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Abstract

A thorough theoretical analysis of evolution strategies with constraint handling
is important for the understanding of the inner workings of evolution strategies
applied to constrained problems. Simple problems are of interest for the first
analyses. To this end, the behavior of the (1, λ)-σ-Self-Adaptation Evolution
Strategy applied to a conically constrained problem is analyzed. For handling
infeasible offspring, a repair approach that projects infeasible offspring onto the
boundary of the feasibility region is considered. Closed-form approximations
are derived for the expected changes of an individual’s parameter vector and
mutation strength from one generation to the next. For analyzing the strat-
egy’s behavior over multiple generations, deterministic evolution equations are
derived. It is shown that those evolution equations together with the approx-
imate one-generation expressions allow to approximately predict the evolution
dynamics using closed-form approximations. Those derived approximations are
compared to simulations in order to visualize the approximation quality.

Keywords: Evolution strategies, Repair by projection, Conically constrained
problem

1. Introduction

As constrained optimization is important in many practical applications, the
theoretical understanding of evolution strategies (ESs) with constraint handling
is of interest in current research. In [1], the (1, λ)-ES with constraint handling by
resampling is analyzed for a single linear constraint. This is extended in [2] with
the analysis of repair by projection for a single linear constraint. In [3], the repair
approach analyzed in [2] is compared with an approach that reflects infeasible
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points into the feasible region and an approach that truncates infeasible points.
A variant of the (1, λ)-ES for a conically constrained problem is considered in [4].
There, offspring are discarded until feasible are obtained. In [5], premature
convergence for a (1 + 1)-ES with mutation strength adaptation by a variant of
the 1/5th rule was proven. A (1 + 1)-ES with augmented Lagrangian constraint
handling is presented in [6]. The one-generation behavior of the proposed ES is
analyzed on the sphere model with one linear inequality constraint.

This algorithm has been extended to a multi-recombinative variant for a
single linear constraint in [7] and multiple linear constraints in [8]. For both
cases, linear convergence behavior was investigated by the use of Markov chains.

The goal of this paper is to extend the analysis for the local progress mea-
sures in [4] with an analysis for a repair approach based on projection. The
repair method is performed by projecting infeasible offspring onto the bound-
ary of the feasible region by minimizing the Euclidean distance to the constraint
boundary. For the mutation strength control, σ-Self-Adaptation is considered.
The remainder of the paper is organized as follows. The optimization problem
and the algorithm under consideration are described in Section 2 and Section 3,
respectively. Next, the theoretical results are presented. To this end, the theo-
retical analysis method used is explained in Section 4.1. This is followed by the
investigation of the algorithm’s microscopic aspects (one-generation behavior)
in Section 4.2 and then by the analysis of the algorithm’s macroscopic behavior
(multi-generation behavior, i.e., the evolution dynamics) in Section 4.3. For
both, the microscopic and the macroscopic behavior, closed-form approxima-
tions under asymptotic assumptions are derived. The approximations are com-
pared to simulations. For readability purposes, most of the longer derivations
are provided in the sections of the appendix. Moreover, where appropriate and
interesting, further investigations have been performed. The outcomes of those
investigations and further details for the derivations are provided in the techni-
cal report [9] accompanying this paper. Relevant cross-references are provided
throughout the text.

Notations: Boldface x ∈ RN is a column vector with N real-valued components.
xT is its transpose. xk and equivalently (x)k denote the k-th element of a
vector x. xm;λ is the order statistic notation, i.e., it denotes the m-th best

(with respect to fitness) of a list of λ elements. ||x|| =
√∑N

k=1 xk
2 denotes the

Euclidean norm. 0 is the vector with all elements equal to zero. I is the identity
matrix. N (µ,C) denotes the multivariate normal distribution with mean µ
and covariance matrix C. N (µ, σ2) is written for the normal distribution with
mean µ and variance σ2. The symbol ∼ means “distributed according to”, �
“much greater than”, ' “asymptotically equal”, and ≈ “approximately equal”.
A superscript x(g) stands for the element in the g-th generation.
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2. The Problem

The optimization problem under consideration is

f(x) = x1 → min! (1)

subject to constraints

x2
1 − ξ

N∑

k=2

x2
k ≥ 0 (2)

x1 ≥ 0 (3)

where x = (x1, . . . , xN )T ∈ RN and ξ > 0.
Due to symmetry considerations, a point in the search space can be uniquely

described by its distance x from 0 in x1 direction (cone axis) and the distance
r from the cone’s axis. In the further analyses, this is called the (x, r)T -space.
It is visualized in Fig. 1. Because the distance from the cone’s axis is positive,
only half of the cone needs to be considered. The cone boundary and the
projection lines are visualized. The equation for the cone boundary r = x1√

ξ

is a direct consequence of the problem definition (Eq. (2)). The equation for
the projection line can be derived by considering a direction vector of the cone

boundary
(

1, 1√
ξ

)T
and its counterclockwise rotation by 90 degrees

(
− 1√

ξ
, 1
)T

.

Using those direction vectors, at a given value q (as shown in Fig. 1), an equation

for the projection line reads r = −√ξx1 + q
(√

ξ + 1√
ξ

)
. For q = 0, this results

in −√ξx1. Additionally, in Fig. 1, an offspring x̃ with its parent x and the
corresponding mutation vector z scaled by the mutation strength σ̃ are shown.
The offspring’s x1 and r values after the projection step are indicated by q and
qr, respectively.

3. The Algorithm

The considered algorithm is a (1, λ)-σ-Self-Adaptation-ES. The pseudo code
is shown in Alg. 1. After initialization (Lines 1 to 2), the generation loop is
entered. In Lines 6 to 15, λ offspring are generated. For every offspring, its
mutation strength σ̃l is determined by mutating the parental mutation strength
σ(g) using a log-normal distribution (Line 7). This mutation strength is then
used to sample the offspring’s parameter vector from a multivariate normal
distribution with mean x(g) and standard deviation σ̃l (Line 8). Then, it is
determined whether repair is necessary. Repair is necessary if the offspring
is infeasible. If the generated offspring is infeasible, its parameter vector is
projected onto the point on the boundary of the feasible region that minimizes
the Euclidean distance to the offspring point (Lines 9 to 11). That is, if the
offspring is not feasible, the optimization problem

x̂ = arg min
x′
‖x′ − x‖2 such that x′1

2 − ξ
N∑

k=2

x′k
2 ≥ 0, x′1 ≥ 0 (4)
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Figure 1: The conically constrained optimization problem in N dimensions shown in the
(x, r)T -space.

