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Abstract

To theoretically compare the behavior offdrent algorithms compatible performance measures
are necessary. Thus, in the first part an analysis approaublaped for Evolution Strategies,
was applied to Simultaneous Perturbation Stochastic Appration on the noisy sphere model.
A considerable advantage of this approach is that conveegesults for non-noisy and noisy
optimization can be obtained simultaneously. Next to theveogence rates, optimal step sizes
and convergence criteria for 3ffirent noise models were derived. These results were vadidat
by simulation experiments. Afterwards, the results weeduer a comparison with Evolution
Strategies on the sphere model in combination with the 3ermoisdels. It was shown that both
strategies perform similarly, with a slight advantage fB'S3\ if optimal settings were used and
the noise strength is not too large.

Keywords: algorithm comparison, stochastic gradient approximagenlution strategy, noisy
optimization

1. Introduction

In recent years noisy optimization became an importantrebeopic, especially due to in-
creased use of simulation optimization and the advancesrimpater hardware development.
Therefore, an interesting aspect concerns the questiamwahldt kind of strategies one should
use for such optimization problems. To answer this questina needs to compare these strate-
gies. One way is to do this on a purely empirical level, as & wane in the recent Black Box
Optimization Benchmarking (BBOB) at the Genetic and Eviohéry Computation Conference
(GECCO) in 2009 and 2010However, there is also a desire to compare strategies onpedee
and more theoretical level. Given the diverse researchsfigdthcerned with noisy optimization
(e.g. Operations Research, Engineering Optimization|Ufemary Computation, Robust Opti-
mization), the strategies developed were mainly analyz#dmethods tailored to their specific
fields. This may cause obstacles in the comparison acrods,fighce the derived results are
not compatible and do not allow for a direct comparison. Aigoh is to use a unified approach
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which results in the same performance measures which thebecased as basis for a compari-
son.

Such a unified approach is presented in this work for the aisaf Simultaneous Perturba-
tion Stochastic Approximation (SPSA) [1, 2]. The approdsklf was developed for Evolution
Strategies [3] and will here be applied to &édient type of strategy for the first time. The aim is
to derive equations for the dynamic behavior, convergeriteria and optimal strategy param-
eter settings. We will show that the approach also providsight in the short term dynamics
which are usually not captured with common analysis metfi@dSPSA. See Appendix A for
an overview of the proofs obtained in [1]. The presentedyamigimethod will be applied to a
restricted class of test functions. That is, simple testfions are to be considered which allow
for mathematical tractability which in turn allows to dexieonclusions not (always) available
from other approaches (e.g. optimal parameter setting$)ilewhis might be considered as a
too less general approach, we like to point out that the sgzpeach was successfully applied
to other test functions, e.g. the ridge function [4] or ebplal-type functions [5, 6]. However,
such analyses present a demanding task which in turn meatngrdgress in this field proceeds
gradually. That is why we will consider the sphere modelfigsttion, however, in combination
with three diferent noise models:

e noise-free
e constant noise
e state-dependent noise

These models can be analyzed using the same analysis alpprdéch is not possible for SPSA
with the method presented in [2], where an additional treatinof the noise-free case was nec-
essary [7, 8]. Later on, we will compare the results obtawét the respective results from
literature.

After introducing SPSA in Section 2, a detailed descriptidithe steps for the theoretical
approach will be given in Section 3. A peculiarity of the aggorh used is that one has to consider
the test function in the limit of infinite search space dinmenality. However, in Section 4 it
will be shown that the derived results will provide good apfmations for finite search space
dimensionalities as well. This will be done by simulatiopexrments. Afterwards, in Section 5
a comparison with Evolution Strategies is performed. Thive equations derived will be used
to obtain performance measures. In Section 6 a summary afdheis given and conclusions
from the results derived are drawn.

2. TheBasic SPSA algorithm

This section reviews the basic SPSA algorithm. This alparitbelongs to the class of
stochastic approximation algorithms [9], performing lbaBy an approximate gradient descent.
The pseudo code of SPSA is given in Alg. 1. In lines 1-3 théaihgblution vectox® e RN is
set and the strategy parameters are chosen. In SPSA theifajlstrategy parametérare used:

e « € [0, 1] - reduction rate for the gradient step size fact8r

2There exist SPSA variants which use more than these basimpser. For examples see [2] and . jhuapl . edu/
SPSA. The web site also provides many examples for practicallenad solved with SPSA.
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Algorithm 1 Simultaneous Perturbation Stochastic Approximation
1: initialize x

- initialize a© andc©

: chooser, y, andA

: for t:= 1totnaxdo

choose perturbation vectaf

C(t) — C(O)t*V

£9 = £ (X0 + cVAO)

£ = £ (x0 - cOAV)

(t) ff) - f—(t) 1 -1. “1 A-1 -1\"

o g¥=-"5—A > AL = (AT AL LAY

100 a® = a0+ A

11: X(”l) — X(t) — a(t)g(t)

12: check terminatiorcriterion

13: end for

O N ahr N

v € [0, 1] - reduction rate for the gradient approximation step &ztorc®

a® > 0 - initial value of the gradient step size factor

e c@ > 0 -initial value of gradient approximation step size factor
e A > 0 - stability factor

The core of SPSA is represented by the loop within lines 4BE8iningtyax as maximal number
of iterations, the loop is repeated untjlx or any other termination criterion defined in line 12
is satisfied. At the start of the loop the perturbation vearis chosen from a given random
distribution. This distribution must satisfy the follovgmproperties [2]:

1. symmetry,
2. zero mean and finite variance,
3. finite inverse moments.

The components of the perturbation vector must be indepeadel identically distributed (iid).
A common choice is the symmetriel Bernoulli distribution. This distribution generateg,
each with a probability op = 0.5. Surveys [10, 11] showed that this distribution is weltedi
for most test functions considered. Therefore, this work avily consider this distribution for
A®. Next, the current gradient approximation step size facfoiis determined (line 6). As
recommended in [2[© should be set approximately equal to the noise at the igtait and

v = 0.101 being the smallest admissible value fulfilling the agstimns of Spall’'s convergence
proof [2]. Afterwards, the gradient is approximated in Iley means of the function values at
the pointx® + cWA® (line 7 and line 8). NoteA™! is defined as

A= (AT AL L AR (1)

whereAs, ..., Ay are the components af It is a remarkable property of SPSA that it needs only
two function evaluations to approximate the gradient. Tis contrast to other methods relying
on, e.g,N + 1 or 2N function evaluations using forward and centrafelience approximation

3



schemes, respectively (e.g. Implicit Filtering [12]). Tuyedate of the current solution is done in
line 11, where the approximated gradient is multiplied by dinadient step size factaf). This
factor depends 0a©, t, A, anda (see line 10). The recommendations for these parameters are
a = 0.602 andA =~ 0.1tnha With these values and the desired minimal change in the ituaign

of the components ofM in the first iterations one can determia® [2]. As for y, the setting for

a is equal to the smallest admissible value fulfilling the aggtions of the convergence proof.
Choosing the smallest values is beneficial for practicaliegtions with strong noise. Note, these
recommendations are based on empirical investigationsweral test functions. The theoretical
asymptotic optimal values were determinedvas 1 andy = 1/6 in [1]. The interested reader is
also referred to [2, Chapter 7].

The basic algorithm can be enhanced by using some kind oigrizamoothing and applying
thresholds for the updates. See [2] for a discussion of thpens. Another improvement is
the use of adaptive SPSA [13, 14]. Where the Hessian matalssapproximated (by at least 2
more function evaluations per iteration) and then it is usedhe update of the solution vector.
In this work we are only concerned with the basic algorithitihaugh a slight modification will
be introduced shortly.

3. Analysis of the dynamical behavior

For a comparison of tlierent algorithms one can use a benchmark suite (e.g, [1 pteiG]
which especially considers noisy optimization and the osedun the BBOB 2009 workshop,
see footnote 1), which gives information about the perfaroeeof the algorithms over a range
of test functions. But there is still a need (and desire) topare strategies on a theoretical level.
This gives more insight about the behaviors of the algorithffirst step was presented in [16]
where five diferent methods (Random Search, SPSA, Evolution Strategi)s Genetic Algo-
rithms, and Simulated Annealing) were compared. The coisgarvas based on the respective
theoretical convergence rates for an unimodal and seaddjctive function. The restriction
to this function class was necessary, since for other fanaiasses the theoretical results were
not comparable.

