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Abstract

To theoretically compare the behavior of different algorithms compatible performance measures
are necessary. Thus, in the first part an analysis approach, developed for Evolution Strategies,
was applied to Simultaneous Perturbation Stochastic Approximation on the noisy sphere model.
A considerable advantage of this approach is that convergence results for non-noisy and noisy
optimization can be obtained simultaneously. Next to the convergence rates, optimal step sizes
and convergence criteria for 3 different noise models were derived. These results were validated
by simulation experiments. Afterwards, the results were used for a comparison with Evolution
Strategies on the sphere model in combination with the 3 noise models. It was shown that both
strategies perform similarly, with a slight advantage for SPSA if optimal settings were used and
the noise strength is not too large.

Keywords: algorithm comparison, stochastic gradient approximation, evolution strategy, noisy
optimization

1. Introduction

In recent years noisy optimization became an important research topic, especially due to in-
creased use of simulation optimization and the advances in computer hardware development.
Therefore, an interesting aspect concerns the question as to what kind of strategies one should
use for such optimization problems. To answer this question, one needs to compare these strate-
gies. One way is to do this on a purely empirical level, as it was done in the recent Black Box
Optimization Benchmarking (BBOB) at the Genetic and Evolutionary Computation Conference
(GECCO) in 2009 and 2010.1 However, there is also a desire to compare strategies on a deeper
and more theoretical level. Given the diverse research fields concerned with noisy optimization
(e.g. Operations Research, Engineering Optimization, Evolutionary Computation, Robust Opti-
mization), the strategies developed were mainly analyzed with methods tailored to their specific
fields. This may cause obstacles in the comparison across fields, since the derived results are
not compatible and do not allow for a direct comparison. A solution is to use a unified approach
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which results in the same performance measures which then can be used as basis for a compari-
son.

Such a unified approach is presented in this work for the analysis of Simultaneous Perturba-
tion Stochastic Approximation (SPSA) [1, 2]. The approach itself was developed for Evolution
Strategies [3] and will here be applied to a different type of strategy for the first time. The aim is
to derive equations for the dynamic behavior, convergence criteria and optimal strategy param-
eter settings. We will show that the approach also provides insight in the short term dynamics
which are usually not captured with common analysis methodsfor SPSA. See Appendix A for
an overview of the proofs obtained in [1]. The presented analysis method will be applied to a
restricted class of test functions. That is, simple test functions are to be considered which allow
for mathematical tractability which in turn allows to derive conclusions not (always) available
from other approaches (e.g. optimal parameter settings). While this might be considered as a
too less general approach, we like to point out that the same approach was successfully applied
to other test functions, e.g. the ridge function [4] or ellipsoidal-type functions [5, 6]. However,
such analyses present a demanding task which in turn means that progress in this field proceeds
gradually. That is why we will consider the sphere model testfunction, however, in combination
with three different noise models:

• noise-free

• constant noise

• state-dependent noise

These models can be analyzed using the same analysis approach, which is not possible for SPSA
with the method presented in [2], where an additional treatment of the noise-free case was nec-
essary [7, 8]. Later on, we will compare the results obtainedwith the respective results from
literature.

After introducing SPSA in Section 2, a detailed descriptionof the steps for the theoretical
approach will be given in Section 3. A peculiarity of the approach used is that one has to consider
the test function in the limit of infinite search space dimensionality. However, in Section 4 it
will be shown that the derived results will provide good approximations for finite search space
dimensionalities as well. This will be done by simulation experiments. Afterwards, in Section 5
a comparison with Evolution Strategies is performed. There, the equations derived will be used
to obtain performance measures. In Section 6 a summary of thework is given and conclusions
from the results derived are drawn.

2. The Basic SPSA algorithm

This section reviews the basic SPSA algorithm. This algorithm belongs to the class of
stochastic approximation algorithms [9], performing basically an approximate gradient descent.
The pseudo code of SPSA is given in Alg. 1. In lines 1–3 the initial solution vectorx(1) ∈ R

N is
set and the strategy parameters are chosen. In SPSA the following strategy parameters2 are used:

• α ∈ [0, 1] - reduction rate for the gradient step size factora(t)

2There exist SPSA variants which use more than these basic parameter. For examples see [2] andwww.jhuapl.edu/

SPSA. The web site also provides many examples for practical problems solved with SPSA.
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Algorithm 1 Simultaneous Perturbation Stochastic Approximation

1: initialize x(1)

2: initialize a(0) andc(0)

3: chooseα, γ, andA
4: for t := 1 to tmax do
5: choose perturbation vector∆(t)

6: c(t)
= c(0)t−γ

7: f (t)
+ = f

(

x(t)
+ c(t)

∆
(t)
)

8: f (t)
− = f

(

x(t) − c(t)
∆

(t)
)

9: g(t)
=

f (t)
+ − f (t)

−
2c(t)

∆
(t)−1

⊲ ∆−1 :=
(

∆
−1
1 , ∆

−1
2 , . . . , ∆

−1
N

)T

10: a(t)
= a(0)(t + A)−α

11: x(t+1)
= x(t) − a(t)g(t)

12: check terminationcriterion
13: end for

• γ ∈ [0, 1] - reduction rate for the gradient approximation step sizefactorc(t)

• a(0) > 0 - initial value of the gradient step size factor

• c(0) > 0 - initial value of gradient approximation step size factor

• A ≥ 0 - stability factor

The core of SPSA is represented by the loop within lines 4–13.Definingtmax as maximal number
of iterations, the loop is repeated untiltmax or any other termination criterion defined in line 12
is satisfied. At the start of the loop the perturbation vector∆(t) is chosen from a given random
distribution. This distribution must satisfy the following properties [2]:

1. symmetry,
2. zero mean and finite variance,
3. finite inverse moments.

The components of the perturbation vector must be independent and identically distributed (iid).
A common choice is the symmetric±1 Bernoulli distribution. This distribution generates±1,
each with a probability ofp = 0.5. Surveys [10, 11] showed that this distribution is well suited
for most test functions considered. Therefore, this work will only consider this distribution for
∆

(t). Next, the current gradient approximation step size factorc(t) is determined (line 6). As
recommended in [2],c(0) should be set approximately equal to the noise at the initialpoint and
γ = 0.101 being the smallest admissible value fulfilling the assumptions of Spall’s convergence
proof [2]. Afterwards, the gradient is approximated in line9 by means of the function values at
the pointsx(t) ± c(t)

∆
(t) (line 7 and line 8). Note,∆−1 is defined as

∆
−1 :=

(

∆
−1
1 , ∆

−1
2 , . . . , ∆

−1
N

)T

(1)

where∆1, . . . ,∆N are the components of∆. It is a remarkable property of SPSA that it needs only
two function evaluations to approximate the gradient. Thisis in contrast to other methods relying
on, e.g,N + 1 or 2N function evaluations using forward and central difference approximation
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schemes, respectively (e.g. Implicit Filtering [12]). Theupdate of the current solution is done in
line 11, where the approximated gradient is multiplied by the gradient step size factora(t). This
factor depends ona(0), t, A, andα (see line 10). The recommendations for these parameters are:
α = 0.602 andA ≈ 0.1tmax. With these values and the desired minimal change in the magnitude
of the components ofx(1) in the first iterations one can determinea(0) [2]. As for γ, the setting for
α is equal to the smallest admissible value fulfilling the assumptions of the convergence proof.
Choosing the smallest values is beneficial for practical applications with strong noise. Note, these
recommendations are based on empirical investigations on several test functions. The theoretical
asymptotic optimal values were determined asα = 1 andγ = 1/6 in [1]. The interested reader is
also referred to [2, Chapter 7].

The basic algorithm can be enhanced by using some kind of gradient smoothing and applying
thresholds for the updates. See [2] for a discussion of theseoptions. Another improvement is
the use of adaptive SPSA [13, 14]. Where the Hessian matrix isalso approximated (by at least 2
more function evaluations per iteration) and then it is usedfor the update of the solution vector.
In this work we are only concerned with the basic algorithm, although a slight modification will
be introduced shortly.

3. Analysis of the dynamical behavior

For a comparison of different algorithms one can use a benchmark suite (e.g, [15, Chapter 6]
which especially considers noisy optimization and the one used in the BBOB 2009 workshop,
see footnote 1), which gives information about the performance of the algorithms over a range
of test functions. But there is still a need (and desire) to compare strategies on a theoretical level.
This gives more insight about the behaviors of the algorithms. A first step was presented in [16]
where five different methods (Random Search, SPSA, Evolution Strategies (ES), Genetic Algo-
rithms, and Simulated Annealing) were compared. The comparison was based on the respective
theoretical convergence rates for an unimodal and separable objective function. The restriction
to this function class was necessary, since for other function classes the theoretical results were
not comparable.

The approach pursued here is slightly different. Rather than using different formulations for
the convergence rate, a unique formulation for all algorithms is considered. The approach was
developed in [3] for the analysis of ES. It was successfully applied to different variants of ES
and different test functions (e.g., sphere model, ridge, and quadratic functions). In the current
paper the approach will be applied to a non-ES algorithm for the first time. To this end, we
restrict ourselves to the sphere model (which is unimodal and separable) in combination with
three different noise models. In the following a detailed step-by-step description of the analysis
approach will be given. First an one-iteration performancemeasure will be derived. The result
obtained will then be used to derive convergence criteria, optimal gradient step sequences, and
equations representing the overall dynamic behavior. Afterwards in Section 5, a comparison of
the results obtained with respective results for ES will be presented.