must be solved. In (4), x is the individual to be projected. For this, a conve-
nience function

x̂ = projectOntoCone(x) (5)

is introduced, returning x̂ of the problem (4). Appendix A presents a geometri-
cal approach for deriving a closed-form solution to the projection optimization
problem (4). The values x(g), r(g), ql, qrl, q1;λ, and qr1;λ are only needed in
the theoretical analysis and can be removed in practical applications of the ES.
They are indicated in the algorithm in Lines 4, 5, 13, 14, 19, and 20, respectively.
In Line 12, the offspring’s fitness is determined. After the procreation step, the
next generation’s parental individual x(g+1) (Line 17) and the next generation’s
mutation strength σ(g+1) (Line 18) are set to the corresponding values of the
offspring with the smallest objective function value. The update of the gener-
ation counter ends one iteration of the generation loop. The generation loop
is quit if the defined termination criteria are met (for example if a maximum
number of generations is reached, if a sigma threshold is reached, etc.). Fig. 2
shows an example of the x- and r-dynamics generated by running Alg. 1 (solid
line) in comparison with the iteration of the closed-form approximation iterative
system (dotted line) that is derived in the following sections.

4. The Theoretical Analysis

4.1. The Dynamical Systems Approach

For the analysis of the (1, λ)-ES (Alg. 1), the (x, r)T -modeling described in
Section 2, is used. The goal is to compute the evolution dynamics of the (1, λ)-
ES. For doing this, the dynamical systems approach presented in [10] is used.
This approach models specific state variables of the strategy over time. For the
problem under consideration, there are three random variables that describe the
system (assuming constant exogenous parameters). The x and r values of the
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Algorithm 1 Pseudo-code of the (1, λ)-σ-Self-Adaptation-ES with repair by
projection applied to the conically constrained problem.

1: Initialize x(0), σ(0), τ , λ
2: g ← 0
3: repeat
4: x(g) = (x(g))1

5: r(g) =
√∑N

k=2(x(g))2
k

6: for l← 1 to λ do
7: σ̃l ← σ(g)eτN (0,1)

8: x̃l ← x(g) + σ̃lN (0, I)
9: if not isFeasible(x̃l) then . see Algorithm 2

10: x̃l ← projectOntoCone(x̃l) . see Eqs. (4) and (5)
11: end if
12: f̃l ← f(x̃l) = (x̃l)1

13: ql = (x̃l)1

14: qrl =
√∑N

k=2(x̃l)2
k

15: end for
16: Sort offspring according to f̃l in ascending order
17: x(g+1) ← x̃1;λ

18: σ(g+1) ← σ̃1;λ

19: q1;λ = (x(g+1))1

20: qr1;λ =
√∑N

k=2(x(g+1))2
k

21: g ← g + 1
22: until termination criteria are met

Algorithm 2 Feasibility check

1: function isFeasible(x)

2: return(x1 ≥ 0 ∧ x2
1 − ξ

∑N
k=2 x

2
k ≥ 0)

3: end function
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Figure 2: Comparison of the x- and r-dynamics of a real ES run (solid line) with the iteration
of the closed-form approximation of the iterative system (dotted line) that is derived in the
following sections.
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current parental individual and the current mutation strength σ. The transition
between consecutive states of the evolution strategy can then be modeled as a
Markov process. Deriving closed-form expressions for the transition equations
(so-called Chapman-Kolmogorov equations, see, e.g. [11]) is often not possible.
Instead, approximate equations for the change of all the state variables are
usually derived. The change of the random state variables is expressed in two
parts. The first part is the expected change and the second part comprises
the stochastic fluctuations. Making use of functions that express the change
(ϕx, ϕr, ψ), so-called evolution equations describe the system. They read

x(g+1) = x(g) − ϕx(x(g), r(g), σ(g)) + εx(x(g), r(g), σ(g)) (6)

r(g+1) = r(g) − ϕr(x(g), r(g), σ(g)) + εr(x
(g), r(g), σ(g)) (7)

σ(g+1) = σ(g) + σ(g)ψ(x(g), r(g), σ(g)) + εσ(x(g), r(g), σ(g)) (8)

and are stochastic difference equations. The expected changes in the parameter
space are expressed as so-called progress rates. They are defined as

ϕx(x(g), r(g), σ(g)) := E[x(g) − x(g+1) |x(g), r(g), σ(g)] (9)

ϕr(x
(g), r(g), σ(g)) := E[r(g) − r(g+1) |x(g), r(g), σ(g)]. (10)

Normalized variants are introduced as ϕ∗x(·) := Nϕx(·)
x(g) and ϕ∗r(·) := Nϕr(·)

r(g) . Sim-

ilarly, a normalized variant of the mutation strength is introduced as σ∗ := Nσ
r(g) .

Evolution of the mutation strength is performed by multiplication with a log-
normally distributed random variable. Therefore, its relative expected change
is of interest. This yields a slightly different (in comparison to the progress
rates in the parameter space) progress measure for the mutation strength, the
so-called self-adaptation response (SAR). It is defined as

ψ(x(g), r(g), σ(g)) := E

[
σ(g+1) − σ(g)

σ(g)

∣∣∣∣x(g), r(g), σ(g)

]
. (11)

The fluctuations are represented as random variables εx, εr, and εσ with nec-
essarily E[εx] = 0, E[εr] = 0, and E[εσ] = 0. Fluctuation terms are treated in
detail in [12]. For the analysis in this paper, it is assumed that it is sufficient
to consider the dynamics without fluctuations (i.e., εx = 0, εr = 0, and εσ = 0)
in order to approximately model the evolution dynamics of the strategy in the
asymptotic limit case N → ∞. Such evolution equations without fluctuation
terms are referred to as deterministic evolution equations (or mean value evo-
lution equations). They are usually less complex to deal with in theoretical
analyses. As it turns out, it is possible to approximately predict the mean value
evolution dynamics of the evolution strategy using these evolution equations.
The next step is to derive expressions for the functions ϕx, ϕr, and ψ.

4.2. The Microscopic Aspects

The microscopic aspects deal with the local analysis of the behavior of the
evolution strategy. This means that, given the current parental individual and
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the current mutation strength, a step from one generation to the next is consid-
ered. The progress rates express the expected change of the parental individual
in the parameter space. And the expected relative change of the mutation
strength is given as the SAR. Those are derived in the next sections for the
algorithm and the problem under consideration.