The approach pursued here is slightlffelient. Rather than usingftirent formulations for
the convergence rate, a unique formulation for all alganighs considered. The approach was
developed in [3] for the analysis of ES. It was successfutlglied to diferent variants of ES
and diferent test functions (e.g., sphere model, ridge, and qtieduactions). In the current
paper the approach will be applied to a non-ES algorithm Herfirst time. To this end, we
restrict ourselves to the sphere model (which is unimodédlseparable) in combination with
three diferent noise models. In the following a detailed step-bp-sescription of the analysis
approach will be given. First an one-iteration performameasure will be derived. The result
obtained will then be used to derive convergence critepéip@l gradient step sequences, and
equations representing the overall dynamic behavior. rAfieds in Section 5, a comparison of
the results obtained with respective results for ES will Espnted.

3.1. Deriving the Fitness Gain - A One-step Performance Meas
First, let us start with the definition of the sphere model

f(x) = x'x, 2)



wherex € RN andf : RN — R. Since we are interested in noisy optimization, the fumctio
definition is generalized to
f(x) = XX+ c(X)N(0,1) 3)

where the first term in (3) represents the true (non-noisggtion value and the second term
represents a scalar noise term. The noise term consists nbtke strengthr.(x) and a standard
normally distributed random scalaf(0, 1), a common model in noisy optimization. The inves-
tigation of other noise distributions is beyond the scopthisf paper. The three fligrent noise
models under consideration are:(x) = 0 (noise-free model)y.(X) = const (constant noise
model), andr.(x) = froisdX) (State-dependent noise model) where the noise strengénds on
the location and vanishes at the optimum. In the constasenabdel, the variance of the noise
will be constant. For the state-dependent noise model ggsraed thad-. will only depend on
the currenk®, i.e. o (xV) = o (x® + cWA). With this simplification the math involved is much
more amenable asdif. would depend on the actual evaluated point. The same noidelmas
used for the analysis of ES [15] which allows for a comparisbhoth strategies. However, as
shown in [15], forN — oo, a frequently used assumption in the derivation procesd)éhavior
of both models is the same. Last but not least, for all modeisiclered no correlation between
different evaluations of the noise term is assumed/N@. 1) is iid.

The analysis starts by considering the gradient approximéat SPSA

®) ®
f + = f7 A(trl

200 )

g0 =
where 9 represent the evaluation of (3) at the poirfs+ A®. Due to the noise in (3) and
the manner in which the gradient is estimated in (4), theltiegig® has only limited accuracy.
After all it is an approximation To improve the accuracy, one can use an average of multiple
gradient approximations. This is achieved by adding a lowp Alg. 1, which encloses lines
5-9. Thus, each approximation hasfeientA®, but the same®. To differentiate between
the diferent gradient approximations a subscripis added. Applying this idea, the gradient
approximation changes from (4) to

® _ 0 _ 8 - £ A0
g7 = Z W Z G (5)

whereW is the number of gradient approximations. The functionestibns at the test points
can be written with (3) as

fw (x(‘) + c(‘)A\(,f,)) = (x(‘) + c(t)A\(},))T (x(t) + c(t)A\(},)) +o7 (x(‘)) Nw(0,1)

(6)
= xO"x® 1 20O A + c(‘)ZA\(,‘V)T AD + ot (x(t)) Nuw(0, 1).
Thus, the fitness ffierence in (5) can be expressed as
19 — 19 = 4c9xO'AY + FYNW(0, 1) (7)

wherec? represents the fierence in the noise factors and depends on the chosen noite. mo
Substltutmg (7) into (5) yields

W ~ (1)
1 T o' N, (O 1) -1
((——— OTAO § Ze ZTWAS T/ AW
gV = W gl(ZX Ay + c0 Ay - (8)
W=
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Figure 1: Decomposition of the update stegf?g® with the help of Pythagoras’ theorem.

An analysis of above equation shows thatfﬁtﬁ? = 0, the value ot® has no influence on the
gradient approximation. This is typical for SPSA on quaidranctions. Ifc® > 0, increasing
c® will reduce the noisy disturbance.

The next step is to decompose the gradient staflg®, into a vectow; which points in the
direction of the optimunx,p: and a vector with perpendicular directisp This enables one to
determine the achieved gain in the iteration step and thasinéle of the algorithm parameters on
this gain. The decomposition is outlined in Fig. 1. The optimis marked withqy, the solution
at the start of the iteration witk®, and the solution at the end of the iteration with). The
gradient step from® to xV is marked with-a®g®. From the definition of the noisy sphere
(3) it is clear thaept = 0.2 Writing R = [x®|| andr = ||x**Y]| and using Pythagoras’ theorem
one obtains

[Ivall? + [Ivall? =lla®g®)2 9)
(R=IIvVall)? + [Ival® =r%. (10)

Solving (9) and (10) yields the so-called evolution equatio
r? = R — 2RIvil| + 1lBOgO) (11)

which describes the change in the distance to the optimuen afsingle iteration step. The
unknown in (11) is the norm of vecter, hence deriving an expression fimi|| is the next step.
By means of the scalar product one obtains

NOIRORO)
a9 o

Vi = R?

(12)
The minus in front of the fraction is due ) andv; having anti-parallel directions. Recalling
that|)x®|| = R, the norm ofv; yields

|a(t) X(t)T g(t) |

= (13)

lIvall =

3The obtained results will still hold if an additional traatibn is applied to (3).
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Using (8) the scalar product in (13) can be written as

w - (1)

OO 40 — 4007 [ L O A0 , Te M0, 1)) [t

a’x®¥ gV =a"x (WZ(ZX Ay + 200 Ay - (14)
w=1

From now on, we will use thaa® obeys a symmetrie:1 Bernoulli distribution. Hence, the
components oA® are+1 and according to (IA®" = A® is valid. Rewriting (14) yields

o W FON (0.1
07 40 _ & 07 A2, Te N0, 1) w7 (o
a’xV gV = Wz‘i(z(x AW) + 200 XV AW |- (15)
W=

So far the quantity defined by the right-hand side (rhs) of) (% random variable. A main
idea of the analysis approach is to use expected values amegtect the fluctuation, similar
to an ordinary dferential equation approach. This will yield asymptoticrect equations for
N — 0. As a consequence, this requires validating the obtairsdtsgfor finiteN by simulation

experiments as it will be done in the next section. The extiert of(x(t)TA\(,f,)) is
2

E[(xTA)2 |x] = E{(IZN; xiAi] I

Note, the iteration indekand gradient approximation indexwere omitted for brevity. Sinc&
has i.i.d. componentg,; = +1, and E]\] = 0, the relations

N N

- inzE[AiZ]+Zinij[AiAj]. (16)

i=1 i=1 j=i

E[AiA]| =E[AIE[A)]=0 and A?=1 (17)

are valid. Using (17), (16) can be written as

N
E [(XTA)2 |x] = Z Xt = R (18)
i=1
Now substituting (18) into (15) and taking the expectatiaids
t W ~(t)
O[O O] = & T N0 1) 140
a E[x g |x]_ WZ;(2R2+ O E[AW] . (19)
w=

Recalling that EAi] = 0, the last term in (19) vanishes. Thus, the resulting exgtiect for the
norm ofv; is

® O W

a T a

-2 "' 5® - — 25

EvillR] = SB[ gOIR] = T WZfR" 23R, (20)
For further analysis we would like to have the evolution gaum(11) only dependent on

R, the strategy parameteraY{, ¢, W), and the function parametelsando,. Thus, the term

lg®]? in (11) needs to be expressed with those parameters. Witm(BjecallingA= = A one

obtains

w ~ (1) 2
1 o Nw(0, 1
||g<"||2=”\,—v§ (ZX‘OTAS%—ZS(S ))A&) (21)
w=1




This is a random variable and again we are interested in peaation. The derivation of
E[Ilg(t)llz] is rather technically involved and is given in detail in Appix B. The result ob-
tained is

N v’ 1
ORR] = -~ € _ =
E[Ig"IPR] = W(4R2+ ywe: + 4R (1 W). (22)
Substituting (22) and (20) into (11) yields
2 R2 OR2 a®’N R o (et)z O°R2 1
E[rR| = R - 4aOR2 + T Gt (1— v_v)‘ (23)

With (23) it is possible to determine the expected gain bynglsi iteration step. Since (23)
depends o2 andr?, the non-noisy function values &) andx®?%, this performance measure
will be called thequality gain Defining the quality gain as

q =E[R-r?R], (24)

one obtains with (23)

2 ~ 2
a®’ NGO

AW GV (25)

®
q = 4a<‘>R2(1 - aW (N+W - 1)) -

From above expression one obtains the necessary conditicgofvergence in expectation as
q¥ > 0V t > TowhereT, > 0 is constant. In the following we use (25) to derive convange
criteria and optimal gradient step sizS for the three noise models.