3.1. Deriving the Fitness Gain - A One-step Performance Measure

First, let us start with the definition of the sphere model

f (x) = xTx, (2)
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wherex ∈ R
N and f : R

N → R. Since we are interested in noisy optimization, the function
definition is generalized to

f (x) = xTx + σǫ (x)N(0, 1) (3)

where the first term in (3) represents the true (non-noisy) function value and the second term
represents a scalar noise term. The noise term consists of the noise strengthσǫ (x) and a standard
normally distributed random scalarN(0, 1), a common model in noisy optimization. The inves-
tigation of other noise distributions is beyond the scope ofthis paper. The three different noise
models under consideration are:σǫ(x) = 0 (noise-free model),σǫ (x) = const. (constant noise
model), andσǫ (x) = fnoise(x) (state-dependent noise model) where the noise strength depends on
the location and vanishes at the optimum. In the constant noise model, the variance of the noise
will be constant. For the state-dependent noise model it is assumed thatσǫ will only depend on
the currentx(t), i.e.σǫ (x(t)) = σǫ(x(t) ± c(t)

∆). With this simplification the math involved is much
more amenable as ifσǫ would depend on the actual evaluated point. The same noise model was
used for the analysis of ES [15] which allows for a comparisonof both strategies. However, as
shown in [15], forN → ∞, a frequently used assumption in the derivation process, the behavior
of both models is the same. Last but not least, for all models considered no correlation between
different evaluations of the noise term is assumed, i.e.N(0, 1) is iid.

The analysis starts by considering the gradient approximation in SPSA

g(t)
=

f (t)
+ − f (t)

−
2c(t)

∆
(t)−1

(4)

where f (t)
± represent the evaluation of (3) at the pointsx(t) ± ∆(t). Due to the noise in (3) and

the manner in which the gradient is estimated in (4), the resulting g(t) has only limited accuracy.
After all it is an approximation. To improve the accuracy, one can use an average of multiple
gradient approximations. This is achieved by adding a loop into Alg. 1, which encloses lines
5–9. Thus, each approximation has different∆(t), but the samec(t). To differentiate between
the different gradient approximations a subscriptw is added. Applying this idea, the gradient
approximation changes from (4) to

g(t)
=

1
W

W
∑

w=1

g(t)
w =

1
W

W
∑

w=1

f (t)
w+ − f (t)

w−
2c(t)

∆
(t)−1

w (5)

whereW is the number of gradient approximations. The function evaluations at the test points
can be written with (3) as

fw
(

x(t) ± c(t)
∆

(t)
w

)

=

(

x(t) ± c(t)
∆

(t)
w

)T (

x(t) ± c(t)
∆

(t)
w

)

+ σ±ǫ
(

x(t)
)

Nw(0, 1)

= x(t)T
x(t) ± 2c(t)x(t)T

∆
(t)
w + c(t)2

∆
(t)T

w ∆
(t)
w + σ

±
ǫ

(

x(t)
)

Nw(0, 1).
(6)

Thus, the fitness difference in (5) can be expressed as

f (t)
w+ − f (t)

w− = 4c(t)x(t)T
∆

(t)
w + σ̃

(t)
ǫ Nw(0, 1) (7)

whereσ̃(t)
ǫ represents the difference in the noise factors and depends on the chosen noise model.

Substituting (7) into (5) yields

g(t)
=

1
W

W
∑

w=1













2x(t)T
∆

(t)
w +
σ̃

(t)
ǫ Nw(0, 1)

2c(t)













∆
(t)−1

w . (8)
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xopt

x(t+1)

x(t)

v1

v2−a(t)g(t)

Figure 1: Decomposition of the update step−a(t)g(t) with the help of Pythagoras’ theorem.

An analysis of above equation shows that forσ(t)
ǫ = 0, the value ofc(t) has no influence on the

gradient approximation. This is typical for SPSA on quadratic functions. Ifσ(t)
ǫ > 0, increasing

c(t) will reduce the noisy disturbance.
The next step is to decompose the gradient step,−a(t)g(t), into a vectorv1 which points in the

direction of the optimumxopt and a vector with perpendicular directionv2. This enables one to
determine the achieved gain in the iteration step and the influence of the algorithm parameters on
this gain. The decomposition is outlined in Fig. 1. The optimum is marked withxopt, the solution
at the start of the iteration withx(t), and the solution at the end of the iteration withx(t+1). The
gradient step fromx(t) to x(t+1) is marked with−a(t)g(t). From the definition of the noisy sphere
(3) it is clear thatxopt = 0.3 Writing R = ‖x(t)‖ andr = ‖x(t+1)‖ and using Pythagoras’ theorem
one obtains

‖v1‖2 + ‖v2‖2 =‖a(t)g(t)‖2 (9)

(R− ‖v1‖)2
+ ‖v2‖2 =r2. (10)

Solving (9) and (10) yields the so-called evolution equation

r2
= R2 − 2R‖v1‖ + ‖a(t)g(t)‖2 (11)

which describes the change in the distance to the optimum after a single iteration step. The
unknown in (11) is the norm of vectorv1, hence deriving an expression for‖v1‖ is the next step.

By means of the scalar product one obtains

v1 = −
x(t)T

a(t)g(t)

R2
x(t). (12)

The minus in front of the fraction is due tox(t) andv1 having anti-parallel directions. Recalling
that‖x(t)‖ = R, the norm ofv1 yields

‖v1‖ =
|a(t)x(t)T

g(t)|
R

. (13)

3The obtained results will still hold if an additional translation is applied to (3).

6



Using (8) the scalar product in (13) can be written as

a(t)x(t)T
g(t)
= a(t)x(t)T















1
W

W
∑

w=1













2x(t)T
∆

(t)
w +
σ̃

(t)
ǫ Nw(0, 1)

2c(t)













∆
(t)−1

w















. (14)

From now on, we will use that∆(t) obeys a symmetric±1 Bernoulli distribution. Hence, the
components of∆(t) are±1 and according to (1)∆(t)−1

= ∆
(t) is valid. Rewriting (14) yields

a(t)x(t)T
g(t)
=

a(t)

W

W
∑

w=1













2
(

x(t)T
∆

(t)
w

)2
+
σ̃

(t)
ǫ Nw(0, 1)

2c(t)
x(t)T
∆

(t)
w













. (15)

So far the quantity defined by the right-hand side (rhs) of (15) is a random variable. A main
idea of the analysis approach is to use expected values and toneglect the fluctuation, similar
to an ordinary differential equation approach. This will yield asymptotic correct equations for
N → ∞. As a consequence, this requires validating the obtained results for finiteN by simulation

experiments as it will be done in the next section. The expectation of
(

x(t)T
∆

(t)
w

)2
is

E
[

(

xT
∆
)2 |x

]

= E

































N
∑

i=1

xi∆i















2

|xi



















=

N
∑

i=1

x2
i E

[

∆
2
i

]

+

N
∑

i=1

∑

j,i

xi x jE
[

∆i∆ j

]

. (16)

Note, the iteration indext and gradient approximation indexw were omitted for brevity. Since∆
has i.i.d. components,∆i = ±1, and E [∆i ] = 0, the relations

E
[

∆i∆ j

]

= E [∆i ] E
[

∆ j

]

= 0 and ∆2
i = 1 (17)

are valid. Using (17), (16) can be written as

E
[

(

xT
∆
)2 |x

]

=

N
∑

i=1

x2
i = R2. (18)

Now substituting (18) into (15) and taking the expectation yields

a(t)E
[

x(t)T
g(t)|x

]

=
a(t)

W

W
∑

w=1













2R2
+
σ̃

(t)
ǫ Nw(0, 1)

2c(t)
x(t)T

E
[

∆
(t)
w

]













. (19)

Recalling that E [∆i ] = 0, the last term in (19) vanishes. Thus, the resulting expectation for the
norm ofv1 is

E [‖v1‖|R] =
a(t)

R
E

[

|x(t)T
g(t)||R

]

=
a(t)

W

W
∑

w=1

2R= 2a(t)R. (20)

For further analysis we would like to have the evolution equation (11) only dependent on
R, the strategy parameters (a(t), c(t), W), and the function parametersN andσǫ . Thus, the term
‖g(t)‖2 in (11) needs to be expressed with those parameters. With (8)and recalling∆−1

= ∆ one
obtains

‖g(t)‖2 =
∥

∥

∥

∥

∥

∥

∥

1
W

W
∑

w=1













2x(t)T
∆

(t)
w +
σ̃

(t)
ǫ Nw(0, 1)

2c(t)













∆
(t)
w

∥

∥

∥

∥

∥

∥

∥

2

. (21)
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This is a random variable and again we are interested in its expectation. The derivation of
E

[

‖g(t)‖2
]

is rather technically involved and is given in detail in Appendix B. The result ob-
tained is

E
[

‖g(t)‖2|R
]

=
N
W















4R2
+
σ̃

(t)2

ǫ

4c(t)2















+ 4R2

(

1− 1
W

)

. (22)

Substituting (22) and (20) into (11) yields

E
[

r2|R
]

= R2 − 4a(t)R2
+

a(t)2
N

W















4R2
+
σ̃

(t)2

ǫ

4c(t)2















+ 4a(t)2
R2

(

1− 1
W

)

. (23)

With (23) it is possible to determine the expected gain by a single iteration step. Since (23)
depends onR2 andr2, the non-noisy function values atx(t) andx(t+1), this performance measure
will be called thequality gain. Defining the quality gain as

q(t)
= E

[

R2 − r2|R
]

, (24)

one obtains with (23)

q(t)
= 4a(t)R2

(

1− a(t)

W
(N +W− 1)

)

− a(t)2
Nσ̃(t)2

ǫ

4Wc(t)2 . (25)

From above expression one obtains the necessary condition for convergence in expectation as
q(t) > 0 ∀ t > T0 whereT0 ≥ 0 is constant. In the following we use (25) to derive convergence
criteria and optimal gradient step sizesa(t) for the three noise models.