4.2.1. Derivation of the x Progress Rate

From the definition of the progress rate (Eq. (9)) and the pseudo-code of the
ES (Alg. 1, Lines 4 and 19) it follows that

ϕx(x(g), r(g), σ(g)) = x(g) − E[x(g+1) |x(g), r(g), σ(g)] (12)

= x(g) − E[q1;λ |x(g), r(g), σ(g)]. (13)

This means that the expectation of q1;λ, i.e., the x value after (possible) pro-
jection of the best offspring, is needed for the derivation of the progress rate in
x direction

E[q1;λ |x(g), r(g), σ(g)] := E[q1;λ] =

∫ q=∞

q=0

q pq1;λ
(q) dq (14)

= λ

∫ q=∞

q=0

q pQ(q)[1− PQ(q)]λ−1 dq. (15)

Eq. (14) follows directly from the definition of expectation where

pq1;λ
(q) := pq1;λ

(q |x(g), r(g), σ(g))

indicates the probability density function of the best (offspring with smallest q
value) offspring’s q value. The random variable Q denotes the random x values
after projection. The step to Eq. (15) follows from the calculation of pq1;λ

(q).
Because the objective function (Eq. (1)) is defined to return an individual’s x
value, pq1;λ

(q) is the probability density function of the minimal q value among
λ values. This calculation is well-known in order statistics (see, e.g., [13]).
A short derivation is presented here for the case under consideration. One
arbitrarily selected mutation out of the total λ mutations has probability density
pQ(q) := pQ(q |x(g), r(g), σ(g)) for its projected value q. For this particular q
value to be the smallest, all other λ−1 values must have larger q values. Because
they are statistically independent, this results in the probability [1−PQ(q)]λ−1 of
all other mutations being larger than q. PQ(q) := PQ(q |x(g), r(g), σ(g)) denotes
the cumulative distribution function of the random variable of the q values
Q, i.e., PQ(q) = Pr[Q ≤ q]. The density for the mutation considered is thus
pQ(q)[1−PQ(q)]λ−1. Since there are λ possibilities for best q values, one obtains

pq1;λ
(q) = λpQ(q)[1 − PQ(q)]λ−1 where PQ(q) = Pr[Q ≤ q] =

∫ q′=q
q′=0

pQ(q′) dq′.
Note that the lower bound is 0 because the q values are defined to be the x
values after projection. Now, to proceed further with Eq. (15), the cumulative
distribution function PQ(q) and the corresponding probability density function
pQ(q) need to be derived.
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Figure 3: Visualization of the integration for the calculation of PQ(q) = Pr[Q ≤ q]. Note that
Pr[Q ≤ q] is the area of the horizontally hatched region.

The Exact PQ(q) and pQ(q) Functions. The cumulative distribution function
PQ(q) and its corresponding probability density function pQ(q) of projected
values in direction of the cone axis are derived in this section. The approach
followed is to compute Pr[Q ≤ q] by integration. By doing this, PQ(q) = Pr[Q ≤
q] is derived. Then, pQ(q) follows by computing the derivative using the fact that
pQ(q) = d

dqPQ(q). For computing Pr[Q ≤ q], consider the visualization in Fig. 3.

The probability Pr[Q ≤ q] expressed in terms of the offspring before projection
is the area of the horizontally hatched region. The area of the horizontally
hatched region can be obtained by integration. To this end, the area of the
doubly hatched region is subtracted from the area of the horizontally hatched
and doubly hatched regions. Formally, this reads

PQ(q) =

∫ x=q

x=−∞

∫ r=∞

r=0

p1;1(x, r) dr dx

−
∫ r=∞

r=q/
√
ξ

∫ x=q

x=−(1/
√
ξ)r+(1+1/ξ)q

p1;1(x, r) dxdr

(16)

=

∫ x=q

x=−∞

∫ r=∞

r=0

p1;1(x, r) dr dx

−
∫ x=q

x=−∞

∫ r=∞

r=−√ξx+(
√
ξ+1/

√
ξ)q

p1;1(x, r) dr dx.

(17)

The function p1;1(x, r) := p1;1(x, r |x(g), r(g), σ(g)) denotes the joint probability
density function of a single descendant before projection. It is derived from
Alg. 1. Lines 7 and 8 outline the way a single descendant before projection
is generated. The ES is at the parental state (x(g), r(g), σ(g))T . First, σ(g)

is mutated. This occurs with the conditional density (log-normal mutation
operator)

pσ(σ |σ(g)) =
1√
2πτ

1

σ
exp

[
−1

2

(
ln(σ/σ(g))

τ

)2
]
. (18)

The σ value obtained serves as the mutation strength in mutating x and r.
This occurs with the conditional probability density px,r(x, r |x(g), r(g), σ). The
expression px,r(x, r |x(g), r(g), σ) denotes the joint probability density function of

8



offspring before projection. The parameter σ occurs with conditional probability
pσ(σ |σ(g)) dσ. The conditional probability density of a single descendant is
derived by integrating over all possible values for σ

p1;1(x, r |x(g), r(g), σ(g)) =

∫ σ=∞

σ=0

px,r(x, r |x(g), r(g), σ)pσ(σ |σ(g)) dσ. (19)

Insertion of Eq. (19) into Eq. (16) or Eq. (17) results in the exact PQ(q) func-
tion. The resulting expression is difficult to deal with analytically. Numerical
integration and approximation are two possibilities to proceed further. Because
closed-form solutions are arguably preferable, the latter option is followed.

The Approximation of the PQ(q) and pQ(q) Functions. In the investigations of
the following sections, τ is assumed to be small. By the properties of the log-
normal distribution this leads to a small variance of possible mutated σ values
σ̃l of the offspring. The σ̃l values therefore tend to the expected value of the
above defined log-normally distributed mutation strengths. This expected value
approaches σ(g) for small τ . The assumption allows to assume σ̃l ≈ σ(g) which
simplifies the analysis because the σ mutation can be ignored. Together with
further assumptions, this makes closed-form results of the theoretical analysis
possible. More formally, this can be shown by an expansion analogously to [10,
Section 7.3.2.4]. Consequently, the following probability density for a single
descendant before projection is used in the further analysis

p1;1(x, r |x(g), r(g), σ(g)) ≈ px,r(x, r |x(g), r(g), σ(g)) = px(x)pr(r) (20)

for sufficiently small τ . The last equality in Eq. (20) follows by statistical
independence of the mutation in parameter space. From Line 8 of Alg. 1 the
probability density functions px(x) and pr(r) follow.