3.2. Convergence Criteria and Optimal Gradient Step Sizes
First, the noise-free modet;,. = 0, will be considered. In this case the quality gain reads

®
q¥ = 4aR? (1 - aW (N+W-— 1)). (26)
Convergence to the optimizer in expectation will be achiafe
a®
4aOR2 (1 - W (N+W- 1)) >0 (27)
necessarily holds. Given thaf) andR? are positive scalars one obtains
a® < L (28)

N+W-1

Further, one can derive an optimal step si#efrom (26) yielding the maximal change towards
the optimizer. Requiringaf! /da® = 0 yields

=0 (29)

4R — g (W)

8



which can be solved faa®, obtaining

® _ w

= SN W) (30)

The denotatioraff? stands for optimah® in the noise-free case. As one can see, it does not
depend ort or R, thus, it is constanta( = O, cf. line 10 in Alg. 1) throughout the optimization
process. Note, this result is specific for the noise-freespimodel and can not be applied to
other test function classes. Still, it allows for an insighthe algorithm’s behavior and will be
later used for the comparison with Evolution Strategies.

Next, the constant noise model, = const, will be considered. In this case the substitution

&9 = V(@) + (02)? = V20 will be applied to the quality gain (25). Hence, the requieern
for convergence reads

® O’ Ng2
OR2(1- & _py) - N
430R? (1 W (N+W 1)) YT (31)
The convergence criterion w.ra® yields
W
a < ) (32)

(N+W-1)+ 3% (%)

Comparing (32) with the noise-free criterion (28), one caa that the upper limit 0&® is
smaller for the constant noise model. Furthermafénow depends on the current locatiBn
and iteratiort. Moreover, ifR — 0 (convergence towardg) a® must decrease. Additionally,
one can derive convergence criteria wRtando.. These are

a®ON o\
R2>8(W—a(t)(N+W—1)) (@) . (33)
8(W—-aO(N+Ww-1)
o <Rd‘)\/ ( =N ) (34)

The first criterion (33) states that for a given sea®f ¢, W, ando., SPSA will converge until
the distance to the optimizer is equal to the term on the ri{88) Thus the optimum will not
be reached (for that given set), however, decreaathgr increasing® or W will further reduce
the distance. Since, the rhs of (33) will appear frequehtigughout the text we define

fmin (a(t), C(t)) =

ain ( ik )2 : (35)

8(W—a®(N +W - 1)) \c®

recalling thatf (x®) = R?. Note, so farf(x) was used for the observable (noisy) function value,
however, fmin represents a true (non-noisy) function value. The secoiterion (34) gives an
insight on how large the noise strength can be while SPSAlisbte to converge. Note, the
criteria (32)—(34) are not independent and all parameteist satisfy criterion (31).

Similar to the noise-free model, one can derive an optaf¥alPerforming the same steps as
before yields
al) = el — (36)
0—6
c®?

(8R2(N +W-1)+N
9



Whereagr)1 is the optimala® for the constant noise model. Compar'mfﬁ with e\(:z reveals that
al depends oR andt. If R? > ¢2/c” = & ~ al, while forR — 0 = a{) — 0.

Finally, let us give some comments of? for the constant noise model, which also apply
to a certain extent to the state-dependent noise modeldsmesi next. The common sequence
for c® is given in line 6 of Alg. 1. It is a decreasing sequence witk donstant©® being
chosen approximately equal to the observed standard @eviatt several function evaluations
at the initial pointxY). It appears from the quality gain (25), thé® only influences the noise
term and choosing® large and constant is advantagebou®n the other hand, if the observed
standard deviation at?) is sufficiently large, this will yield a choice of® (especially for the
state-dependent noise-model where the noise strengtaises with the fithess) causes a reduced
accuracy close to the optimizer due to numerical problenmecr&asing® would increase the
noise factorr./c®) and thus decreasing§) (25). From previous analyses of SPSA [1] itis known,
however, that the bias of the gradient approximation for imega test function is)(c(‘)z) and

hence a decreasirmd)-sequence is beneficial in the general case.

In the state-dependent noise model the noise strengttill depend on the underlying true
function value. Such a relationship is for example obsemgyhysical measurements where the
observed errors are relative to the value of the measurerdsimgo; = const and definition

. N
T = O-€ﬁ (37)
yieldso, o« R%. As stated in the introduction we assumgx) = o(x = c9A) for N — o for
the state-dependent noise model.
Now substituting~? in (25) with

2R?
O = \on—:w (38)
yields the necessary condition for convergence
a® 22 2R
4a9R? (1 - w N +W—1))— W (39)

As before, convergence criteria faf, R, ando will be determined next. Convergence w.r.t.
the step size facta® is achieved if

2NW

a® < 2
2N(N +W - 1)+ R (&)

(40)

holds. Similar to the constant noise mod#¥, depends on the current location. Assumifigto
be constant, the upper limit faf) increases towards the rhs of (28Rf— 0. The criteria w.r.t.
Rando} read

2N(W - aO(N+W -1
R NW-a (*+2 )
 (5)
c® \/ZN(W— aO(N + W — 1))
o, <— .
€ "R a®

, (41)

(42)

“4Increasingc® is only beneficial ifx® + c®A® remains inside the feasible domain. However, such probieiths
not be considered here.
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Note the diference in the sign between (33) and (41). For the state-depénoise model SPSA
converges only if the initial distance g is smaller than the expression on the rhs of (41). A
respective conclusion concerning the maximal admissiblean be drawn from (42). From (42)
one can conclude that choosio§ « Ris an alternate valid choice for this factor. Apart from
that one is referred to the discussion on the choicelbht the end the constant noise model
analysis on page 10. As before, valid parameter sets mlisatsfy (40).

Finally, an optimal setting foa® is determined by performing the same steps as before. One

obtains W
al) = — (43)
2N+W-1)+ 8 (%)

Whereagr), is the optimak® for the state-dependent noise model. Compam&,igvith an) shows
that both are approximately the sameRo# 0. If Ror o*/c® is Iargeag,)] tends towards O.

3.3. Determining the Dynamics with the ODE Approach

To analyze the dynamic behavior for successive iterations,could iterate (25) or use (25)
as basis for a dierential equation which describes the dynamics. In thevotig the latter
method is considered. One starts by assuming

df
dt
wheref represents the non-noisy function value. The restrictarttiis assumption is that the

higher order derivatives df w.r.t. t are small. For the step sequena®sandc® the expressions
from Alg. 1

—q (44)

at =aO(t + A, (45)
c® =cOt> (46)

will be used. This additionally allows to determine the iefhee of the reduction ratesandy on
the dynamics. Moreover, since we only consider the dynamittee non-noisy fitness space, we
will replaceR? with f in the respective equations. Starting with the noise-fesecone obtains

43" (N + W - 1)

'+ [4a(0)(t + A - W

(t+ A)2“] f=0 (47)
wheref’ = df /dt. Since we are mostly interested in the long-term behavioasseime + A ~ t
and fora > 0 thatt™ >> t~2 holds. Further note that> 1 holds. See Appendix C for the
detailed solution steps.
Equation (47) is a homogeneoudtdrential equation, stated as an initial value problem.
Using
fstarr:= F(xM) (48)

and the solution ansatz = cexp(—Z(t)), wherec is a constant and(t) is the integral over the
respective term inside the brackets in (47). With aboverapsions the following solutions are
obtained

fstarlexp(a(l -1), fora =0,

430
f(x®) = fstanexp(la—a (1- tl“)), for0<a <1, (49)

foat ™, fora = 1.
11



The term 0
_ 4a
= (W—aO(N+ W -1)) (50)
is reminiscent of the noise-free quality gain (25) with dans$ step size factor and normalized
by R?. The respective asymptotic behavibr§ co) which yields

exp(-t?), for0< e < 1,
t
- { 4 fora =1 D

From (51) one can deduce that the fastest convergence mitised for = 0, i.e constana®.
Fora < 1 one observes a log-linear convergence behavior, while fof sublinear convergence
is attained. The result obtained in [7] reads

1
Jim = log x| = B as. (52)

whereg < 0 is a small constant depending afi. Further the proof assume® anda® to be
constant,f three-times continuously filerentiable w.r.tx with bounded derivatives up to order
three in any bounded domain, argh = 0 to be unique. For more details and an extension of
the proof see [7, 8]. Fotr = 0 (51) and (52) both predict a log-linear convergence bemavi
In [14] a convergence for noise-free quadratic functionrisspnted for SPSA with additional
Hessian matrix adaptation. There the fastest convergeateéar the expected error of the trace
in the Hessian matrix is exp(—tl/z) which is constrained by the parameters for the Hessian
approximation.