3.2. Convergence Criteria and Optimal Gradient Step Sizes

First, the noise-free model,σǫ = 0, will be considered. In this case the quality gain reads

q(t)
= 4a(t)R2

(

1− a(t)

W
(N +W− 1)

)

. (26)

Convergence to the optimizer in expectation will be achieved if

4a(t)R2

(

1− a(t)

W
(N +W− 1)

)

> 0 (27)

necessarily holds. Given thata(t) andR2 are positive scalars one obtains

a(t) <
W

N +W− 1
. (28)

Further, one can derive an optimal step sizea(t) from (26) yielding the maximal change towards
the optimizer. Requiring dq(t)/da(t)

= 0 yields

4R2 − a(t)

(

8R2(N +W− 1)
W

)

= 0 (29)
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which can be solved fora(t), obtaining

a(t)
nf =

W
2(N +W− 1)

. (30)

The denotationa(t)
nf stands for optimala(t) in the noise-free case. As one can see, it does not

depend ont or R, thus, it is constant (α = 0, cf. line 10 in Alg. 1) throughout the optimization
process. Note, this result is specific for the noise-free sphere model and can not be applied to
other test function classes. Still, it allows for an insightin the algorithm’s behavior and will be
later used for the comparison with Evolution Strategies.

Next, the constant noise model,σǫ = const., will be considered. In this case the substitution

σ̃
(t)
ǫ =

√

(

σ+ǫ
)2
+

(

σ−ǫ
)2
=
√

2σǫ will be applied to the quality gain (25). Hence, the requirement
for convergence reads

4a(t)R2

(

1− a(t)

W
(N +W− 1)

)

− a(t)2
Nσ2
ǫ

2λc(t)2 > 0. (31)

The convergence criterion w.r.t.a(t) yields

a(t) <
W

(N +W− 1)+ N
8R2

(

σǫ
c(t)

)2
. (32)

Comparing (32) with the noise-free criterion (28), one can see that the upper limit ofa(t) is
smaller for the constant noise model. Furthermore,a(t) now depends on the current locationR
and iterationt. Moreover, ifR→ 0 (convergence towardsxopt) a(t) must decrease. Additionally,
one can derive convergence criteria w.r.t.Randσǫ . These are

R2 >
a(t)N

8
(

W− a(t)(N +W− 1)
)

(

σǫ

c(t)

)2
, (33)

σǫ <Rc(t)

√

8
(

W− a(t)(N +W− 1)
)

a(t)N
. (34)

The first criterion (33) states that for a given set ofa(t), c(t), W, andσǫ , SPSA will converge until
the distance to the optimizer is equal to the term on the rhs of(33). Thus the optimum will not
be reached (for that given set), however, decreasinga(t) or increasingc(t) or W will further reduce
the distance. Since, the rhs of (33) will appear frequently throughout the text we define

fmin(a(t), c(t)) =
a(t)N

8
(

W− a(t)(N +W− 1)
)

(

σǫ

c(t)

)2
, (35)

recalling thatf (x(t)) = R2. Note, so farf (x) was used for the observable (noisy) function value,
however, fmin represents a true (non-noisy) function value. The second criterion (34) gives an
insight on how large the noise strength can be while SPSA is still able to converge. Note, the
criteria (32)–(34) are not independent and all parameters must satisfy criterion (31).

Similar to the noise-free model, one can derive an optimala(t). Performing the same steps as
before yields

a(t)
cn =

4WR2

(

8R2(N +W− 1)+ N
σ2
ǫ

c(t)2

)
(36)
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wherea(t)
cn is the optimala(t) for the constant noise model. Comparinga(t)

cn with a(t)
nf reveals that

a(t)
cn depends onR andt. If R2 ≫ σ2

ǫ/c
(t)2
=⇒ a(t)

cn ≈ a(t)
nf , while for R→ 0 =⇒ a(t)

cn→ 0.
Finally, let us give some comments onc(t) for the constant noise model, which also apply

to a certain extent to the state-dependent noise model considered next. The common sequence
for c(t) is given in line 6 of Alg. 1. It is a decreasing sequence with the constantc(0) being
chosen approximately equal to the observed standard deviation of several function evaluations
at the initial pointx(1). It appears from the quality gain (25), thatc(t) only influences the noise
term and choosingc(t) large and constant is advantageous4. On the other hand, if the observed
standard deviation atx(1) is sufficiently large, this will yield a choice ofc(t) (especially for the
state-dependent noise-model where the noise strength increases with the fitness) causes a reduced
accuracy close to the optimizer due to numerical problems. Decreasingc(t) would increase the
noise factorσǫ/c(t) and thus decreasingq(t) (25). From previous analyses of SPSA [1] it is known,
however, that the bias of the gradient approximation for a general test function isO

(

c(t)2
)

and

hence a decreasingc(t)-sequence is beneficial in the general case.
In the state-dependent noise model the noise strengthσǫ will depend on the underlying true

function value. Such a relationship is for example observedin physical measurements where the
observed errors are relative to the value of the measurement. Usingσ∗ǫ = const. and definition

σ∗ǫ = σǫ
N

2R2
(37)

yieldsσǫ ∝ R2. As stated in the introduction we assumeσǫ (x) = σǫ(x ± c(t)
∆) for N → ∞ for

the state-dependent noise model.
Now substituting ˜σ(t)

ǫ in (25) with

σ̃(t)
ǫ =

√
2σ∗ǫ

2R2

N
(38)

yields the necessary condition for convergence

4a(t)R2

(

1− a(t)

W
(N +W− 1)

)

− 2a(t)2
σ∗2ǫ R4

NWc(t)2 > 0. (39)

As before, convergence criteria fora(t), R, andσ∗ǫ will be determined next. Convergence w.r.t.
the step size factora(t) is achieved if

a(t) <
2NW

2N(N +W− 1)+ R2
(

σ∗ǫ
c(t)

)2
(40)

holds. Similar to the constant noise model,a(t) depends on the current location. Assumingc(t) to
be constant, the upper limit fora(t) increases towards the rhs of (28) ifR→ 0. The criteria w.r.t.
R andσ∗ǫ read

R2 <
2N(W− a(t)(N +W− 1))

a(t)
(

σ∗ǫ
c(t)

)2
, (41)

σ∗ǫ <
c(t)

R

√

2N(W− a(t)(N +W− 1))
a(t)

. (42)

4Increasingc(t) is only beneficial ifx(t) ± c(t)
∆

(t) remains inside the feasible domain. However, such problemswill
not be considered here.
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Note the difference in the sign between (33) and (41). For the state-dependent noise model SPSA
converges only if the initial distance toxopt is smaller than the expression on the rhs of (41). A
respective conclusion concerning the maximal admissibleσ∗ǫ can be drawn from (42). From (42)
one can conclude that choosingc(t) ∝ R is an alternate valid choice for this factor. Apart from
that one is referred to the discussion on the choice ofc(t) at the end the constant noise model
analysis on page 10. As before, valid parameter sets must still satisfy (40).

Finally, an optimal setting fora(t) is determined by performing the same steps as before. One
obtains

a(t)
sn =

W

2(N +W− 1)+ R2

N

(

σ∗ǫ
c(t)

)2
(43)

wherea(t)
sn is the optimala(t) for the state-dependent noise model. Comparinga(t)

sn with a(t)
nf shows

that both are approximately the same forR→ 0. If Rorσ∗ǫ/c
(t) is largea(t)

sn tends towards 0.

3.3. Determining the Dynamics with the ODE Approach
To analyze the dynamic behavior for successive iterations,one could iterate (25) or use (25)

as basis for a differential equation which describes the dynamics. In the following the latter
method is considered. One starts by assuming

d f
dt
≈ −q (44)

where f represents the non-noisy function value. The restriction for this assumption is that the
higher order derivatives off w.r.t. t are small. For the step sequencesa(t) andc(t) the expressions
from Alg. 1

a(t)
=a(0)(t + A)−α, (45)

c(t)
=c(0)t−γ (46)

will be used. This additionally allows to determine the influence of the reduction ratesα andγ on
the dynamics. Moreover, since we only consider the dynamicsin the non-noisy fitness space, we
will replaceR2 with f in the respective equations. Starting with the noise-free case, one obtains

f ′ +













4a(0)(t + A)−α − 4a(0)2(N +W− 1)
W

(t + A)−2α













f = 0 (47)

where f ′ = d f /dt. Since we are mostly interested in the long-term behavior weassumet + A ≈ t
and forα > 0 that t−α >> t−2α holds. Further note thatt ≥ 1 holds. See Appendix C for the
detailed solution steps.

