the examples considered in detail:
Sphereg; = 1, a; = i? as well as for well-known models like
Cigar, Discus, and Hansen'’s ellipsoid this is fulfilled. Yete
can construct ellipsoids, e.g. a discus where the domigatin
eigenvalue scales with the search space dimensionélig.g.,
max(a;) = N2. In that case one never reaches normality and
the formulae derived remain approximations evenNor-+ co.

The steady state dynamics are governed by exponentially
decreasingy; components given by (26) where the inverse
time constant is determined by (45). Having a closer look at
(45) and the corresponding fitness model (1), it becomes clea
that the result does also hold for the general fitness mo‘l’%ure 13: Expected runtime experiments for the ellipsoid
F(y) =y"Qy with Q as positive definite matrix (minimiza- ymodelsq; — 7, i2, and Hansen withy — 5. The predictions
tion considered). The parameter= min(a;) is simply the ¢ (80) are displayed by curves.
smallest eigenvalue of the corresponding eigenvalue problem
Qu = ku. Since the sum of the eigenvalues@fis the trace
of Q, Xa = Tr[Q], (45) can be expressed in terms of

N

shows theN scaling behavior of theg3/3;,10)-0SA-ES,
’V _ QU*C,L/“,,\Inin(lii)/TI'[Q]«‘ (78) T = 1/v/N, on the eIIipsoidsQi = {,i2, and Hansen’s with
a = 5 for § = 2. There is a good agreement between
The steady state fitness dynamics can be determined usingory and experiments. While Hansen'’s ellipsoid requines t
(1) and (26) starting from generatiom, for an evolution largest number of generations for the small cases (even
interval g for the condition numbed0*, o« = 5, considered here), for
sufficiently largeN the ellipsoids withu; = i andi? are harder
That is, the objective function drops exponentially fasthwi  The runtime results are also in agreement with findings of
time constantl/v. Equation (79) can be used to estimatdagerskipper [17] for thel + 1)-ES with 1/5-rule. While his
the expected running timé&' needed to improve the resultapproach provided a rigorous proof of runtime bounds, the
by a factor of2~7. ConsideringF (y(#%+¢))/F(y(9)), one analysis presented here yields results for multireconmigs
immediately obtains from (79)~¢ = 2=/, Resolving forG, including the quantitative influence of the strategy paramse

one getsG = S1n(2)/v and with (45) such as the learning parameteand the truncation ratip/\.
Comparing Egs. (80) and (81), one can assess the influence
Bln2) YN a (80) of the choice ofr on the expected running time. The learning
205Cu ' min(a;) parameter controls the steady statg Eq. (67). Usingr,pt,

Eq. (73), one can gain approximately a factoro€ompared
That is,G is asymptotically proportional to the quotient of theo the choicer = const. Note, even the standard recommen-
trace ofQ and its smallest eigenvalde G oc Tr[Q]/ min(x;).  dationT o 1/v/N, that is optimal for the sphere model, does
Using (71), the minimal expected running time becomes  not provide a runtime reduction. For example, considerirgy t

. B1n(2) ZN o 1 ellipsoids witha; = i andi?, 7 must be chosen according to
G=7 s ==Lt — (81) Egs. (65) and (66), respectively. This reveals a dilemma for
Aopcy , Min(a) 1-Na/31 a real world applications: Since the local structure of thal re
for non-spherical ellipsoid models provided that the Opﬁmfitness landscape is not known, there is a priori no way to fix
learning parameter, Eq. (73), is used. 7 for optimal ES performance. Therefore, any choice ofill
Considering (80), one finds that the expected running tin¢ & compromise.
increases with ordetv2 for the ellipsoid modela; = 1, Having learned that théu/ur, \)-cSA-ES performs sub-
with N3 for a; = 2, and with N for the Cigar and optimally, the question arises how alternativecontrol tech-

Hansen'’s ellipsoid. The latter results might come as a mapr niques do behave. There the cumulative step-size adaptatio
From viewpoint of asymptotic runtime complexity, Cigar andCSA) of the CMA-ES [15] comes into mind. Its analysis on
Hansen’s ellipsoid yield the same complexity as the Sphefee ellipsoid model is still pending. Another alternativewid
model, i.e.O(N) (w.r.t. function evaluations). However, un-be Meta-ES where theoretical treatment has just begun for
like the Sphere, these two ellipsoid models have usuaBymple fitness models [4], [11].