In the constant noise case, thédiential equation reads

t2(y—<r) , (53)

. [ 2O _ AN+ W - 1)t‘2“] _ a%No?

w - 2Wdor
wheret + A ~ t was used. To solve this inhomogeneoutadential equation a particular solution

will be added to the solution of the homogeneous equatioh (48ing variation of constants,
the following integral is obtainéd

(P N2 ©) (0¢ _
a% N . 489 |, 4aP(N+W-1),
‘(t)dt = ———¢ | 20 Dexp| e - Z5 T Tl-2e gy 54
fc Ot = S waor f Pl 1o W(1 - 20) 4)

Unfortunately, this integral has a closed-form solutioydior some special cases. One case
of interest ise = 0 andy = 0, which represents constant step sizes fa@®randc®. Using
the initial condition (48) and adding the respective honmageis solution (49) to the obtained
particular solution yields

F(x9)4=0y-0 = fnin(@®, ¢9) + (fstart— frmin(a®, ¢?)) exp(a(1 - 1)) . (55)

wherefy,in(a@, ¢) is defined by (35). The asymptotic behavibr ) of (55) reads

2ON ( Te )2 . (56)

. Oy = f . (50) ~0)y _ 0
lim £(xY) = fmin(a®™, c) 8W-aO(N+wW-1))\c®

SFor brevity some intermediate steps are not shown. See Alppdd for detailed solution steps.
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Equation (56) shows that: can not be reached if SPSA with constant gradient step sizerfa
a® is used.

Next, the case witlw = 1 is investigated, which represents SPSA with a fast deicrgas
gradient step size. Performing the same steps as abovs yield

a®"N o2

f X(t) a=1=
01 = Sy o (2y — 1+ 430)

(2 = ) 4 fart =7, (57)

wheret™ > t~2 was used. Due ta® o« 1/N (see (32)) the asymptotic convergence rate for
N — oo can be written as
f(xV) ~ 271 for t — co. (58)

The result obtained by Spall [2] reads

(X0 — Xop) =25 N(.X)  ast — oo, (59)

under the conditions given in Appendix A. FurthgrandX are mean vector and covariance
matrix of the attained normal distribution agd= a — 2y, which in the considered case equates
to8 = 1 - 2y. Since one of the requirements for the proof is

3y-2>0 (60)
2
the maximaB isgB = % with y = % Details of the proof can be found in [1, 2]. Noting that (58)
is stated in terms of (x() and (59) in terms of both state the same convergence rate.
Finally, the state-dependent noise model will be consitlddsing the quality gain formula-
tion (39) where the normalized noise strength(recall o} is constant during the optimization
process) is used, the resultingfdrential equation reads

a0 26 712
W (N+W-1)|f - NWdor

' + 420t (1 - 120 £2 = Q. (61)
This differential equation is a first-order non-lineaftdiential equation. However, (61) is a
Bernoulli differential equation which can be transformed into a lineedintial equation. Using
the substitutions

u=ftandu = —f2f, (62)

one obtains

0)4— (02, 2
a( )t a )u _ 2a O—E tz(,y_(y). (63)

’ (0)4—cr s _ = Ve
u —4a™t (1 W (N+W-1) NW Q0P

This equation is of the same type as the inhomogenedieselitial equation for the constant
noise case (53). Hence, the same solution steps can berpedand the same restrictions
(closed-form solution only for special cases) apply. Asal@or the constant noise model, the
settinga = 0 andy = 0 is considered first. Performing the appropriate stepslyiel

2fanNCO (aO(N + W - 1) - W)
2
N0”?

f (X(t))a:O,y:O =

—fotar@ @02 + (fslana(o)o-i2 + @O(N+W-1)- V\/)) exp(-q(1 -1t))

(64)
13



The asymptotic behavior of (64) is
f(xV) ~ exp(-t) fort — oo. (65)

This is the same asymptotic rate as for the noise-free scewdh o = 0. In Spall's proof, no
differentiation between the constant noise and state-depemoise was made, hence the same
result (59) applies. The second case under consideratiba sne withe = 1. The solution for
the dynamics in this case reads

NWE foian(2y — 42 - 1)
—28(0 077 fian (2771 — 1%47) + NWEP (2y — 1 - 4a) t4®

f (X(t))a:l,A:O =

(66)

The asymptotic analysis yields
fx9) ~ 9% fort — oo, (67)
i.e, the same rate as far= 1 and the noise-free model. Note, the exponent 2 is negative.

3.4. Summary

This section presented the detailed steps of a theoretiaglsis approach developed for Evo-
lution Strategies and its application to SPSA. The functioder consideration was the sphere
model in combination with three fierent noise models. First the quality gain, a performance
measure for the one-iteration gain for the non-noisy funrctialues, was derived. Using the
derived equations, convergence criteria and optimal graditep sizes were determined. After-
wards, an ordinary dlierential equation approach, based on the quality gain emsatvas used
to derive the overall dynamics. The results obtained wesa tompared with previous results
from literature. A core assumption of the presented apprimt¢he neglect of the stochastic
fluctuations. Therefore, the derived equations are asytioptly correct forN — co. To validate
the equations for finit®, simulations will be performed and compared with the equmti This
is the topic of the next section.

4. Experimental Analysis

In this section the results derived from the previous sectidl be compared with simu-
lation experiments. The aim is to show the quality of the te&oal equations for finiteN.
Additionally, parameter studies will be performed to gaisight on the influence of the strategy
parameter. These studies will yields insight in the genexiation between the parameter and
the performance of SPSA. First, the experimental settintide described. The basic settings
for the noise-free and constant noise model analysis were:

e The components of the start point were chosen fromAti200, 25) normal distribution
for each sample anew.

e 10 samples were performed for each setting.
e The maximal number of function evaluations was s&t Exsn.x = 10*N.

e The run was terminated whefarget = f(Xopt) + 1072 was reached.
14
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Figure 2: Results of the simulation experiments for theedise caseTop left Sample runs and theoretical predictions
for different search space dimensionaliti@&p right Influence of the search space dimensionakitypn the number
of function evaluations necessary to reafghiger Bottom left Influence ofa® to reach fiarget in terms of necessary
function evaluations. All sequencesa¥ considered are constant, i.&@® = a® vt. Bottom right Number of function
evaluations to reachargetfor different number of gradient samphsfor N = 50.

e The default strategy parameters wed® = 1,y = 0, = 0,A =0,W = 1, and
al = 2(N+/l/l T = anf

e The default value for the noise strength was= 1.

For the state-dependent noise, a slightljedent setup has been used.