Equation (47) is a homogeneous differential equation, stated as an initial value problem.
Using

fstart := f (x(1)) (48)

and the solution ansatzf = cexp(−Z(t)), wherec is a constant andZ(t) is the integral over the
respective term inside the brackets in (47). With above assumptions the following solutions are
obtained

f (x(t)) =



































fstartexp(q̄(1− t)) , for α = 0,

fstartexp

(

4a(0)

1− α
(

1− t1−α
)

)

, for 0 < α < 1,

fstartt−4a(0)
, for α = 1.

(49)
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The term

q̄ =
4a(0)

W

(

W− a(0)(N +W− 1)
)

(50)

is reminiscent of the noise-free quality gain (25) with constant step size factor and normalized
by R2. The respective asymptotic behavior (t→ ∞) which yields

f (x(t)) ∼














exp
(

−t1−α
)

, for 0 ≤ α < 1,

t−4a(0)
, for α = 1.

(51)

From (51) one can deduce that the fastest convergence rate isobtained forα = 0, i.e constanta(t).
Forα < 1 one observes a log-linear convergence behavior, while forα = 1 sublinear convergence
is attained. The result obtained in [7] reads

lim
t→∞

1
t

log‖x(t)‖ = β a.s. (52)

whereβ < 0 is a small constant depending ona(t). Further the proof assumesc(t) anda(t) to be
constant,f three-times continuously differentiable w.r.t.x with bounded derivatives up to order
three in any bounded domain, andxopt = 0 to be unique. For more details and an extension of
the proof see [7, 8]. Forα = 0 (51) and (52) both predict a log-linear convergence behavior.
In [14] a convergence for noise-free quadratic function is presented for SPSA with additional
Hessian matrix adaptation. There the fastest convergence rate for the expected error of the trace
in the Hessian matrix is∼ exp

(

−t1/2
)

which is constrained by the parameters for the Hessian
approximation.

In the constant noise case, the differential equation reads

f ′ +













4a(0)t−α − 4a(0)2(N +W− 1)
W

t−2α













f =
a(0)2 Nσ2

ǫ

2Wc(0)2
t2(γ−α), (53)

wheret+A ≈ t was used. To solve this inhomogeneous differential equation a particular solution
will be added to the solution of the homogeneous equation (47). Using variation of constants,
the following integral is obtained5

∫

c′(t)dt =
a(0)2Nσ2

ǫ

2Wc(0)2

∫

t2(γ−α)exp













4a(0)

1− α t1−α − 4a(0)2(N +W− 1)
W(1− 2α)

t1−2α













dt. (54)

Unfortunately, this integral has a closed-form solution only for some special cases. One case
of interest isα = 0 andγ = 0, which represents constant step sizes factorsa(t) andc(t). Using
the initial condition (48) and adding the respective homogeneous solution (49) to the obtained
particular solution yields

f (x(t))α=0,γ=0 = fmin(a(0), c(0)) +
(

fstart− fmin(a(0), c(0))
)

exp(q̄(1− t)) . (55)

where fmin(a(0), c(0)) is defined by (35). The asymptotic behavior (t → ∞) of (55) reads

lim
t→∞

f (x(t)) = fmin(a(0), c(0)) =
a(0)N

8(W− a(0)(N +W− 1))

(

σǫ

c(0)

)2
. (56)

5For brevity some intermediate steps are not shown. See Appendix C for detailed solution steps.

12



Equation (56) shows thatxopt can not be reached if SPSA with constant gradient step size factor
a(t) is used.

Next, the case withα = 1 is investigated, which represents SPSA with a fast decreasing
gradient step size. Performing the same steps as above yields

f (x(t))α=1 =
a(0)2Nσ2

ǫ

2Wc(0)2
(

2γ − 1+ 4a(0)
)

(

t2γ−1 − t−4a(0))

+ fstartt
−4a(0)
, (57)

wheret−α ≫ t−2α was used. Due toa(0) ∝ 1/N (see (32)) the asymptotic convergence rate for
N → ∞ can be written as

f (x(t)) ∼ t2γ−1 for t→ ∞. (58)

The result obtained by Spall [2] reads

t
β

2 (x(t) − xopt)
dist.−−−→ N(µ,Σ) ast→ ∞, (59)

under the conditions given in Appendix A. Further,µ andΣ are mean vector and covariance
matrix of the attained normal distribution andβ = α − 2γ, which in the considered case equates
to β = 1− 2γ. Since one of the requirements for the proof is

3γ − α
2
≥ 0 (60)

the maximalβ is β = 2
3 with γ = 1

6. Details of the proof can be found in [1, 2]. Noting that (58)
is stated in terms off (x(t)) and (59) in terms ofx both state the same convergence rate.

Finally, the state-dependent noise model will be considered. Using the quality gain formula-
tion (39) where the normalized noise strengthσ∗ǫ (recallσ∗ǫ is constant during the optimization
process) is used, the resulting differential equation reads

f ′ + 4a(0)t−α
(

1− a(0)t−α

W
(N +W− 1)

)

f − 2a(0)2σ∗2ǫ
NWc(0)2

t2(γ−α) f 2
= 0. (61)

This differential equation is a first-order non-linear differential equation. However, (61) is a
Bernoulli differential equation which can be transformed into a linear differential equation. Using
the substitutions

u = f −1 andu′ = − f −2 f ′, (62)

one obtains

u′ − 4a(0)t−α
(

1− a(0)t−α

W
(N +W− 1)

)

u = −2a(0)2σ∗2ǫ
NWc(0)2

t2(γ−α). (63)

This equation is of the same type as the inhomogeneous differential equation for the constant
noise case (53). Hence, the same solution steps can be performed and the same restrictions
(closed-form solution only for special cases) apply. As done for the constant noise model, the
settingα = 0 andγ = 0 is considered first. Performing the appropriate steps yields

f (x(t))α=0,γ=0 =
2 fstartNc(0)2

(

a(0)(N +W− 1)−W
)

− fstarta(0)σ∗2ǫ +

(

fstarta(0)σ∗2ǫ +
2

Nc(0)2
(

a(0)(N +W− 1)−W
)

)

exp(−q̄(1− t))

.

(64)
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The asymptotic behavior of (64) is

f (x(t)) ∼ exp(−t) for t→ ∞. (65)

This is the same asymptotic rate as for the noise-free scenario with α = 0. In Spall’s proof, no
differentiation between the constant noise and state-dependent noise was made, hence the same
result (59) applies. The second case under consideration isthe one withα = 1. The solution for
the dynamics in this case reads

f (x(t))α=1,A=0 =
NWc(0)2 fstart

(

2γ − 4a(0) − 1
)

−2a(0)2σ∗2ǫ fstart

(

t2γ−1 − t4a(0)
)

+ NWc(0)2 (

2γ − 1− 4a(0)) t4a(0)
. (66)

The asymptotic analysis yields

f (x(t)) ∼ t−4a(0)
for t→ ∞, (67)

i.e, the same rate as forα = 1 and the noise-free model. Note, the exponent 2γ − 1 is negative.

3.4. Summary

This section presented the detailed steps of a theoretical analysis approach developed for Evo-
lution Strategies and its application to SPSA. The functionunder consideration was the sphere
model in combination with three different noise models. First the quality gain, a performance
measure for the one-iteration gain for the non-noisy function values, was derived. Using the
derived equations, convergence criteria and optimal gradient step sizes were determined. After-
wards, an ordinary differential equation approach, based on the quality gain equations, was used
to derive the overall dynamics. The results obtained were then compared with previous results
from literature. A core assumption of the presented approach is the neglect of the stochastic
fluctuations. Therefore, the derived equations are asymptotically correct forN→ ∞. To validate
the equations for finiteN, simulations will be performed and compared with the equations. This
is the topic of the next section.

4. Experimental Analysis

In this section the results derived from the previous section will be compared with simu-
lation experiments. The aim is to show the quality of the theoretical equations for finiteN.
Additionally, parameter studies will be performed to gain insight on the influence of the strategy
parameter. These studies will yields insight in the generalrelation between the parameter and
the performance of SPSA. First, the experimental settings will be described. The basic settings
for the noise-free and constant noise model analysis were:

• The components of the start point were chosen from theN(100, 25) normal distribution
for each sample anew.

• 10 samples were performed for each setting.

• The maximal number of function evaluations was set toFEsmax = 104N.

• The run was terminated whenftarget= f (xopt) + 10−20 was reached.
14
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Figure 2: Results of the simulation experiments for the noise-free case.Top left: Sample runs and theoretical predictions
for different search space dimensionalities.Top right: Influence of the search space dimensionalityN on the number
of function evaluations necessary to reachftarget. Bottom left: Influence ofa(t) to reach ftarget in terms of necessary
function evaluations. All sequences ofa(t) considered are constant, i.e. ,a(t)

= a(0) ∀t. Bottom right: Number of function
evaluations to reachftarget for different number of gradient samplesW for N = 50.

• The default strategy parameters were:c(0)
= 1, γ = 0, α = 0, A = 0, W = 1, and

a(t)
=

λ
2(N+λ−1) = a(t)

nf .

• The default value for the noise strength wasσǫ = 1.