The Offspring Density Before Projection in x Direction. The offspring density
of an offspring in x direction before projection follows directly from the offspring
generation in Alg. 1 (Line 8). As every component of the offspring’s parameter
vector x̃ is independently and identically distributed (i.i.d.) according to a
normal distribution it follows together with the assumption σ̃l ≈ σ(g) that

px(x) ≈ 1

σ(g)
φ

(
x− x(g)

σ(g)

)
=

1√
2πσ(g)

exp

[
−1

2

(
x− x(g)

σ(g)

)2
]

(21)

holds. φ(x) denotes the probability density function of the standard normal
distribution.

The Offspring Density Before Projection in r Direction and its Normal Approx-
imation. The offspring density of an offspring in r direction before projection
can be derived from Alg. 1 (Line 8). In Section 2 it has already been explained
that an individual can be uniquely described by its distance x from 0 in di-
rection of the cone axis and the distance r from the cone axis. In addition, a
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simplifying assumption can be made due to the problem’s symmetry. Because
the problem’s dimensions 2, . . . , N represent an N − 1 dimensional sphere, the
coordinate system can be rotated without loss of generality. For a particular
individual x̃ the coordinate system is rotated such that x1 points in direction
of the individual’s x1 direction, i.e., x1 points in the direction of the vector
(x̃1, 0, . . . , 0)T and x2 points in the direction of the individual’s other compo-
nents, i.e., x2 points in the direction of the vector (0, x̃2, . . . , x̃N )T . This rotation
of the coordinate system allows to conveniently represent an individual. Note
that the length in the direction of x2 is exactly the individual’s distance from the
cone axis. With this observation, it immediately follows that an individual in

the (x, r)T -space,

(
x̃1, r̃ =

√∑N
k=2 x̃

2
k

)T
, is (x̃1, r̃, 0, . . . , 0)T in the rotated co-

ordinate system. The offspring’s distance from the cone’s axis, r̃ =
√∑N

k=2 x̃
2
k,

is distributed according to a non-central χ distribution ([14]) with N − 1 de-
grees of freedom ((positive) square root of a sum of N − 1 normally i.i.d. vari-

ables). As, under the assumption σ̃l ≈ σ(g), x̃2 = r(g) + σ(g)z2 ∼ N (r(g), σ(g)2
)

and x̃k = σ(g)zk ∼ N (0, σ(g)2
) for k ∈ {3, . . . , N}, it is the (positive) square

root of a sum of squared normally distributed random variables. Therefore,
(r/σ(g))2 ∼ χ2

N−1,(r(g)/σ(g))2 and consequently r ∼ σ(g)χN−1,r(g)/σ(g) . The ex-

pressions χ2
df,nc and χdf,nc denote the χ2 and χ distributions, respectively, with

df degrees of freedom and non-centrality parameter nc. The cumulative distri-
bution function and the probability density function of this scaled distribution
can be expressed using the corresponding functions of the non-central χ distri-
bution. The cumulative distribution function of the non-central χ distribution
is denoted by Pχdf,nc . And the corresponding probability density function is
denoted by pχdf,nc . For the cumulative distribution function the scaled version

reads Pσ(g)χdf,nc
(x) = Pχdf,nc

(
x
σ(g)

)
. And for the probability density function

the scaled version reads pσ(g)χdf,nc
(x) = 1

σ(g) pχdf,nc
(

x
σ(g)

)
. Hence,

pr(r) =
1

σ(g)
pχ

N−1,r(g)/σ(g)

( r

σ(g)

)
(22)

follows. In order to get tractable expressions in analysis steps that follow, pr(r)
is approximated by a normal distribution

pr(r) ≈
1

σr
φ

(
r − r̄
σr

)
=

1√
2πσr

exp

[
−1

2

(
r − r̄
σr

)2
]
. (23)

The detailed derivation of the mean r̄ and the standard deviation σr is presented
in Appendix B. Now that expressions for px(x) and pr(r) have been derived,
the exact PQ expression can be treated further to arrive at closed-form PQ
approximations. Those derivations are described in detail in Appendix C.

The PQ(q) Approximation. Taking the upper bound from Eq. (C.15) for the case
that the probability of generating feasible offspring tends to 0 and Eq. (C.24) for
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the other case, this allows for the definition of the approximated PQ(q) function

PQ(q) ≈





PQfeas(q) := Φ

(
q − x(g)

σ(g)

)
, for q > r̄

√
ξ

PQinfeas(q) := Φ


 (1 + 1/ξ)q − x(g) − r̄/√ξ√

σ(g)2
+ σ2

r/ξ


 , otherwise.

(24)

(25)

Taking the derivative with respect to q yields

pQ(q) ≈





pQfeas(q) =
1√

2πσ(g)
e
− 1

2

(
q−x(g)

σ(g)

)2

, for q > r̄
√
ξ

pQinfeas(q) =


 (1 + 1/ξ)√

σ(g)2
+ σ2

r/ξ




× 1√
2π

exp


−1

2


 (1 + 1/ξ)q − x(g) − r̄/√ξ√

σ(g)2
+ σ2

r/ξ




2

 ,

otherwise.

(26)

(27)

They represent approximations for the cases that the offspring generation step
leads to feasible offspring with high probability and that the offspring generation
step leads to infeasible offspring with high probability, respectively. Because
those are disjoint events in the limit case, they complement each other.

Now, the expected value defined in Eq. (15) can be approximated for both
cases. They are denoted as E[q1;λfeas] and E[q1;λinfeas], respectively. Derivations
for E[q1;λfeas] and E[q1;λinfeas] are presented in Appendices D and E, respec-
tively. Consequently, approximate expressions for the progress rate follow with
insertion into Eq. (13) for both cases.