The analysis is performed for the noise-free model first.hmtop left-hand plot of Fig. 2
the dynamic behavior of 10 sample runs fr= 10, 20,40 is shown. One can clearly see the
predicted log-linear convergence behavior of SPSA. Alsotheoretical predictions based on
the iteration of the quality gain (25) and the solution to tienogeneous ordinary ftirential
equation (47) are shown. The theory predicts in both caséghalg worse performance w.r.t.
the number of function evaluations necessary. In the tdg-figind plot of Fig. 2 the influence of
the search space dimensionalityon the dynamic behavior is shown. From the curve it appears
that there is a linear relation betwelrand the number of function evaluations for a given value
of fiarger I the bottom left-hand plot of Fig. 2 the influencea$? on the dynamics is shown.
All sequences considered af) are constant w.r.tt. Note the scaling of the horizontal axis for
a® by 1/6\(:) As one can see, the actual choice®fis rather uncritical for the performance, as
long asa® is in the range GBaS]? aS) For non-constant sequencesa¥, one can conclude
that performance will be poor Ei(‘) WI|| be outside this range. As to the influence of gradient
samples per iteratiow/, shown in the bottom right-hand plot in Fig. 2, increasing\tth always
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Figure 3: Results of the simulation experiments for SPSAhensphere model with constant noise & 1). All results
shown were obtained wita® = &%, ¢ = o, andW = 1 if not stated otherwiseLeft Dynamics of sample runs and
mean value dynamics fod = 10,50, 100 (from left to right).Center The minimal fitnesdmin as function ofW/N. The
theoretical predictions are based on Equation (B&ght Influence of the noise as. /c9 on foin.

increases the number of function evaluations to refage: Given thatw can be interpreted as
a form of resampling, the results discourage the use of ithfemoise-free sphere model. More
interesting is the fact, that the approximation quality 85)is not reduced by increasi,
while the results of the ODE approach (49) deviate strongtydrgeW. The reason is that the
gradient step is increasing with (30) and thus the granularity can not be accurately repteden
by the ODE approach. However, the ODE approach still can bé as an approximation for the
lower bound of the performance.

Next, the noise model with-. = const is considered. First, in the left-hand plot of Fig. 3
the dynamic behavior of SPSA with step size factor sequaﬁcmando-e = 1 is shown. Initially
the same behavior as for the noise-free case is observetb(séft-hand plot of Fig. 2), until
the noisy influence is not negligible anymore and SPSA firgtlgnates. As for the noise-free
model, theory and simulation results agree very well ancptieelicted dynamics appear closer
to the observed mean value dynamics than for the noise-fige @he (mean) fithess value were
stagnation occurs is defined Hy;, (35). In center plot of Fig. 3 the influence of the number
of gradient samples per iteratid is shown for search space dimensionalifies= 10, 100.
IncreasingV yields decreasing values &f;,, albeit at the cost of more function evaluations per
iteration step. The influence of the noise strengttfgnis shown in the bottom right-hand plot
of Fig. 3. Instead of using the noise strengthas main parameter, /c© is used. This reflects
the situation where one does not exactly know the value @nd thus must estimat®) (which
should be chosen equal &g according to [2]). For the sphere it makes n@eliences if either
o is increased oc® is decreased. Again, the results of the simulation experisnand the
theoretical prediction by (35) agree well.

So far only constant sequencesadt were considered. To improve the performance w.r.t.
fmin, SPSA with a decreasing factaf? is analyzed next. The theoretical results (57) and (58)
predict that SPSA should convergestgy, ast — co. In the right-hand plot of Fig. 4 the
dynamic behavior for dierent values of is shown. One can observe that> O results in a
continuously decreasing non-noisy function value, butalee observes a simultaneous decrease
in the convergence rate. Since all the curves were obtaibdM = 1, one can conclude that
usinga > 0 has a more pronouncefi@ct on decreasinfy,n than increasingVv. Additionally, the
dynamic behavior foag,)1 (36) is shown. It outperforms all other variants in termsarfveergence
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® = 5®

aY = agp.

rate and obtains the lowest;, within the given budget of function evaluations. The reafwn
this is shown in the left-hand plot of Fig. 4 where the histofya?) is shown. As long as the
influence of the noise is negligible the strategy Lm‘r{%s As soon as the noise has a noticeable
influencea® will be decreased. For comparison the curvesafdmwith different values of are
shown. This result suggest that an improvement of the padace can be achieved if SPSA is
operated with non-constaatvalues. The development of such a sequence is beyond the sco
of the presented work and also should be further based oretiffiermance on dierent objective
functions.

Finally, the state-dependent noise model will be investigaContrary to the previous anal-
yses, looking at the dynamic behavior reveals no new inftionacf. left-hand plot of Fig. 6.
If SPSA is able to reacRq, the dynamic curves are similar to the noise-free case lahiav
Fig. 2. Further, the quality of the agreement between theréreal predictions and the simula-
tions is the same. On the other hand, if SPSA diverges oneatrsigrves the diverging behavior
without gaining any insight. However, of particular intstrés the question as to when SPSA
does diverge (e.g. for which parameter setting). Since logoretical analysis is based on a
mean value approach, it only can predict either divergingomwverging behavior. To gain more
insight we define the success probability

# samples whefigygetWas reached
# all samples

(68)

Psucc=
This allows to track settings where some samples rdggl:and some do not. This requires a
change in the experimental settings to account for this\iehal he new experimental setup is:

e For each set of parameter 100 samples were performed.

e The termination criteria wer&arget = 102% or a maximal number of function evaluations
of 10°N.

e The default parameters wetd! = 1,0 = 1,89 = a¥, foan= 3N?, ¥ = 0, andc® = o7,

The choice ofa® was made with the intention to show how the state-dependsise model
influences the behavior of SPSA. On the other hand, the clodic® is somewhat artificial and
will be discussed later.
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afff) as defined by Equation (30) (dashed line). Note the lattepristant and agrees with a sequence with settirg0.
For other choices af see right-hand plot of Fig. 4.
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From the convergence criterion Bf for the state-dependent noise model (41), one can infer
that fs;armust be smaller than a certain value in order to achieve ¢gawnee. This is investigated
firstly and the results are shown in the top left-hand plotigf 5. Using above parameter settings
one can derive from (41)

fstart < 2N? (69)

as necessary convergence condition. Noe 10 there are runs witPsycc > 0 for fsar > 2N2?,
however, increasingl reveals a sharp drop ipsucc in the vicinity of fgar = 2N2. One can
speculate, that foN — co a jump inpsyccat fsiar/N? = 2 from 1 to 0 will appear. The middle
plot in the top row of Fig. 5 shows the influence of the numbegrafdient samples per iteration
W. IncreasingWV increasesuco albeit with a simultaneous increase in the number of fmcti
evaluations. In the top right-hand plot of Fig. 5 the influet using diferent constant gradient
step sizes is shown. The results are shown in term$-&fpsuco Where # Esis the mean of
the numbers of function evaluations to redghye: = 10720, This measure was introduced in [17]
and represents an estimation of the success performaacéhe number of function evaluations
necessary to reach a given target value. It accounts forlsamnp being unsuccessful, meaning
the target function value was not achieved. In the remaipiats of Fig. 5 circles indicate runs
wherepsuee < 1 and crosses indicate runs with,cc = 1. One can observe, that a smaf) is
necessary to reaghyycc = 1, which ?oes hand in hand with a slow convergence rate. Thie be
convergence rate is reached closan&) however, withps,cc < 1. Using decreasing gradient step
sizes as defined by (45) with > 0 can improve the success rate as shown in the bottom left-
hand plot of Fig. 5. However, the performance in terms of fiomcevaluations is considerably
reduced. The values far not shown in the plots indicate runs whefigqe: was not reached
within the budget of function evaluations for all sample@afly, the influences o andc®
are shown in the bottom middle and bottom right plots of FigAile the measureFE s/ psyce
remains constant for all values of or ¢, one observes a drop in the success probability for
largec and smallc® respectively. The curves suggest choosifigarge is beneficial since it
only influences the noise term. However, as stated befaetight results in a reduced accuracy
of the gradient estimation close to the optimizer duatb+ cA ~ +c®A. Therefore, using
a decreasing sequence is advisable. Such a sequence cquigplogtional toR which can be
approximated from the function value ordq which can be obtained by measuring the standard
deviation of several function evaluations during the ruhc@urse, the sequence (46) commonly
used is also valid, however, it does not use any informatigaioed during the run of SPSA.
Using a (43) improves the performance considerably as shown in &igThe success
probability is alway9sycc = 1 and the number of function evaluations is close to the baaeg
for the constant gradient step sizes (whpggc < 1), cf. top right-hand plot of Fig. 5. In the
right-hand plot of Fig. 6 the history (ﬂg% is plotted. One can observe tha? increases as
predicted by the theoretical analysis (43). This is cogttarthe requirement lig,., a® — 0
which is used in the analysis of SPSA by Spall et al. The exgtlan is, that at the initial point
(away from the optimum) the noise is large and thereforelsaftaire necessary (same as for the
constant noise model). Converging toward the optimum, thieendecreases until it is negligible.
Hence,a® should be converging towar(ﬁtf). Again, this behavior suggests that SPSA can be
improved by some (adaptive) rule farwhich uses information obtained during the run rather
than being pre-determined. Such rule must be able to decegabincrease depending on the
underlying model.
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5. Comparison with Evolution Strategies

In this section SPSA will be compared with Evolution Strégsg(ESs) [18]. At first, the
concept of the ES will be introduced shortly. Later, comgams for each noise model will be
performed based on performance criteria derived from theipus theoretical analysis.