For the state-dependent noise, a slightly different setup has been used.
The analysis is performed for the noise-free model first. In the top left-hand plot of Fig. 2

the dynamic behavior of 10 sample runs forN = 10, 20, 40 is shown. One can clearly see the
predicted log-linear convergence behavior of SPSA. Also the theoretical predictions based on
the iteration of the quality gain (25) and the solution to thehomogeneous ordinary differential
equation (47) are shown. The theory predicts in both cases a slightly worse performance w.r.t.
the number of function evaluations necessary. In the top right-hand plot of Fig. 2 the influence of
the search space dimensionalityN on the dynamic behavior is shown. From the curve it appears
that there is a linear relation betweenN and the number of function evaluations for a given value
of ftarget. In the bottom left-hand plot of Fig. 2 the influence ofa(t) on the dynamics is shown.
All sequences considered ofa(t) are constant w.r.t.t. Note the scaling of the horizontal axis for
a(t) by 1/a(t)

nf . As one can see, the actual choice ofa(t) is rather uncritical for the performance, as
long asa(t) is in the range 0.5a(t)

nf . . .1.5a(t)
nf . For non-constant sequences ofa(t), one can conclude

that performance will be poor ifa(t) will be outside this range. As to the influence of gradient
samples per iterationW, shown in the bottom right-hand plot in Fig. 2, increasing the W always
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Figure 3: Results of the simulation experiments for SPSA on the sphere model with constant noise (σǫ = 1). All results
shown were obtained witha(t)

= a(t)
nf , c(t)

= σǫ , andW = 1 if not stated otherwise.Left: Dynamics of sample runs and
mean value dynamics forN = 10, 50, 100 (from left to right).Center: The minimal fitnessfmin as function ofW/N. The
theoretical predictions are based on Equation (35).Right: Influence of the noise asσǫ/c(0) on fmin.

increases the number of function evaluations to reachftarget. Given thatW can be interpreted as
a form of resampling, the results discourage the use of it forthe noise-free sphere model. More
interesting is the fact, that the approximation quality of (25) is not reduced by increasingW,
while the results of the ODE approach (49) deviate strongly for largeW. The reason is that the
gradient step is increasing withW (30) and thus the granularity can not be accurately represented
by the ODE approach. However, the ODE approach still can be used as an approximation for the
lower bound of the performance.

Next, the noise model withσǫ = const. is considered. First, in the left-hand plot of Fig. 3
the dynamic behavior of SPSA with step size factor sequencea(t)

nf andσǫ = 1 is shown. Initially
the same behavior as for the noise-free case is observed (seetop left-hand plot of Fig. 2), until
the noisy influence is not negligible anymore and SPSA finallystagnates. As for the noise-free
model, theory and simulation results agree very well and thepredicted dynamics appear closer
to the observed mean value dynamics than for the noise-free case. The (mean) fitness value were
stagnation occurs is defined byfmin (35). In center plot of Fig. 3 the influence of the number
of gradient samples per iterationW is shown for search space dimensionalitiesN = 10, 100.
IncreasingW yields decreasing values offmin, albeit at the cost of more function evaluations per
iteration step. The influence of the noise strength onfmin is shown in the bottom right-hand plot
of Fig. 3. Instead of using the noise strengthσǫ as main parameter,σǫ/c(0) is used. This reflects
the situation where one does not exactly know the value ofσǫ and thus must estimatec(0) (which
should be chosen equal toσǫ according to [2]). For the sphere it makes no differences if either
σǫ is increased orc(0) is decreased. Again, the results of the simulation experiments and the
theoretical prediction by (35) agree well.

So far only constant sequences ofa(t) were considered. To improve the performance w.r.t.
fmin, SPSA with a decreasing factora(t) is analyzed next. The theoretical results (57) and (58)
predict that SPSA should converge toxopt, as t → ∞. In the right-hand plot of Fig. 4 the
dynamic behavior for different values ofα is shown. One can observe thatα > 0 results in a
continuously decreasing non-noisy function value, but onealso observes a simultaneous decrease
in the convergence rate. Since all the curves were obtained with W = 1, one can conclude that
usingα > 0 has a more pronounced effect on decreasingfmin than increasingW. Additionally, the
dynamic behavior fora(t)

cn (36) is shown. It outperforms all other variants in terms of convergence
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Figure 4: Influence ofα for the sphere model with constant noise and search space dimensionalityN = 100..Left: Sample
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cn.

rate and obtains the lowestfmin within the given budget of function evaluations. The reasonfor
this is shown in the left-hand plot of Fig. 4 where the historyof a(t)

cn is shown. As long as the
influence of the noise is negligible the strategy usesa(t)

nf . As soon as the noise has a noticeable
influencea(t) will be decreased. For comparison the curves fora(t) with different values ofα are
shown. This result suggest that an improvement of the performance can be achieved if SPSA is
operated with non-constantα-values. The development of such a sequence is beyond the scope
of the presented work and also should be further based on the performance on different objective
functions.

Finally, the state-dependent noise model will be investigated. Contrary to the previous anal-
yses, looking at the dynamic behavior reveals no new information, cf. left-hand plot of Fig. 6.
If SPSA is able to reachxopt, the dynamic curves are similar to the noise-free case behavior in
Fig. 2. Further, the quality of the agreement between the theoretical predictions and the simula-
tions is the same. On the other hand, if SPSA diverges one onlyobserves the diverging behavior
without gaining any insight. However, of particular interest is the question as to when SPSA
does diverge (e.g. for which parameter setting). Since our theoretical analysis is based on a
mean value approach, it only can predict either diverging orconverging behavior. To gain more
insight we define the success probability

psucc=
# samples whereftargetwas reached

# all samples
. (68)

This allows to track settings where some samples reachftarget and some do not. This requires a
change in the experimental settings to account for this behavior. The new experimental setup is:

• For each set of parameter 100 samples were performed.

• The termination criteria wereftarget= 10−20 or a maximal number of function evaluations
of 106N.

• The default parameters were:W = 1,σ∗ǫ = 1, a(t)
= a(t)

nf , fstart= 3N2, γ = 0, andc(t)
= σ∗ǫ .

The choice ofa(t) was made with the intention to show how the state-dependent noise model
influences the behavior of SPSA. On the other hand, the choiceof c(t) is somewhat artificial and
will be discussed later.
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Figure 5: Experimental analysis of SPSA on the sphere with state-dependent noise. See text for the standard parameter
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From the convergence criterion ofR2 for the state-dependent noise model (41), one can infer
that fstartmust be smaller than a certain value in order to achieve convergence. This is investigated
firstly and the results are shown in the top left-hand plot of Fig. 5. Using above parameter settings
one can derive from (41)

fstart< 2N2 (69)

as necessary convergence condition. ForN = 10 there are runs withpsucc > 0 for fstart > 2N2,
however, increasingN reveals a sharp drop inpsucc in the vicinity of fstart = 2N2. One can
speculate, that forN → ∞ a jump in psucc at fstart/N2

= 2 from 1 to 0 will appear. The middle
plot in the top row of Fig. 5 shows the influence of the number ofgradient samples per iteration
W. IncreasingW increasespsucc, albeit with a simultaneous increase in the number of function
evaluations. In the top right-hand plot of Fig. 5 the influence of using different constant gradient
step sizes is shown. The results are shown in terms of #FEs/psucc, where #FEs is the mean of
the numbers of function evaluations to reachftarget= 10−20. This measure was introduced in [17]
and represents an estimation of the success performance, i.e., the number of function evaluations
necessary to reach a given target value. It accounts for sample run being unsuccessful, meaning
the target function value was not achieved. In the remainingplots of Fig. 5 circles indicate runs
wherepsucc < 1 and crosses indicate runs withpsucc = 1. One can observe, that a smalla(0) is
necessary to reachpsucc = 1, which goes hand in hand with a slow convergence rate. The best
convergence rate is reached close toa(t)

nf , however, withpsucc< 1. Using decreasing gradient step
sizes as defined by (45) withα > 0 can improve the success rate as shown in the bottom left-
hand plot of Fig. 5. However, the performance in terms of function evaluations is considerably
reduced. The values forα not shown in the plots indicate runs whereftarget was not reached
within the budget of function evaluations for all samples. Finally, the influences ofσ∗ǫ andc(t)

are shown in the bottom middle and bottom right plots of Fig. 5. While the measure #FEs/psucc

remains constant for all values ofσ∗ǫ or c(t), one observes a drop in the success probability for
largeσ∗ǫ and smallc(t) respectively. The curves suggest choosingc(t) large is beneficial since it
only influences the noise term. However, as stated before this might results in a reduced accuracy
of the gradient estimation close to the optimizer due tox(t) ± c(t)

∆ ≈ ±c(t)
∆. Therefore, using

a decreasing sequence is advisable. Such a sequence could beproportional toR which can be
approximated from the function value or toσǫ which can be obtained by measuring the standard
deviation of several function evaluations during the run. Of course, the sequence (46) commonly
used is also valid, however, it does not use any information obtained during the run of SPSA.

Using a(t)
sn (43) improves the performance considerably as shown in Fig.6. The success

probability is alwayspsucc= 1 and the number of function evaluations is close to the best values
for the constant gradient step sizes (wherepsucc < 1), cf. top right-hand plot of Fig. 5. In the
right-hand plot of Fig. 6 the history ofa(t)

sn is plotted. One can observe thata(t) increases as
predicted by the theoretical analysis (43). This is contrary to the requirement limk→∞ a(t) → 0
which is used in the analysis of SPSA by Spall et al. The explanation is, that at the initial point
(away from the optimum) the noise is large and therefore small a(t) are necessary (same as for the
constant noise model). Converging toward the optimum, the noise decreases until it is negligible.
Hence,a(t) should be converging towardsa(t)

nf . Again, this behavior suggests that SPSA can be
improved by some (adaptive) rule forα which uses information obtained during the run rather
than being pre-determined. Such rule must be able to decrease and increaseα depending on the
underlying model.
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5. Comparison with Evolution Strategies

In this section SPSA will be compared with Evolution Strategies (ESs) [18]. At first, the
concept of the ES will be introduced shortly. Later, comparisons for each noise model will be
performed based on performance criteria derived from the previous theoretical analysis.