The Approximate x Progress Rate in the case that the probability of feasible
offspring tends to 1. With Eq. (D.5), the asymptotic normalized x progress
rate for the case of feasible offspring reads

ϕx
∗
feas =

N
(
x(g) − E[q1;λfeas]

)

x(g)
=
N
(
x(g) − x(g) + σ(g)c1,λ

)

x(g)
(28)

=
N

x(g)
σ(g)c1,λ =

N

x(g)
σ(g)∗ r

(g)

N
c1,λ =

r(g)

x(g)
σ(g)∗c1,λ. (29)

The coefficient c1,λ has been introduced in [15] as the so-called progress coeffi-
cient. It is also defined in [10, Equation 3.100]. Its definition reads

c1,λ :=
λ√
2π

∫ t=∞

t=−∞
te−

1
2 t

2

[Φ(t)]λ−1 dt. (30)
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The Approximate x Progress Rate in the case that the probability of feasible
offspring tends to 0. The normalized x progress rate for the second case can be
expressed using Eq. (E.9)

ϕx
∗
infeas =

N
(
x(g) − E[q1;λinfeas]

)

x(g)
(31)

=
N

x(g)

(
1 + ξ

1 + ξ
x(g) − E[q1;λinfeas]

)
(32)

≈ N

x(g)

[
x(g) + ξx(g) − ξx(g)

1 + ξ
−
√
ξr̄

1 + ξ
+

ξ

1 + ξ

(√
σ(g)2

+ σ2
r/ξ

)
c1,λ

]
.

(33)

This can further be simplified using σr of the normal approximation (Eq. (B.6))
together with σ-normalization yielding

ϕx
∗
infeas =

N

1 + ξ

[
1−

√
ξ
r(g)

x(g)

√

1 +
σ(g)∗2

N

(
1− 1

N

)

+ ξ
r(g)

x(g)

√√√√σ(g)∗2

N2
+

1

ξ

σ(g)∗2

N2

1 + σ(g)∗2

2N (1− 1
N )

1 + σ(g)∗2

N (1− 1
N )

c1,λ

] (34)

' N

1 + ξ


1−

√
ξ
r(g)

x(g)

√

1 +
σ(g)∗2

N

+ξ
r(g)

x(g)

σ(g)∗

N

√√√√1 +
1

ξ

1 + σ(g)∗2

2N

1 + σ(g)∗2

N

c1,λ


 .

(35)

From Eq. (34) to Eq. (35), 1
N has been neglected compared to 1 as N →∞. It

can be rewritten further yielding

ϕx
∗
infeas =

N

1 + ξ


1−

√
ξr(g)

x(g)

√

1 +
σ(g)∗2

N




+

√
ξ

1 + ξ

√
ξr(g)

x(g)
σ(g)∗c1,λ

√√√√1 +
1

ξ

1 + σ(g)∗2

2N

1 + σ(g)∗2

N

.

(36)

The Approximate x Progress Rate - Combination Using the Best Offspring’s
Feasibility Probability. In order to get an approximate combined value ϕ∗x, the
expected values of both cases are weighted by their probability of occurrence.
Those weighted values are then added yielding

ϕ∗x ≈ Pfeas(x
(g), r(g), σ(g))ϕx

∗
feas + [1− Pfeas(x

(g), r(g), σ(g))]ϕx
∗
infeas. (37)

The simplified version is applicable if the probability of generating feasible off-
spring tends to 1 in the asymptotic case. In the opposite case, the result derived

12
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Figure 4: Comparison of the x progress rate approximation with simulations.

from the PQ(q) upper bound is used. For the approximated combined value,
Pfeas(x

(g), r(g), σ(g)) is considered to denote the probability that the best off-
spring after projection has been feasible before projection. A derivation for
an approximation of Pfeas(x

(g), r(g), σ(g)) is shown in Appendix F. Insertion of
Eqs. (29) and (36) into Eq. (37) finally results in the approximate normalized x
progress rate

ϕ∗x ≈ Pfeas(x
(g), r(g), σ(g))

r(g)

x(g)
σ(g)∗c1,λ

+
(

1− Pfeas(x
(g), r(g), σ(g))

)

 N

1 + ξ


1−

√
ξr(g)

x(g)

√

1 +
σ(g)∗2

N




+

√
ξ

1 + ξ

√
ξr(g)

x(g)
σ(g)∗c1,λ

√√√√1 +
1

ξ

1 + σ(g)∗2

2N

1 + σ(g)∗2

N


 .

(38)
Fig. 4 shows two example plots comparing the derived closed-form approxima-
tion for ϕ∗x with one-generation experiments and numerical integration results.
For more detailed plots it is referred to [9, Fig. 3.5, pp. 50-52]. The solid
line has been generated by one-generation experiments. The crosses have been
computed by numerical integration (using the normal approximation for r). For
this computation, Eqs. (13) and (15) have been numerically computed and sub-
sequently normalized using Eqs. (17), (20), (21), and (23). The pluses have
been calculated by evaluating Eq. (38) with Eq. (F.6). The vertical black line
indicates the value of the normalized mutation strength in the steady state for
the given parameters. It has been calculated using Eq. (73) (see Section 4.3.2
for steady state investigations). As one can see, the approximation quality of
ϕ∗x in the vicinity of the steady state is rather good. Therefore, it can be used
to investigate the dynamical behavior of the ES in the vicinity of the steady
state.
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4.2.2. Derivation of the r Progress Rate

From the definition of the progress rate (Eq. (10)) and the pseudo-code of
the ES (Alg. 1, Lines 5 and 20) it follows that

ϕr(x
(g), r(g), σ(g)) = r(g) − E[r(g+1) |x(g), r(g), σ(g)] (39)

= r(g) − E[qr1;λ |x(g), r(g), σ(g)]. (40)

This means that the expectation of the r value after projection of the best
offspring is needed for the derivation of the progress rate in r direction

E[qr1;λ |x(g), r(g), σ(g)] := E[qr1;λ].

Its derivation is presented in Appendix G. Similar to Section 4.2.1 for the x
progress rate, the normalized r progress rate can now be formulated. Using the
derived approximate relation E[qr1;λ] ≈ 1√

ξ
E[q1;λ] (Eq. (G.15)) it reads

ϕr
∗
infeas = N

(
r(g) − E[qr1;λinfeas

]
)

r(g)
≈ N

(
r(g) − 1√

ξ
E[q1;λinfeas]

)

r(g)
. (41)

Using Eq. (E.9), Eq. (41) can further be rewritten using σr ' σ(g) and r̄ '
r(g)

√
1 + σ(g)∗2

N from Eq. (B.6) for N → ∞ to get from Eq. (43) to Eq. (44)
resulting in

ϕr
∗
infeas

= N

(
1− 1√

ξr(g)

[
ξ

1 + ξ

(
x(g) + r̄/

√
ξ
)
− ξ

1 + ξ

(√
σ(g)2

+ σ2
r/ξ

)
c1,λ

])

(42)

= N


1−

√
ξ

(1 + ξ)


x

(g)

r(g)
+

r̄

r(g)
√
ξ
−




√
σ(g)2

+ σ2
r/ξ

r(g)


 c1,λ




 (43)

' N


1−

√
ξ

(1 + ξ)


x

(g)

r(g)
+

√
1 + σ(g)∗2/N
√
ξ

−
(
σ(g)

r(g)

√
1 + 1/ξ

)
c1,λ




 . (44)

The progress coefficient c1,λ (see Eq. (30)) has been used.