ESs are nature-inspired strategies for optimization, whie a simplified model of Darwin’s
evolution paradigm. For an introduction into ES the readeeferred to [19]. Starting from an
initial solution X, mutationis used to generate a population.bbffspring. In the ES variants
considered here, the probability distribution for the niotaobeys a normal distribution with
varianceo?, wherec is the so-called mutation strength . Thispring are evaluated ars-
lectionis performed, where the offspring with the best function value(s) (smallest in the case
of minimization) are selected. The(u < 1) selected fispring, also referred to as parents, are
then used forecombinatiorto create the new solution, which for> 1 equals the centroid of
the selected fiispring. Given the variety of ES variants we will consider thasic variants in
this section only. First, for the noise-free model the {)-ES is used. This strategy generates 1
offspring in each generation. The selection process comgedarction value of theféspring
with the function value of the current search point. In theecthat the fispring function value
is better, the fispring will be the new solution, else the parental point istké pseudo code of
this variant is shown in Alg. 2. For the constant noise andstage-dependent noise model, the
(u/w, D)-ES is used. This variant generatesftspring from which the: best will be selected
(the parental solution is always discarded). By averagiegeu offspring, the new parental
centroid will be created. The respective pseudo code is showilg. 3.

Algorithm 2 The (1+1)-Evolution Strategy
1: initialize x® and mutation strengtir

29g:=1

3: repeat

4: y =Xg +oN(O,1)

5: if f(y) < f(xg) then

6: Xg+1 —Yy

7: else

8: Xg+1 < Xg

o: end if

10: o« AF(0) > Adaptation ofo

11: g<—g+1
12: until any termination criterion is fulfilled

In most variants of ES, an additional adaptation procedardhtfe mutation strength- is
needed. There existftierent variants for this procedure, ranging from th&th rule [18] over
self-adaptation procedures [20] to derandomized adaptatiocedures [21, 22] However, in
this work we will not consider the influence of the adaptapoocedure.

5.1. The Noise-Free Sphere
In this section a comparison of SPSA and ES on the noise{fiiteers is performed. In detail,
we will compare SPSA with constant gradient sébwith the (3+1)-ES. From [3] it is known,

6For a more comprehensive overview see also [23, 24, 19, 25]
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Algorithm 3 The (u/u,, 1)-Evolution Strategy
1: initialize x ando

2: set strategy parameteranda > usuallyu ~ % ... %
3: repeat
4: forl =1toAdo > create @fspring
5: Y =Xg+oN(O,1)
6: fi = f(y)
7: end for
g fesort(fy,...,f) > selection
9: Xg+1 — l—]l' Zli;]_ Yi:a
10: o« AF(0) > Adaptation ofo-

11: g<—g+1
12: until any termination criterion is fulfilled

that the (3-1)-ES is — apart from thelfy)-ES [26] not considered here — the best performing
ES on the noise-free sphere. The comparison will be basedeoguality gain. Defining the
normalized quality gain as

. N
q - q2R27 (70)
one obtains with (25) and/ = 1
Opsa= 22N (1-a"N). (71)
Substituting the optimal gradient staﬁ (30) yields
N 1
Uspsaopt = > (72)

For ES, there exist two common performance measures, tHigyqgain and the progress rate.
The latter measures the progress in the objective vect@mespgawas shown in [27] that both
measures coincide fdd — co.” The equation for the (@1)-ES on the noise-free sphere is

. o 1, o7 o

e 1 N
where
o N and (74)
(oa —O’R
= esl7)

O(X) =—— exp|—=t°|dt 75
0 == | ep|-3 (75)

is the cumulative distribution function of the standardmatdistribution. The maximal progress
for the (1+1)-ES occurs at™ ~ 1.224, cf. [3]. Finally, let us definefciency as

Oes
for E
A,or S

(76)

Ospsa
W for SPSA

"The same can be shown for SPSA, however, it is omitted forityrev
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Figure 8: Comparison ofu«(y, 1)-ES with SPSA with constant gradient step.

i.e., for the (k1)-ES yieldingy = ggo. The reason for the fierence in the definition is, the
difference in the number of function evaluations per iteratiep.sin the left-hand plot of Fig. 7
the dficiency for both strategies is compared, based on the thealretjuations and for simula-
tions withN = 10 andN = 100. While SPSA reaches slightly highedfieiency values, ES has
a broader range for the step size to attain convergence\ Fo.00 both strategies are close to
the theoretical value, while faX = 10 the theoretical predictions underestimate tieiency.

In the right-hand plot of Fig. 7, the number of function exatlans (FEs) to reacharget for dif-
ferent search space dimensionalities is shown. Again, Si8farms better than the {1)-ES,
especially for lowN.

5.2. The Sphere with Constant Noise

For the constant noise model SPSA can reach the optintum (o) if the optimal step
sequenc (tr)] (36) or (45) withe < 1 is used. For ES, on the other hand, it will always have a
approximation errorrésidual location erroj the expected value of which is given by [28]

oN

— (77)
4/1C;1/;4| A

fmin =
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wherec,,, 1 is the so-called progress dieient [3]

A—ufd\
Cujpd = 7# )f exp(—t2) o)+ (1 - o) tdt (78)
with @(t) defined by (75). A comparison of ES with SPSA is performedaurasumption that
a® = const The residual location error for SPSA with constant gradiep was determined in
(35) and reads

(79)

fmin =

aON ( o )2
8(W-aO(N+W-1)\c®/
Thus, both strategies will attain a residual location eard we are interested in the influence of
certain parameters on the residual location error. Thdtseate shown in Fig. 8. The left-hand

plot shows the influence di. Two ES variants, one wit#t = /2 = 0.25 and one with} = 0.5
are shown. The value dfis calculated by

A=4+|3logN)]. (80)

Both ES variants display a similar behavior and scale ligegith N. For SPSA, a variant using
an) and a variant witha® = 1/(2N) are shown. Both us&/ = [1/2] gradient samples per
iteration. Thus, all strategies use the same budget ofifumetvaluations. For the latter choice of
a® the gradient step size is independen¥ivhich allows for smaller residual location errors
sincea® remains small. In the first casa® increases withV, however the attained residual
location error remains almost constant. The middle plotshitie influence oW andA. One
can clearly observe that SPSA reaches smaller residudidacerrors, especially the variant
with a® = 1/(2N). However, this variant will need much more function evéilas to reach the
vicinity of the steady state since the convergence ratetispiimal during the phase where the
influence of the noise is negligible. Finally, in the rightpthe influence of the noise strength is
displayed. For ES the noisy strength equalswhile for SPSA it equals./c (see discussion
in Section 4). The stronger increase for the SPSA variardaésto the quadratic appearance of
the noise strength in (79), while it is only linear for ES (7Additionally, the most significant
difference between the two strategies is that the residualdooatror depends on the step size
for SPSA. Decreasing the gradient step size decreasesxpected) minimal distance
hencea® — 0 = fyi, — 0. For ES, the minimal distance does also depend on the step si
however, ifo* — 0 (77) is obtained. Overall, one can conclude that SPSA is &bhttain
smaller residual location errors than ES except for largeenstrengths.