ESs are nature-inspired strategies for optimization, which use a simplified model of Darwin’s
evolution paradigm. For an introduction into ES the reader is referred to [19]. Starting from an
initial solution x, mutationis used to generate a population ofλ offspring. In the ES variants
considered here, the probability distribution for the mutation obeys a normal distribution with
varianceσ2, whereσ is the so-called mutation strength . The offspring are evaluated andse-
lection is performed, where theµ offspring with the best function value(s) (smallest in the case
of minimization) are selected. Theµ (µ < λ) selected offspring, also referred to as parents, are
then used forrecombinationto create the new solution, which forµ > 1 equals the centroid of
the selected offspring. Given the variety of ES variants we will consider twobasic variants in
this section only. First, for the noise-free model the (1+1)-ES is used. This strategy generates 1
offspring in each generation. The selection process compares the function value of the offspring
with the function value of the current search point. In the case that the offspring function value
is better, the offspring will be the new solution, else the parental point is kept. A pseudo code of
this variant is shown in Alg. 2. For the constant noise and thestate-dependent noise model, the
(µ/µI , λ)-ES is used. This variant generatesλ offspring from which theµ best will be selected
(the parental solution is always discarded). By averaging theseµ offspring, the new parental
centroid will be created. The respective pseudo code is shown in Alg. 3.

Algorithm 2 The (1+1)-Evolution Strategy

1: initialize x(1) and mutation strengthσ
2: g := 1
3: repeat
4: y = xg + σN(0, I)
5: if f (y) < f (xg) then
6: xg+1← y
7: else
8: xg+1← xg

9: end if
10: σ← AF(σ) ⊲ Adaptation ofσ
11: g← g+ 1
12: until any termination criterion is fulfilled

In most variants of ES, an additional adaptation procedure for the mutation strengthσ is
needed. There exist different variants for this procedure, ranging from the 1/5th rule [18] over
self-adaptation procedures [20] to derandomized adaptation procedures [21, 22]6. However, in
this work we will not consider the influence of the adaptationprocedure.

5.1. The Noise-Free Sphere
In this section a comparison of SPSA and ES on the noise-free sphere is performed. In detail,

we will compare SPSA with constant gradient stepa(t)
nf with the (1+1)-ES. From [3] it is known,

6For a more comprehensive overview see also [23, 24, 19, 25]
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Algorithm 3 The (µ/µI , λ)-Evolution Strategy
1: initialize x andσ

2: set strategy parameterµ andλ ⊲ usuallyµ ≈ λ
4
. . .
λ

2
3: repeat
4: for l = 1 toλ do ⊲ create offspring
5: yl = xg + σN(0, I)
6: fl = f (yl)
7: end for
8: f̃ ← sort(f1, . . . , fl) ⊲ selection
9: xg+1← 1

µ

∑µ

i=1 yi;λ

10: σ← AF(σ) ⊲ Adaptation ofσ
11: g← g+ 1
12: until any termination criterion is fulfilled

that the (1+1)-ES is – apart from the (λopt)-ES [26] not considered here – the best performing
ES on the noise-free sphere. The comparison will be based on the quality gain. Defining the
normalized quality gain as

q∗ = q
N

2R2
, (70)

one obtains with (25) andW = 1

q∗SPSA= 2a(t)N
(

1− a(t)N
)

. (71)

Substituting the optimal gradient stepa(t)
nf (30) yields

q∗SPSA,opt =
1
2
. (72)

For ES, there exist two common performance measures, the quality gain and the progress rate.
The latter measures the progress in the objective vector space. It was shown in [27] that both
measures coincide forN→ ∞.7 The equation for the (1+1)-ES on the noise-free sphere is

q∗ES =
σ∗
√

2π
exp

(

−1
8
σ∗2

)

− σ
∗2

2

(

1−Φ
(

σ∗

2

))

, (73)

where

σ∗ =σ
N
R

and (74)

Φ(x) :=
1
√

2π

∫ x

−∞
exp

(

−1
2

t2
)

dt (75)

is the cumulative distribution function of the standard normal distribution. The maximal progress
for the (1+1)-ES occurs atσ∗ ≈ 1.224, cf. [3]. Finally, let us define efficiency as

ν =



























q∗ES

λ
, for ES,

q∗SPSA

2W
, for SPSA,

(76)

7The same can be shown for SPSA, however, it is omitted for brevity.
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i.e., for the (1+1)-ES yieldingν = q∗ES. The reason for the difference in the definition is, the
difference in the number of function evaluations per iteration step. In the left-hand plot of Fig. 7
the efficiency for both strategies is compared, based on the theoretical equations and for simula-
tions with N = 10 andN = 100. While SPSA reaches slightly higher efficiency values, ES has
a broader range for the step size to attain convergence. ForN = 100 both strategies are close to
the theoretical value, while forN = 10 the theoretical predictions underestimate the efficiency.
In the right-hand plot of Fig. 7, the number of function evaluations (FEs) to reachftarget for dif-
ferent search space dimensionalities is shown. Again, SPSAperforms better than the (1+1)-ES,
especially for lowN.

5.2. The Sphere with Constant Noise

For the constant noise model SPSA can reach the optimum (t → ∞) if the optimal step
sequencea(t)

cn (36) or (45) withα ≤ 1 is used. For ES, on the other hand, it will always have a
approximation error (residual location error) the expected value of which is given by [28]

fmin =
σǫN

4µcµ/µI ,λ

, (77)
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wherecµ/µI ,λ is the so-called progress coefficient [3]

cµ/µI ,λ =
λ − µ
2π

(

λ

µ

)
∫ ∞

−∞
exp

(

−t2
)

Φ(t)λ−µ−1 (1− Φ(t))µ−1 dt (78)

with Φ(t) defined by (75). A comparison of ES with SPSA is performed under assumption that
a(t)
= const. The residual location error for SPSA with constant gradientstep was determined in

(35) and reads

fmin =
a(0)N

8(W− a(0)(N +W− 1))

(

σǫ

c(0)

)2
. (79)

Thus, both strategies will attain a residual location errorand we are interested in the influence of
certain parameters on the residual location error. The results are shown in Fig. 8. The left-hand
plot shows the influence ofN. Two ES variants, one withϑ = µ/λ = 0.25 and one withϑ = 0.5
are shown. The value ofλ is calculated by

λ = 4+ ⌊3 log(N)⌋. (80)

Both ES variants display a similar behavior and scale linearly with N. For SPSA, a variant using
a(t)

nf and a variant witha(t)
= 1/(2N) are shown. Both useW = ⌊λ/2⌋ gradient samples per

iteration. Thus, all strategies use the same budget of function evaluations. For the latter choice of
a(t) the gradient step size is independent ofW which allows for smaller residual location errors
sincea(t) remains small. In the first case,a(t) increases withW, however the attained residual
location error remains almost constant. The middle plot shows the influence ofW andλ. One
can clearly observe that SPSA reaches smaller residual location errors, especially the variant
with a(t)

= 1/(2N). However, this variant will need much more function evaluations to reach the
vicinity of the steady state since the convergence rate is not optimal during the phase where the
influence of the noise is negligible. Finally, in the right plot the influence of the noise strength is
displayed. For ES the noisy strength equalsσǫ , while for SPSA it equalsσǫ/c(t) (see discussion
in Section 4). The stronger increase for the SPSA variants isdue to the quadratic appearance of
the noise strength in (79), while it is only linear for ES (77). Additionally, the most significant
difference between the two strategies is that the residual location error depends on the step size
for SPSA. Decreasing the gradient step size decreases the (expected) minimal distance toxopt,
hencea(t) → 0 ⇒ fmin → 0. For ES, the minimal distance does also depend on the step size,
however, ifσ∗ → 0 (77) is obtained. Overall, one can conclude that SPSA is able to attain
smaller residual location errors than ES except for large noise strengths.

5.3. The Sphere with State-Dependent Noise

For this noise model, the noise at the initial state is critical. From (42) we already know for
SPSA that the initial distance must be smaller than a certainvalue to attain convergence. For ES,
one can conclude from the constant noise model, that the initial noise strength must be connected
with a residual location error which is smaller than the initial distance toxopt. For the following
comparison, we assume that both strategies are able to converge. Then, our interest lies in how
efficientlythe strategies approach the optimum. Using the efficiency definition (76) and (39) one
obtains

νSPSA=
a(t)N
W

(

1− a(t)

W
(N +W− 1)

)

− a(t)2
R2

2W2

(

σ∗ǫ
c(t)

)2

. (81)
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From the theoretical analysis we know that the choice ofc(t) is critical. Given that the algorithm
itself has to deal withσǫ instead ofσ∗ǫ ,

8 one can conclude from (81) that ifc(t) ≈ R0σ
∗
ǫ is chosen,

convergence can be achieved for all possible initial statesR0. In Fig. 9 the efficiencyνSPSA is
shown for different gradient step sequences. The solid lines represent the results of (81) with
a(t)
= a(t)

sn, while the dashed ones are obtained witha(t)
= a(t)

nf . In both plots one can observe that

usinga(t)
nf can yieldνSPSA < 0 for a given set ofc(t),R, andσ∗ǫ , while usinga(t)

sn the efficiency is
always greater than zero. On the other hand, substituting the respective gradient step sequences
(30) or (43) into (81) and taking the limitN → ∞ yieldsνSPSA= 0.25 for both, cf. Fig. 7. From
the right-hand plot of Fig. 9 one can see thatW = 1 is the best choice and that forW > 1 νSPSA

can not reach the noise-free value ofνSPSA= 0.25.
The (µ/µI , λ)-ES was thoroughly analyzed for the sphere with state-dependent noise in [27].