The Approximate r Progress Rate in the case that the probability of feasible off-
spring tends to 1. If the offspring is feasible almost surely in the asymptotic
N → ∞ case, Eq. (G.6) can be simplified further. The complete probability
mass lies inside the cone. Consequently, the second summand vanishes. Addi-
tionally, the integral in the first summand yields the expected r value r̄ because
the bounds indicate the integration over the whole feasible region for the given
area dq. In the feasible case, I(q) therefore reads Ifeas(q) = px(q)r̄. By insertion
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of Ifeas(q) as I(q) into Eq. (G.4), use of PQfeas from Eq. (24), and use of px(x)
from Eq. (21) one obtains

E[qr1;λfeas
] ≈ r̄ λ

∫ q=∞

q=0

1√
2πσ(g)

e
− 1

2

(
q−x(g)

σ(g)

)2 [
1− Φ

(
q − x(g)

σ(g)

)]λ−1

dq

︸ ︷︷ ︸
=1

= r̄.

(45)

Similar to Section 4.2.1 for the x progress rate, the normalized r progress rate
can now be formulated. It reads

ϕr
∗
feas = N

(
r(g) − E[qr1;λfeas

]
)

r(g)
≈ N

(
r(g) − r̄

)

r(g)
' N

(
r(g) − r(g)

√
1 + σ(g)∗2

N

)

r(g)

(46)

= N


1−

√

1 +
σ(g)∗2

N


 ' N −N − Nσ(g)∗2

2N
= −σ

(g)∗2

2
. (47)

In Eq. (47), Taylor expansion of the square root and cutoff after the linear term
(with subsequent distribution of N over the terms in the parentheses) have been
performed.

The Approximate r Progress Rate - Combination Using the Best Offspring’s
Feasibility Probability. Analogously to Eq. (37), both cases are combined into

ϕ∗r ≈ Pfeas(x
(g), r(g), σ(g))ϕr

∗
feas + [1− Pfeas(x

(g), r(g), σ(g))]ϕr
∗
infeas. (48)

Insertion of Eqs. (44) and (47) into Eq. (48) finally results in the approximate
normalized r progress rate

ϕ∗r ≈
(

1− Pfeas(x
(g), r(g), σ(g))

)

×N
{

1−
√
ξ

(1 + ξ)




x

(g)

r(g)
+

√
1 + σ(g)∗2/N
√
ξ




−
(
σ(g)

r(g)

√
1 + 1/ξ

)
c1,λ

]}

− Pfeas(x
(g), r(g), σ(g))

σ(g)∗2

2
.

(49)

Fig. 5 shows two example plots comparing the derived closed-form approxima-
tion for ϕ∗r with one-generation experiments and numerical integration results.
For more detailed plots it is referred to [9, Fig. 3.6, pp. 59-61]. The solid line
has been generated by one-generation experiments. The crosses have been com-
puted by numerical integration (using the normal approximation for r). For
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Figure 5: Comparison of the r progress rate approximation with simulations.

this computation, Term (40) and Eq. (G.2) have been numerically computed
and subsequently normalized using Eqs. (17), (20), (21), and (23). The pluses
have been calculated by evaluating Eq. (48) with Eqs. (41), (47), and (F.6). The
vertical black line indicates the value of the normalized mutation strength in
the steady state for the given parameters. It has been calculated using Eq. (73)
(see Section 4.3.2 for steady state investigations).

4.2.3. Derivation of the SAR

From the definition of the SAR (Eq. (11)) and the pseudo-code of the ES
(Alg. 1, Line 18) it follows that

ψ(x(g), r(g), σ(g)) = E

[
σ(g+1) − σ(g)

σ(g)

∣∣∣∣x(g), r(g), σ(g)

]
(50)

= E

[
σ̃1;λ − σ(g)

σ(g)

∣∣∣∣x(g), r(g), σ(g)

]
(51)

=

∫ σ=∞

σ=0

(
σ − σ(g)

σ(g)

)
pσ̃1;λ

(σ) dσ (52)

where pσ̃1;λ
(σ) := pσ̃1;λ

(σ |x(g), r(g), σ(g)) denotes the probability density func-
tion of the best offspring’s mutation strength. Note that σ̃1;λ is not obtained
by direct selection. It is the σ value of the individual with the best objective
function value that is selected among the λ offspring. This probability density
function can be derived with a similar argument from the area of order statistics
as in Section 4.2.1 for the best q value. It reads

pσ̃1;λ
(σ) = pσ(σ |σ(g))λ

∫ q=∞

q=0

pQ(q |x(g), r(g), σ)[1− PQ(q)]λ−1 dq (53)
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where pσ(σ |σ(g)) denotes the log-normal probability density function. This
result can now be inserted into Eq. (52) resulting in

ψ(x(g), r(g), σ(g)) =

∫ σ=∞

σ=0

(
σ − σ(g)

σ(g)

)
pσ(σ |σ(g))

× λ
∫ q=∞

q=0

pQ(q |x(g), r(g), σ)[1− PQ(q)]λ−1 dq dσ.

(54)

Due to difficulties in analytically solving Eq. (54), an approximate solution is
derived. To this end, the approach used in [10, Section 7.3.2.4] is followed. For
this, Eq. (54) is written as

ψ(x(g), r(g), σ(g)) =

∫ σ=∞

σ=0

f(σ)pσ(σ |σ(g)) dσ (55)

=

∫ σ=∞

σ=0

f(σ)
1√
2πτ

1

σ
exp

[
−1

2

(
ln(σ/σ(g))

τ

)2
]

dσ (56)

with

f(σ) =

(
σ − σ(g)

σ(g)

)
λ

∫ q=∞

q=0

pQ(q |x(g), r(g), σ)[1− PQ(q)]λ−1 dq. (57)

Now, τ is assumed to be small. Therefore, Eq. (56) can be expanded into a
Taylor series at τ = 0. Further, as τ is small, the probability mass of the log-
normally distributed values is concentrated around σ(g). Therefore, f(σ) can
be expanded into a Taylor series at σ = σ(g). After further calculation (it is
referred to [10, Section 7.3.2.4] for all the details) one obtains

ψ(x(g), r(g), σ(g)) = f(σ(g)) +
τ2

2
σ(g) ∂f

∂σ

∣∣∣∣∣
σ=σ(g)

+
τ2

2
σ(g)2 ∂2f

∂σ2

∣∣∣∣∣
σ=σ(g)

+O(τ4).