5.3. The Sphere with State-Dependent Noise

For this noise model, the noise at the initial state is @iti¢rom (42) we already know for
SPSA that the initial distance must be smaller than a cevtdire to attain convergence. For ES,
one can conclude from the constant noise model, that thalindise strength must be connected
with a residual location error which is smaller than theigidistance toqp:. For the following
comparison, we assume that both strategies are able torgenvehen, our interest lies in how
efficientlythe strategies approach the optimum. Using tffieiency definition (76) and (39) one
obtains

VSPSA = (81)

ON ® O’R2 (o \2
- Nnrw-| - T (e
w W 2W2 | c
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Figure 9: Hiiciency of SPSA for the sphere model with state-dependestndine dashed curves represents theoretical
results witha® = agf) while the solid curves represeaf) = agr)] Left Influence of the search space dimensionality
N on the dficiencyvspsa Right Influence of the number of gradient approximations peatten W on the dficiency

VSPSA

From the theoretical analysis we know that the choicelbfs critical. Given that the algorithm
itself has to deal witlor, instead o, one can conclude from (81) thatdf) ~ Ryo* is chosen,
convergence can be achieved for all possible initial stBgesin Fig. 9 the éficiencyvspsa is
shown for diferent gradient step sequences. The solid lines represenéshlts of (81) with
a® = &%, while the dashed ones are obtained veith= a®). In both plots one can observe that
usingaﬁ? can yieldvspsa < O for a given set ot®, R, ando, while usingagr)1 the dficiency is
always greater than zero. On the other hand, substitutengetbpective gradient step sequences
(30) or (43) into (81) and taking the limN — co yieldsvspsa = 0.25 for both, cf. Fig. 7. From
the right-hand plot of Fig. 9 one can see that= 1 is the best choice and that fof > 1 vgpsa
can not reach the noise-free valuevgfsa = 0.25.

The (u/u,, 1)-ES was thoroughly analyzed for the sphere with state-u#gre noise in [27].
Since, we don’t want to reproduce this work, we will just stsbme of the interesting facts. First,
the sphere in the limit of infinite search space dimensitnalas considered and théieiency
was derived yielding

_ OCywa o (82)

with the assumptiolN — co. From (82), one can derive the following convergence ddter
o < 2UCyuyp a- (83)

This shows that increasing — and thereforel for constant$ = u/A — ES should be able to
converge for anyr:. This behavior is also shown in the right-hand plot of Fig, Mdere the
maximal dficiency for diferenta with u ~ 1/3 is shown. The #iciency itself depends om*
as shown in the left-hand plot. Comparing (82) with its ndige version (see for example
[15]), one sees that ES reaches the noise-ffeeiency foro?/o* — 0. The derived maximal
efficiency is 0202. However, a more detailed analysis [15] showed that fidtefsearch space

8The termo: is an artificial term which is useful for the analysis, howevenever appears in the actual implemen-
tation.
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dimensionalities thefciency is reduced by decreasihg It was shown that the maximal ef-
ficiency is reached for intermediate valuesiofFurther increasing reduces theféiciency, an
effect which can not be predicted by the asymptdlic-$ ) Eq. (82). Overall, the same result
as for the other noise models can be stated, namely that SRfpWysoutperforms ES if both
strategies operate with parameter settings close to olitiyma

6. Summary and Conclusion

In this work Simultaneous Perturbation Stochastic Appration was analyzed with the help
of the theoretical approach developed for Evolution Sgiae The advantage of this approach
is that it can be applied to noisy and noise-free optimizatibthe same time. It allows to (ap-
proximately) determine the short term dynamic behawie« (o). Furthermore, the influence of
the strategy parameters on the dynamic behavior of thegiratin be evaluated, which provides
valuable information for practitioners in the field. A draadk of the approach is that the results
derived are only valid for the class of functions consideard no guarantee for generalization
can be given. On the other hand, the results might be (pggjtr@lused as done for the analy-
sis of ESs on certain ellipsoidal functions [29]. Anothengilification is that an infinite search
space dimensionality must be considered. However, siioulegsults showed that the equations
derived are good approximations for finite search space nbioeralities. The function under
consideration in this work was the sphere model and it wassltbat the approach was able to

a) derive theoretical approximations for the (one-stepamdall) dynamics,
b) obtain convergence criteria and optimal parametemggstti

Especially the derived optimal gradient step sizes showatan improvement for SPSA can be
made by using gradient step sizes the values of which are tdabe optimal ones. However, to
derive amadaptivegradient step size rule, more test functions need to be deresi. First steps
in this direction have been already made with the adapti@SR3, 14], which uses additional
function evaluations to approximate the Hessian matrixdif\anally, as for the sphere model
the step size factar® plays only a minor role, however, it is expected that thid it be the
case for other types of test functions.
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The insights obtained from the theoretical analysis weeus the 2nd part for a com-
parison with simple Evolution Strategies. Here we haveriakdvantage of using a unified
theoretical approach, since the performance measuresansemmpatible. For all three noise
models (noise-free, constant noise, state-dependerg)f®iRRSA performed better than the ES
variants considered. In the constant noise case restribthol to be applied, given that SPSA
could reach the optimum and ES could not. However, SPSA d@ehrthe optimum far — oo,
an information not very useful for practical consideratiorHence, only the attained residual
location error was compared neglecting arfieets from step size adaptation procedures. For
the state-dependent noise model, SPSA will diverge if thi@lrdistance to the optimum is too
large. One can influence the critical distance by use of rpagthe gradient approximation,
decreasing the initial gradient step size (which will regltite convergence rate) or increasing
the gradient approximation step si?@ (which could be problematic if a bounded search space
domain is considered). A peculiarity of SPSA is that for thastant noise model the residual
location error depends on the gradient step size. This digmey is the reason why SPSA can
reach the optimumt(— o), however, on the other hand it reduces the convergenceThtes,
for this noise model a decreasia) sequence is beneficial if the noise can not be neglected in
the function evaluation process.

The results obtained are promising. They should encoutageise of the presented ap-
proach to other test functions and optimization stratediéss will allow for a more detailed and
comprehensive comparison offidirent strategies providing the option to also design imgaov
algorithms for noisy optimization. The results should algoextended in the future. One im-
provement would be the analysis of ellipsoidal functionad passibly incorporating the adaptive
version of SPSA [14]. Another question is how the resultsl (@@ analysis) can be transferred
to less restrictive noise models, e.g., the noise being adiglience with zero mean and finite
second or higher order moments.
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Appendix A. Conditionsand Theoremsfor the Convergence of SPSA

This appendix states the conditions and convergence tmsdice SPSA form Spall's proof

[1, 2]

27



. a®’
C1 (Gain Sequences) a® andc® > 0, a® andc® — 0, 32, a® = 0o, andy, =%
c

C2 (Relationship to ODE) Let f(x) be continuous oRN. With Z(t) € RN representing a

time-varying function (t denoting time), suppose that th@edential equation given by

_di}ft) = —f(Z(t)) has an asymptotically stable equilibrium poinkat

C3 (Iterate boundedness) sup., IIX?]| < c andx® lies in a closed and bounded subset of
the “domain of attraction” for the elierential equation of C2 infinitely often.

C4 (Measurement noise; relationship between the measurement noise and A®) For all
t, E[(e+ —e )k, A(t)] = 0 and the ratio of measurement to perturbation is such that
e (G(x“) +c0 A(t)))Z
A
(T = (XD, %, .., X0 AL, Ag, ., Ag 1))

is uniformly bounded overandi.

C5 (Smoothness of F) F is three-times continuously fiiérentiable and bounded @&,

C6 (Statistical properties of the perturbation A) All Ay are independent for akK, i, iden-
tically distributed for alli at eacht, symmetrically distributed around zero and uniformly
bounded in magnitude for aili.

C7 The continuity and equicontinuity assumptions abo[(tsE— e_)2|fk] from [1, Prop. 2]
hold.

C8 H(x*) is positive definite wherel(x) is the Hessian matrix of(x). Further, lett;, denote
theith eigenvalue 08@H(x*), wherea® is from thea®-sequence. If&r = 1, theng <
2min ().

C9 E[Aﬁi] - p, E[A;iz] - p’,and E[(e* - € )T k] — p_ for strictly positive constants, o',
andp” (almost sure (a.s.) in the latter case} as .

Theorem 1[2, p. 186]: Suppose that the conditions C1 — C6 hold. Further, suppose
thatx* is a uniqgue minimum in the search domain. Then, for the SP&atitdim,
x® - x* a.s. as t— oo.