Since, we don’t want to reproduce this work, we will just state some of the interesting facts. First,
the sphere in the limit of infinite search space dimensionality was considered and the efficiency
was derived yielding

νES =
σ∗cµ/µI ,λ

λ

√

1+
(

σ∗ǫ
σ∗

)2
− σ

∗2

2µλ
(82)

with the assumptionN→ ∞. From (82), one can derive the following convergence criterion

σ∗ǫ < 2µcµ/µI ,λ. (83)

This shows that increasingµ – and thereforeλ for constantϑ = µ/λ – ES should be able to
converge for anyσ∗ǫ . This behavior is also shown in the right-hand plot of Fig. 10, where the
maximal efficiency for differentλ with µ ≈ λ/3 is shown. The efficiency itself depends onσ∗

as shown in the left-hand plot. Comparing (82) with its noise-free version (see for example
[15]), one sees that ES reaches the noise-free efficiency forσ∗ǫ/σ

∗ → 0. The derived maximal
efficiency is 0.202. However, a more detailed analysis [15] showed that for finite search space

8The termσ∗ǫ is an artificial term which is useful for the analysis, however, it never appears in the actual implemen-
tation.
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dimensionalities the efficiency is reduced by decreasingN. It was shown that the maximal ef-
ficiency is reached for intermediate values ofλ. Further increasingλ reduces the efficiency, an
effect which can not be predicted by the asymptotic (N → ∞) Eq. (82). Overall, the same result
as for the other noise models can be stated, namely that SPSA slightly outperforms ES if both
strategies operate with parameter settings close to optimality.

6. Summary and Conclusion

In this work Simultaneous Perturbation Stochastic Approximation was analyzed with the help
of the theoretical approach developed for Evolution Strategies. The advantage of this approach
is that it can be applied to noisy and noise-free optimization at the same time. It allows to (ap-
proximately) determine the short term dynamic behavior (t ≪ ∞). Furthermore, the influence of
the strategy parameters on the dynamic behavior of the strategy can be evaluated, which provides
valuable information for practitioners in the field. A drawback of the approach is that the results
derived are only valid for the class of functions consideredand no guarantee for generalization
can be given. On the other hand, the results might be (partially) reused as done for the analy-
sis of ESs on certain ellipsoidal functions [29]. Another simplification is that an infinite search
space dimensionality must be considered. However, simulation results showed that the equations
derived are good approximations for finite search space dimensionalities. The function under
consideration in this work was the sphere model and it was shown that the approach was able to

a) derive theoretical approximations for the (one-step andoverall) dynamics,

b) obtain convergence criteria and optimal parameter settings.

Especially the derived optimal gradient step sizes showed that an improvement for SPSA can be
made by using gradient step sizes the values of which are close to the optimal ones. However, to
derive anadaptivegradient step size rule, more test functions need to be considered. First steps
in this direction have been already made with the adaptive SPSA [13, 14], which uses additional
function evaluations to approximate the Hessian matrix. Additionally, as for the sphere model
the step size factorc(t) plays only a minor role, however, it is expected that this will not be the
case for other types of test functions.
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The insights obtained from the theoretical analysis were used in the 2nd part for a com-
parison with simple Evolution Strategies. Here we have taken advantage of using a unified
theoretical approach, since the performance measures usedare compatible. For all three noise
models (noise-free, constant noise, state-dependent noise) SPSA performed better than the ES
variants considered. In the constant noise case restriction had to be applied, given that SPSA
could reach the optimum and ES could not. However, SPSA does reach the optimum fort → ∞,
an information not very useful for practical considerations. Hence, only the attained residual
location error was compared neglecting any effects from step size adaptation procedures. For
the state-dependent noise model, SPSA will diverge if the initial distance to the optimum is too
large. One can influence the critical distance by use of resampling the gradient approximation,
decreasing the initial gradient step size (which will reduce the convergence rate) or increasing
the gradient approximation step sizec(t) (which could be problematic if a bounded search space
domain is considered). A peculiarity of SPSA is that for the constant noise model the residual
location error depends on the gradient step size. This dependency is the reason why SPSA can
reach the optimum (t → ∞), however, on the other hand it reduces the convergence rate. Thus,
for this noise model a decreasinga(t) sequence is beneficial if the noise can not be neglected in
the function evaluation process.

The results obtained are promising. They should encourage the use of the presented ap-
proach to other test functions and optimization strategies. This will allow for a more detailed and
comprehensive comparison of different strategies providing the option to also design improved
algorithms for noisy optimization. The results should alsobe extended in the future. One im-
provement would be the analysis of ellipsoidal functions and possibly incorporating the adaptive
version of SPSA [14]. Another question is how the results (and the analysis) can be transferred
to less restrictive noise models, e.g., the noise being a iidsequence with zero mean and finite
second or higher order moments.
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Appendix A. Conditions and Theorems for the Convergence of SPSA

This appendix states the conditions and convergence theorems for SPSA form Spall’s proof
[1, 2]:

27



C1 (Gain Sequences) a(t) andc(t) > 0, a(t) andc(t) → 0,
∑∞

k=1 a(t)
= ∞, and

∑∞
k=1

a(t)2

c(t)2 < ∞.

C2 (Relationship to ODE) Let f(x) be continuous onRN. With Z(t) ∈ R
N representing a

time-varying function (t denoting time), suppose that the differential equation given by
dZ(t)

dt
= −f(Z(t)) has an asymptotically stable equilibrium point atx∗.

C3 (Iterate boundedness) supk≥0 ‖x(t)‖ < ∞ andx(t) lies in a closed and bounded subset of
the “domain of attraction” for the differential equation of C2 infinitely often.

C4 (Measurement noise; relationship between the measurement noise and ∆(t)) For all
t, E

[

(ǫ+ − ǫ−)|Ik,∆
(t)
]

= 0 and the ratio of measurement to perturbation is such that

E















(

G(x(t) ± c(t)
∆

(t))
∆ki

)2












is uniformly bounded overt andi.

(Ik = {x(1), x2, . . . , x(t);∆1,∆2, . . . ,∆k−1})

C5 (Smoothness of F) F is three-times continuously differentiable and bounded onRN.

C6 (Statistical properties of the perturbation ∆) All ∆ki are independent for allk, i, iden-
tically distributed for alli at eacht, symmetrically distributed around zero and uniformly
bounded in magnitude for allk, i.

C7 The continuity and equicontinuity assumptions about E
[

(ǫ∗ − ǫ−)2|Ik

]

from [1, Prop. 2]
hold.

C8 H(x∗) is positive definite whereH(x) is the Hessian matrix of̂f (x). Further, letλi , denote
the ith eigenvalue ofa(0)H(x∗), wherea(0) is from thea(t)-sequence. Ifα = 1, thenβ <
2 mini(λi).

C9 E
[

∆
2
ki

]

→ ρ, E
[

∆
−2
ki

]

→ ρ′ , and E
[

(ǫ∗ − ǫ−)2|Ik

]

→ ρ′′ for strictly positive constantsρ, ρ
′
,

andρ
′′

(almost sure (a.s.) in the latter case) ast → ∞.

Theorem 1 [2, p. 186]: Suppose that the conditions C1 – C6 hold. Further, suppose
that x∗ is a unique minimum in the search domain. Then, for the SPSA algorithm,
x(t) → x∗ a.s. as t→ ∞.

Theorem 2 [2, p. 186]: Suppose that the gains have the standard form a(t)
=

a(0)

(t + A)α
and c(t) =

c(0)

kγ
, k = 1, 2, . . ., with a(0), c(0), α, andγ strictly positive, A≥ 0,

β = α − 2γ > 0, and3γ − α
2
≥ 0. Further, suppose that conditions C1 – C6 from

Theorem 1 and conditions C7 – C9 hold. Then, for the SPSA algorithm,

k
β

2 (x(t) − x∗)
dist.−−−→ N(µ,Σ) as k→ ∞, (A.1)

whereµ andΣ are a mean vector and the covariance matrix.

Note, above proof does not apply to noise-free SPSA. A proof for this case was presented by
Gerencsér and Vágó in [7, 8].

28



In addition to this proof there exist other variants [30, 31]which try to relax some of the above
mentioned requirements. As a result one obtains almost sureconvergence, however, without
conditions C2-C4, relaxed conditions C1 and C5, and a weakened condition C6. For example
in [31] the so-called Trajectory-Subsequence method is used for the analysis of the algorithm,
which seems able to handle noise-free SPSA. Additionally, adeterministic approach is given in
[32].

Appendix B. Deriving ‖g‖2

In the following the steps of deriving (22) from (21) are described. The square of the gradient
norm withλ gradient approximations can be written as

‖g‖2 =‖1
λ

λ
∑

l=1

(

2xT
∆l +

σ̃ǫNl(0, 1)
2c

)

∆l‖2

=
1
λ2

λ
∑

l=1

λ
∑

m=1

(

2xT
∆l +

σ̃ǫNl(0, 1)
2c

) (

2xT
∆m +

σ̃ǫNm(0, 1)
2c

)

∆
T

l ∆m.