large factors,¢ and 10¢/1n(10%), respectively, obscured by The analysis presented can be regarded as a first step
the order notation. Since the runtime predictions made lbywards the analysis of ES with covariance matrix adaptatio
(80) might be somewhat astonishing, experiments have bempecially for the CMSA-ES. While the covariance matrix
conducted to check its validity for real ES runs. Figure 1ll@arning has not been analyzed so far, the current work
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provides the modeling approach for the general step-si2e] I. Rechenberg. Evolutionsstrategie-Optimierung technischer Systeme
adaptation: Any standard covariance matrix adaptationds ¢ nach Prinzipien der biologischen Evolution Frommann-Holzboog,
be regarded as an ES operating with isotropic mutations on a

composite function comprising a linear transformationnfco

trolled by the evolving covariance matrix) and the objextiv

APPENDIX

function. That is, if the objective function is a quadraticrh, DERIVATION OF THE QUADRATIC PROGRESSRATE ¢!/
the ES simply “sees” another, but also quadratic form. That, thjs section, the product moments in Eq. (15),and Es,
is why, the approach presented can also be applied t0 sygh calculated. For sake of simplicity, the coordinate inéle
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by o(ZéV 1 a;)/2a;y;. Due to the stochastic independenc®. ExpectationF;

of the mutation components, the variance can be Calculated;;omparlng the double sum in (82) with (89), one sees that
as the sum of the variances of the |nd|V|duabomponents v=2 A= (a1,a2) = (1,1) and thus,

Using the simple formufaVar[Az + Bz?] = A% + 2B? (for

z ~ N(0,1)), one obtains for the variance of the two sum Ey =0’E [Sup] - (93)

expressions in (86) Applying (90), one gets

(Za y] + 720’ ) . (87) E [5(171 = ' Z ZC(I 1) 2 n k

i n=0 k>0
2
As a result, (86) can be expressed as = p(p — 1)p2 s (94)
because, according to Table 1 in [2], éjﬂél)(k) are identi-
vi~zi+ N 2azyl a2y§ Za '+ *Za (88) cally zero excepg‘(1 D(0) = p2/2 andv; = 4 = 0. 2'I'aking
7 Heo (z) = 1 into account and the pdf(z) = e~ 2% /\/27

Let us consider the distribution of,., (note, the index has of the standgrd normal variate, a comparison of (92) with (5)
been dropped here) belonging to iHa bestQ value, i.e vy reveals that”’ A= = ¢? A Taking (91) into account, one obtains
The variatesz;., are noisy order statistics (also referred to ak1 = u(n — 1)02 220 »/2. As a final step,p® for the ith
concomitants ofiy.,) due to theA’ term in (88). Calculating coordinate is calculated using (87) and (91). This yields
sums of product moments of these statistics, such as (82) and

. . . ajy? ajy?
(83), is a technically involved task. However, that hasade ~ £° = ~ N T F (95)
been solved in [2] for the general caBéS4], where aty?+ Y a2+ %5 Y a a2 (yP+ %)
J#i Jj=1 Jj=1
Sa=) Y A A (89) and finally
2,0
is a v-fold sum andA = (a1,...,a,) is the vector of By = (- 1)12 azzy?%,x (96)
exponentsw,,. Under the condition that ~ N(0,1), it has ! 2 N L, e
been proven in [2] that j;laj (] + %)
E[S4 i Z > [ ¢ (k) + 2 gn L (k) C. Expectation®,
n=0k>0 The sum in theF, formula (83) can be expressed using
’Y v—nm, J— J— J—
24214"2 (k) +...| B k. (90) (89) byr=1andA = (a1) = (2)
Ey =0’E [S(y)] . (97)

Here~; and~. are the coefficients of skewness and kurtosis
of the noise. Theg(l‘j‘l)(k) are special polynomials of the Applying (90), one obtains by means of Table 1 in [2]
correlation coefficierit

_ 1 nk
p=1/\1+102 (91) E[S@] = !ZZC

n=0 k>0
derived in [2]. Theh coefficients are defined as
(2] — [ @t + 3¢
m A o m k>0 k>0
k=0 (3) [ e @ o)™ =
M —00 =K ( h + h[t A) (98)

X [ (@)1 - @ (@) e, (92)
since all¢®)(k) = 0 except(oo( ) = p* and gf?g(o) = 1.

where Hey, (x) is the kth Hermite polynomial and)(x) and Noting thatHel( ) =z, one easny finds using (92) and (5)
®(x) are the pdf and cdf, respectively, of the standard normgilat h,lblx = 61 ! Furthermoreh ‘\ = 1, thus one obtains
distribution.

In the following, £, and E, will be calculated using (90). Es, = (1 + p? e, A) (99)
Since the noise is approximated by a normal distribution El _ .
(88), the coefficients of skewness and kurtosjs,and -, inally plugging (95) into (99), one gets
are zero in (90). That is, only tl"xg(l‘_f‘())(k) functions must be

considered in the next sections. agygel’f\
By =po® | 14 — = (100)
8Note that forz ~ N(0,1), it holds E[z] = 0, E[2?] = 1, E[z%] = 0, a2 (y2 + <
andE[z‘*} — 3. j;l 7 (yj 2 )

9Recall thatp[v, z] = Cov|[v, z]/+/Var[v]Var[z].