(58)

To proceed further, the expressions f(σ(g)), ∂f
∂σ

∣∣∣
σ=σ(g)

, and ∂2f
∂σ2

∣∣∣
σ=σ(g)

need to

be evaluated for the feasible and the infeasible cases. These calculations are
described in more detail in Appendix H.

The Approximate SAR in the case that the probability of feasible offspring tends
to 0. The approximate SAR expression can be expressed for the infeasible case
by insertion of Eqs. (H.2), (H.4), and (H.16) into Eq. (58). It yields

ψinfeas ≈ 0 +
τ2

2
+
τ2

2
σ(g)2


 2

σ(g)2

(
d

(2)
1,λ − 1

)
− 2

σ(g)2

σ(g)N√
1 + 1

ξ

√
ξr(g)

c1,λ




(59)

= τ2

[(
d

(2)
1,λ −

1

2

)
− c1,λσ

(g)∗
√

1 + ξ

]
(60)
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where the definition of the higher-order progress coefficients [10, Equation 4.41]

d
(k)
1,λ :=

λ√
2π

∫ t=∞

t=−∞
tke−

1
2 t

2

[Φ(t)]λ−1 dt (61)

and the definition of c1,λ from Eq. (30) have been used.

The Approximate SAR in the case that the probability of feasible offspring tends
to 1. The approximate SAR expression can be expressed for the feasible case
by insertion of Eqs. (H.2), (H.4), and (H.21) into Eq. (58). It yields

ψfeas ≈ 0 +
τ2

2
+
τ2

2
σ(g)2 2

σ(g)2

(
d

(2)
1,λ − 1

)
= τ2

(
d

(2)
1,λ −

1

2

)
. (62)

The Approximate SAR - Combination Using the Best Offspring’s Feasibility
Probability. Similarly to Eq. (37), both cases are combined into

ψ ≈ Pfeas(x
(g), r(g), σ(g))ψfeas + [1− Pfeas(x

(g), r(g), σ(g))]ψinfeas. (63)

Insertion of Eqs. (60) and (62) into Eq. (63) finally results in the approximate
SAR

ψ ≈ τ2

[(
d

(2)
1,λ −

1

2

)
−
(

1− Pfeas(x
(g), r(g), σ(g))

) c1,λσ(g)∗
√

1 + ξ

]
. (64)

Fig. 6 shows two example plots comparing the derived closed-form approxima-
tion for ψ to one-generation experiments and numerical integration results. For
more detailed plots it is referred to [9, Fig. 3.7, pp. 70-72]. The solid line has
been generated by one-generation experiments. The crosses have been computed
by numerical integration (using the normal approximation for r). For this com-
putation, Eq. (52) has been numerically computed using Eqs. (17), (18), (20),
(21), and (23). The pluses have been calculated by evaluating Eq. (64) with
Eq. (F.6). The vertical black line indicates the value of the normalized muta-
tion strength in the steady state for the given parameters. It has been calculated
using Eq. (73) (see Section 4.3.2 for steady state investigations). Again, the ap-
proximation quality in the vicinity of the steady state is acceptable. However,
due to the linear approximation used, ψ must necessarily deviate for sufficiently
large σ∗.

4.3. The Evolution Dynamics in the Deterministic Approximation

4.3.1. The Evolution Equations

As already explained in Section 4.1, the evolution equations (Eqs. (6) to (8))
are difficult to treat analytically. Therefore, approximations are usually used.
One such approximation is to ignore the stochastic fluctuations and only use
the mean terms, i.e., using Eqs. (6) to (8) with εx = 0, εr = 0, and εσ = 0.
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Figure 6: Comparison of the SAR approximation with simulations.

Expressing the x and r evolution equations using the respective normalized
variants, the deterministic evolution equations read

x(g+1) = x(g) − x(g)ϕ
(g)
x

∗

N
= x(g)

(
1− ϕ

(g)
x

∗

N

)
(65)

r(g+1) = r(g) − r(g)ϕ
(g)
r

∗

N
= r(g)

(
1− ϕ

(g)
r

∗

N

)
(66)

σ(g+1) = σ(g) + σ(g)ψ(g) = σ(g)
(

1 + ψ(g)
)
. (67)

Eqs. (65) to (67) represent the so-called mean value iterative system. It can
be iterated starting with initial x(0), r(0), and σ(0) values to predict the actual
values of real ES runs. Fig. 7 shows the mean value dynamics of the (1, λ)-ES
applied to the conically constrained problem for N = 40. For more detailed plots
it is referred to [9, Fig. 3.8, pp. 74-85]. The plots show that the approximation
deviates from the real dynamics for small N (e.g., N = 40). The deviations
from the real runs get smaller with larger N (e.g., N = 400).

4.3.2. The ES in the Stationary State

For constant exogenous parameters the state of the (1, λ)-ES on the con-
ically constrained problem is completely described by (x(g), r(g), σ(g))T . The
stationary state (also called steady state) is the state obtained for sufficiently
large g, i.e., for large time scales. A correct working ES is expected to steadily
move towards the optimizer. Consequently, for sufficiently large g, the normal-
ized mutation strength is expected to be constant. In other words, the steady
state normalized mutation strength σ∗ss is expected to be constant. More for-

mally this reads σ∗ss := limg→∞ σ(g)∗. This means that for sufficiently large

g, σ(g)∗ = σ(g+1)∗ = σ∗ss should hold. In order to proceed further, Eq. (67)

is expressed in normalized terms r(g+1)σ(g+1)∗

N = r(g)σ(g)∗

N

(
1 + ψ(g)

)
. Requiring

that σ(g)∗ = σ(g+1)∗ one obtains further r(g+1) = r(g)
(
1 + ψ(g)

)
. Insertion of
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Figure 7: Mean value dynamics closed-form approximation and real-run comparison of the
(1, λ)-ES with repair by projection applied to the conically constrained problem (N = 40).