(B.1)

Note, the iteration countert is not shown for brevity. Equation B.1 can be expanded to

‖g‖2 = 1
λ2

λ
∑

l=1

(

4(xT
∆l)2
+ 2(xT

∆l)
σ̃ǫNl(0, 1)

2c
+
σ̃2
ǫNl(0, 1)2

4c2

)

∆
T
l ∆l

+
1
λ2

λ
∑

l=1

∑

m,l

[

4(xT
∆l)(xT

∆m)∆T

l ∆m+
σ̃ǫNm(0, 1)

c
(xT
∆l)∆T

l ∆m

+
σ̃ǫNl(0, 1)

c
(xT
∆m)∆T

l ∆m +
σ̃2
ǫNl(0, 1)Nm(0, 1)

4c2
∆

T

l ∆m

]

.

(B.2)

Defining

S1 :=
1
λ2

λ
∑

l=1

(

4(xT
∆l)2
+ 2(xT

∆l)
σ̃ǫNl(0, 1)

2c
+
σ̃2
ǫNl(0, 1)2

4c2

)

∆
T

l ∆l , (B.3)

the expectation of S1 for a given pointx with ‖x‖ = Ryields

E [S1|x] =
1
λ2

λ
∑

l=1

4E
[

(xT
∆l)2
∆

T

l ∆l |x
]

+ 2E

[

(xT
∆l)
σ̃ǫNl(0, 1)

2c
∆

T

l ∆l |x
]

+ E

[

σ̃2
ǫNl(0, 1)2

4c2
∆

T

l ∆l |x
]

.

(B.4)
The first expectation in (B.4) can be written as

E
[

(xT
∆l)

2
∆

T

l ∆l |x
]

= E



















N
∑

n=1















N
∑

i=1

xi∆l i















2

∆
2
ln
|x



















= E

















N
∑

n=1

N
∑

i=1

N
∑

j=1

xi x j∆l i∆l j∆
2
ln
|x
















. (B.5)

Using

E
[

∆l i∆l j

]

=















0 i , j

1 i = j
(B.6)
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and
∆

2
ln
= 1, (B.7)

one obtains

E
[

(xT
∆l)2
∆

T

l ∆l |x
]

=

N
∑

k=1

N
∑

i=1

x2
i = R2N. (B.8)

The second expectation in (B.4) can be written as

E

[

(xT
∆l)
σ̃ǫNl(0, 1)

2c
∆

T

l ∆l |x
]

= E

















N
∑

i=1

N
∑

j=1

xi∆l i∆
2
l j
z|x

















, (B.9)

with z =
σ̃ǫNl(0, 1)

2c
. Note, in the following all expectations are w.r.t.∆-terms. The expectation

ofN(0, 1) will be handled separately. Using E
[

∆l i∆
2
l j

]

= 0 for all i, j, one obtains

E

[

(xT
∆l)
σ̃ǫNl(0, 1)

2c
∆

T

l ∆l |x
]

= 0. (B.10)

The last expectation term in (B.4) can be written as

E

[

σ̃2
ǫNl(0, 1)2

4c2
∆

T
l ∆l |x

]

=
Nσ̃2
ǫ

4c2
, (B.11)

since E
[

∆
T

l ∆l

]

= N (see (B.6)). Now (B.8), (B.10), and (B.11) can be substituted into (B.4). This
yields the following expectation

E [S1|x] =
1
λ2

λ
∑

l=1

(

4R2N +
Nσ̃2
ǫ

4c2

)

. (B.12)

The sum of the squares of the Gaussian distributed random variables yields aχ2-distribution.
Thus, the expected value (B.12) can be written as

E [S1|R] =
1
λ2

(

λ4R2N +
Nσ̃2
ǫλ

4c2

)

=
N
λ

(

4R2
+
σ̃2
ǫ

4c2

)

(B.13)

Defining

S2 :=
1
λ2

λ
∑

l=1

∑

m,l

4(xT
∆l)(xT

∆m)∆T

l ∆m+
σ̃ǫNm(0, 1)

c
(xT
∆l)∆T

l ∆m

+
σ̃ǫNl(0, 1)

c
(xT
∆m)∆T

l ∆m+
σ̃2
ǫNl(0, 1)Nm(0, 1)

4c2
∆

T

l ∆m,

(B.14)

the expectations of the different terms in (B.14) will be determined next. At first the expectation
of 4(xT

∆l)(xT
∆m)∆T

l ∆m will be obtained. Starting with

E
[

4(xT
∆l)(xT

∆m)∆T

l ∆m|x
]

= 4E

















N
∑

i=1

N
∑

j=1

N
∑

n=1

xi∆l i x j∆mj∆ln∆mn |x
















, (B.15)
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one can group the terms according to their indices. This yields

E
[

4(xT
∆l)(xT

∆m)∆T

l ∆m|x
]

= 4E

















N
∑

i=1

N
∑

j=1

N
∑

n=1

xi x j∆mj∆mn∆l i∆ln |x
















. (B.16)

Using (B.6), one sees that fori = n the expectation for∆l does not vanish and that forj = n the
expectation for∆m does not vanish. Hence, only fori = n = j the expectation is not zero. Thus,
one obtains

E
[

4(xT
∆l)(xT

∆m)∆T

l ∆m|x
]

= 4E















N
∑

i=1

x2
i ∆

2
mi
∆

2
l i
|x














= 4R2, (B.17)

by using the fact∆2
= 1. The next expectation is

E

[

σ̃ǫNm(0, 1)
c

(xT
∆l)∆T

l ∆m|x
]

= 0, (B.18)

The expectation vanishes since E
[

∆mj

]

= 0 for all j and dueNm(0, 1) and∆ being uncorrelated.
A closer inspection of the remaining terms in (B.14) revealsthat they all contain either a single
∆l or ∆m term. Thus, the same reasoning as above can be used to show that the expectations of
these terms will vanish. Thus, the expectation of S2 is obtained by substituting (B.17) into the
expectation of (B.14)

E [S2|R] =
1
λ2

λ
∑

l=1

∑

m,l

4R2
= 4R2

(

1− 1
λ

)

. (B.19)

Now putting everything together by substituting (B.12) and(B.19) into the expectation of
(B.2) yields

E
[

‖g‖2|R
]

=
N
λ

(

4R2
+
σ̃2
ǫ

4c2

)

+ 4R2

(

1− 1
λ

)

. (B.20)

Appendix C. Solving the inhomogeneous differential equation

The solution of inhomogeneous differential equation appearing in the constant noise case and
the state-dependent noise case (after applying the substitution u = f −1) is described below. The
differential equation has the form

f ′ + f (z1t−α + z2t−2α) = z3k2γ−2α, (C.1)

where f ′ = d f
dkt and thezi are constants depending on the strategy and function parameters.

Furthert ≫ A is assumed and forα > 0 t−α ≫ t−2α will be assumed. First, the homogeneous
solution fh will be obtained. Afterwards an ansatz is used to derive a particular solution for
inhomogeneous equationfih. Finally, both solutions will be added to obtain the generalsolution
for (C.1). The homogeneous equations are

f ′h + fh(z1t + z2t) =0 for α = 0 and (C.2)

f ′h + fh(z1t−α) =0 for α > 0, (C.3)

which can be solved by using the ansatz

fh = cexp(−Z(T)) . (C.4)
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The exponentZ(T) is given by

Z(t) =















∫ t

T=1
z1T + z2TdT, for α = 0

∫ t

T=1
z1T−αdT, for α > 0.

(C.5)

The solution of (C.5) yields

Z(t) =



































(z1 + z2)(t − 1), for α = 0,

z1 ln(t), for α = 1,
z1

1− α
(

t1−α − 1
)

, for α , 0, 1.

(C.6)

Substituting the respective equation in (C.4), the homogenous solution is obtained

fh =



































cexp((z1 + z2)(1− t)) , for α = 0,

ct−z1, for α = 1,

cexp
( z1

1− α
(

1− t1−α
)

)

, for α , 0, 1.

(C.7)

The constantc is obtained by solvingfh(t = 1) = fstart.
For constant noise and state-dependent noise the ansatz forthe particular solution is

fih = c(t) fh, (C.8)

where fh is given by (C.7), however, without constantc. Substitution of (C.8) into (C.1) yields
an integral equation forc(t)′ of type

c(t) = z3

∫ t

T=1
T2(γ−α)exp( f (T)) dT, (C.9)

where f (T) is a function depending on the homogeneous solution. The closed-form solution of
above integral exist only for some special cases ofα andγ. For some other cases the solution
involves the generalized incomplete gamma function [33]. For the settingsα = 0, γ = 0 and
α = 1 solutions can be obtained which yield a interpretable solution. As example the solution
for α = 1 is shown in the following.

Using the ansatz
fih = c(t)t−z1 (C.10)

yields

c(t) = z3

∫ t

T=1
T2(γ−1)+z1dT

=
z3

2γ − 1+ z1

(

t2γ−1+z1 − 1
)

.

(C.11)

Thus, the particular solution is

fih,α=1 =
z3

2γ − 1+ z1

(

t2γ−1 − t−z1
)

. (C.12)

Then the general solution to (C.1) withα = 1 is

fα=1 =
z3

2γ − 1+ z1

(

t2γ−1 − t−z1
)

+ ct−z1. (C.13)

As before, the constantc is determined by solvingfα=1(t = 1) = fstart.
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