Theorem 2 [2, p. 186]: Suppose that the gains have the standard fofth &

(0) (0)
a c . . .
(t+ A and ¢ = P k=1,2,... with &9, c©, o, andy strictly positive, A> 0,

B=a-2y>0 and3y - % > 0. Further, suppose that conditions C1 — C6 from
Theorem 1 and conditions C7 — C9 hold. Then, for the SPSAitigor

K2 (xO - x) L5 N ®)  as k- oo, (A1)

whereu andX are a mean vector and the covariance matrix.

Note, above proof does not apply to noise-free SPSA. A proofHis case was presented by
Gerencsér and Vago in [7, 8].
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In addition to this proof there exist other variants [30, @hjch try to relax some of the above
mentioned requirements. As a result one obtains almostcameergence, however, without
conditions C2-C4, relaxed conditions C1 and C5, and a wesakenndition C6. For example
in [31] the so-called Trajectory-Subsequence method id frsethe analysis of the algorithm,
which seems able to handle noise-free SPSA. Additionalfigtarministic approach is given in
[32].

Appendix B. Deriving |Ig|l?

In the following the steps of deriving (22) from (21) are déised. The square of the gradient
norm with A gradient approximations can be written as

ol = |% Z(szA + @N'_(QD)A 2
(B.1)

N

=ii i (ZXT AT 1))( a, FHlO. 1))ATAm

A 1=1 m=1 2c

Note, the iteration countelis not shown for brevity. Equation B.1 can be expanded to

A

loi? =712 > (4(xTA ) +2("A)

1=1

o—eNl(o 1), FIM(O.17
4¢2

)A,TA|

GeNm(0, 1)
C

+ = Z Z [4(XTA|)(XTAm)ATAm (XA)AT A (B.2)

=1 m#l
LTNi(0.2) 2Ni(0, 1)Nm(0, 1)
C

X' Am)A A +
OCAm)A; A 4c?

AT Am} :

Defining
1 A
Si= Z (4(XTA|)2 +2(XAy)

=1

o—eNl(o 1), FMO.17
4c2

)AfA., (B.3)
the expectation of Sfor a given point with x| = Ryields

E[SuX] = Z A4E[(A2ATAIIX] + 2E| (XA )L(O)wa] +E [WA,TA.M] .

4c2
(B.4)
The first expectation in (B.4) can be written as
N /N 2 N N N
E[0CA)?ATAX] = E Z[Z xiAh) AZX| =B[N xxA, A AL IX | (B.5)
n=1\i=1 n=1i=1 j=1
Using
E[aiA 0 1% (B.6)
A = 1 - .
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and

AIZn =1 (B.7)
one obtains
N N
E[(<A)?ATAlIX] = Z Z X = RPN, (B.8)
k=1 i=1
The second expectation in (B.4) can be written as
5N (0,1) N
e focan PO D] - € 3. > xavafan|. ®.9)
i=1 j=1
: O e , 1 . . . .
with z = %((:O). Note, in the following all expectations are w.iA=terms. The expectation
of N(0, 1) will be handled separately. Usian.iAlzi] = 0 for alli, j, one obtains
N (0,1
El(xA )L()ATAHX] = 0. (B.10)

The last expectation term in (B.4) can be written as

~2
NG

ATA(IX]| = —=,
1Al 4c?

(B.11)

a2Ni(0,1)
El = -
4c?

since ELAITA.J = N (see (B.6)). Now (B.8), (B.10), and (B.11) can be substitim¢o (B.4). This
yields the following expectation

1< 2N o N2
E[sl|x]=ﬁlzll(4 N + 402). (B.12)

The sum of the squares of the Gaussian distributed randoiables yields g ?-distribution.
Thus, the expected value (B.12) can be written as

N&21\ N o
E[SiR] = (/14R2N 7 ) 7( 4R + 202 ) (B.13)
Defining
1 e vare T Nm(01)
S= ; me A0 A (K Am)A A + === (M)A A 10
5 52 1 1 '
+ O-ENIC(O_’ 1)(XTAm)A|TAm + oM (0’4(:)2/V l© )A|TAm,

the expectations of thefiiérent terms in (B.14) will be determined next. At first the esjation
of 4(X"A))(X"Am)A] A Will be obtained. Starting with

N N
B[40 A AmAT AmlxX] = 4E| > 5" 3" %A, X Am, A1, A IX (B.15)
i=1 j=1 n=1
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one can group the terms according to their indices. Thislgiel

i=1 j

N
%X Ay A Ay A X | (B.16)

n=1

E[406<A) X Am)A] Arilx| = 4E

N
=1

Using (B.6), one sees that for n the expectation foA; does not vanish and that fgr= n the
expectation fon,, does not vanish. Hence, only foe n = j the expectation is not zero. Thus,
one obtains

N
E[4(<A) (X" Am)A] Amx]| = 4E[Z A2, Aﬁlx} = 4R, (B.17)
i=1
by using the fach? = 1. The next expectation is

E [&ENr(n:(O, 1)

(XTADA[AmIX| =0, (B.18)

The expectation vanishes sinc%@j] = 0O for all j and dueNn(0, 1) andA being uncorrelated.
A closer inspection of the remaining terms in (B.14) revélads they all contain either a single
A or A, term. Thus, the same reasoning as above can be used to shdhetleapectations of
these terms will vanish. Thus, the expectation gisSobtained by substituting (B.17) into the
expectation of (B.14)

A
E[SR] = %224#:4#(1—%). (B.19)

Now putting everything together by substituting (B.12) dBd19) into the expectation of
(B.2) yields

5_2
E|lgPIR| = %(4R2 g ) + 4R (1— %) (B.20)

C2

Appendix C. Solving theinhomogeneous differential equation

The solution of inhomogeneoudidirential equation appearing in the constant noise case and
the state-dependent noise case (after applying the sutimstiti = f~1) is described below. The
differential equation has the form

f 4+ f(@t™™ + 2t = z5k? 2, (C.1)

where f’ = ngt and thez are constants depending on the strategy and function p&esne

Furthert > Ais assumed and far > 0 t™® > t~2* will be assumed. First, the homogeneous
solution fy, will be obtained. Afterwards an ansatz is used to derive siquéar solution for
inhomogeneous equatidi. Finally, both solutions will be added to obtain the generdiition

for (C.1). The homogeneous equations are

fi + fa(zit + t) =0 fora = 0 and (C.2)
fi + fa(zt™) =0 fora >0, (C.3)

which can be solved by using the ansatz

fh, = cexp(-Z(T)). (C.49)
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The exponenkZ(T) is given by

t

z1T +TdT, fora=0

20| T2 (C5)
Jr_, 22T ~dT, fore > 0.

The solution of (C.5) yields
(zn+2)(t-1), fora=0,
Z(t) = z In(t), fora =1, (C.6)
4 1-a
1_a(t ~1), fora #0,1.
Substituting the respective equation in (C.4), the homogsisolution is obtained

cexp((z + 2)(1-1)), fora =0,
f, = cta, fora=1, C.7)

cexp(li (1- tl‘“)), fora # 0, 1.
-

The constant is obtained by solvind(t = 1) = fsiart
For constant noise and state-dependent noise the ans#te fearticular solution is

fin = c(t) fn, (C.8)

wherefy, is given by (C.7), however, without constantSubstitution of (C.8) into (C.1) yields
an integral equation far(t)’ of type

c(t) = z3 fT tlTZ(Wexp(f(T)) dT, (C.9)

wheref(T) is a function depending on the homogeneous solution. TdsedHform solution of
above integral exist only for some special cases ahdy. For some other cases the solution
involves the generalized incomplete gamma function [33]r the settingsr = 0,y = 0 and
a = 1 solutions can be obtained which yield a interpretabletgmiu As example the solution
for @ = 1 is shown in the following.

Using the ansatz

fih = c(t)t™ (C.10)
yields
t
c(t) =z f T20-DragT
T=1 C.11
__ B (,[2y—1+z1 _ 1) ( )
2y-1+2z7 '
Thus, the particular solution is
: _ P} 2-1_ -z
ot = 5 (& t-t2). (C.12)
Then the general solution to (C.1) with= 1 is
Z3 2y-1 -z ~Z
foi=—" (t7"—-t2 1, A
a=1 2)/ 1+ (t t ) +ct (C 3)

As before, the constawtis determined by solvind,-1(t = 1) = fstart
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