Eq. (66) results in

r(g)

(
1− ϕ

(g)
r

∗

N

)
= r(g)

(
1 + ψ(g)

)
(68)

ϕ
(g)
r

∗

N
= −ψ(g). (69)

For the infeasible case in the vicinity of the cone boundary, i.e., if Pfeas ≈ 0

and x(g)
√
ξr(g) ≈ 1, one obtains using the derived approximate relation E[qr1;λ] ≈

1√
ξ
E[q1;λ] (Eq. (G.15)) and Eq. (31)

ϕ∗r = N

(
1− 1

r(g)
E[qr1;λ]

)
≈ N

(
1− 1

r(g)

1√
ξ

E[q1;λ]

)
(70)

= N

(
1− x(g)

√
ξr(g)

(
1− ϕ∗x

N

))
≈ N

(
1−

(
1− ϕ∗x

N

))
= ϕ∗x. (71)

Considering this case further (Pfeas ≈ 0 and x(g)
√
ξr(g) ≈ 1), use of Eq. (36) and

Eq. (64) together with Eq. (69) and Eq. (71) results after simplification for the
asymptotic case N →∞ in

1−
√

1 + σ(g)∗2

N

1 + ξ
+
σ(g)∗c1,λ
N
√

1 + ξ
= −τ2

(
d

(2)
1,λ −

1

2

)
+ τ2 c1,λσ

(g)∗
√

1 + ξ
. (72)
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This leads to a quadratic equation. Solving it is not particularly difficult but
long (use of a computer algebra system (CAS) can be advantageous). Hence,
only the solution is given

σss
∗ ≈

c1,λ
√

1 + ξ(1−Nτ2)(1 + (d
(2)
1,λ − 1

2 )(1 + ξ)τ2)

1− 1+ξ
N c21,λ(1−Nτ2)2

+

√
(1 + ξ)(c21,λ(1−Nτ2)2 +Nτ2(d

(2)
1,λ − 1

2 )(2 + (d
(2)
1,λ − 1

2 )(1 + ξ)τ2))

1− 1+ξ
N c21,λ(1−Nτ2)2

.

(73)
Since σ∗ ≥ 0 does hold, only the positive root has been chosen.

Aiming for a simpler form, assuming further N � σ(g)2
allows simplifying

Eq. (36) (using Taylor expansion and cutoff after the linear term for the first

square root and assuming
1+σ(g)∗2

2N

1+σ(g)∗2
N

≈ 1) to

ϕx
∗ ' N

1 + ξ

(
1− 1− σ(g)∗2

2N

)
+

√
ξ

1 + ξ
σ(g)∗c1,λ

√
1 +

1

ξ
(74)

=
c1,λ√
1 + ξ

σ(g)∗ − σ(g)∗2

2(1 + ξ)
= c1,λ

(
σ(g)∗
√

1 + ξ

)
− 1

2

(
σ(g)∗

√
(1 + ξ)

)2

. (75)

Inserting this into the derived steady state condition Eq. (69) yields using
Eqs. (64) and (75)

ϕx
∗ = −Nψ (76)

c1,λ

(
σ∗ss√
1 + ξ

)
− 1

2

(
σ∗ss√

(1 + ξ)

)2

= −Nτ2

[(
d

(2)
1,λ −

1

2

)
− c1,λσ

∗
ss√

1 + ξ

]
(77)

c1,λσ
∗
ss −

1

2
σ∗ss

2

√
(1 + ξ)

1 + ξ
=
−Nτ2

(
d

(2)
1,λ −

1

2

)√
1 + ξ

+Nτ2c1,λσ
∗
ss

(78)

1

2
σ∗ss

2 1√
(1 + ξ)

+ σ∗ss(Nτ
2c1,λ − c1,λ) = Nτ2

(
d

(2)
1,λ −

1

2

)√
1 + ξ. (79)

Solving this quadratic equation results in

σss
∗ ≈

[
c1,λ(1−Nτ2) +

√
c21,λ(1−Nτ2)2 +Nτ2

(
2d

(2)
1,λ − 1

)]√
1 + ξ. (80)

Here, only the positive root has been chosen since σ∗ ≥ 0 does hold. This is a
remarkable result. One recognizes the equations for the sphere model (see [10,
Page 301, Equation 7.171]), i.e., σ∗ss =

√
1 + ξσ∗sssphere. Additionally, insertion

of σ∗ss into ϕ∗x yields ϕ∗xss = ϕ∗sssphere. Therefore, in the steady state, the
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Figure 8: Steady state closed-form approximation and real-run comparison of the (1, λ)-ES
with repair by projection applied to the conically constrained problem.

(1, λ)-ES with repair by projection applied to the conically constrained problem
approaches the optimizer with the same rate as if a sphere were to be optimized
irrespectively of the value of ξ. That is, due to the definition of ϕ∗ one observes

x((g)) and r(g) dynamics proportional to exp
(
−ϕ∗N g

)
in the steady state. This

implies linear convergence order with a convergence rate of ϕ∗

N . This result can
be interpreted in the sense that the optimal repair has transformed the conical
constraint into a sphere model.

Fig. 8 shows plots of the steady state computations. The derived closed-
form approximation has been compared to real ES runs. For N = 40, the
approximation for σ∗ss is good for small values of ξ. For higher values of ξ, the
deviations of the approximation from the real runs increase. For N = 400, the
approximation for σ∗ss comes close to the results of the real runs for the values
of ξ under consideration. More plots can be found in [9, Fig. 3.9, pp. 89-90].

5. Conclusion

An optimization problem with a conically shaped feasibility region has been
presented. A (1, λ)-ES that can be applied to the presented problem has then
been described. Whereas prior work dealt with resampling, the repair approach
in this work is based on projection, i.e., the minimal repair principle has been ap-
plied. The derivation of closed-form approximations has been shown. First, ap-
proximations for the one-generation behavior of the algorithm have been shown.
Second, those approximate expressions have been used in derived deterministic
evolution equations. As a result, closed-form approximations have been derived
for predicting the evolution dynamics of the ES. Plots comparing the derived
approximations to simulations have been presented to show the quality of the
approximations.

As a remarkable result it is to be mentioned that the optimal repair by
projection results in a linear convergence order of the evolution process. That
is, the conically constrained linear optimization problem has been turned into
a spherical unconstrained problem.
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cone boundary x√
ξ

x = x1

r

x̃

ex̃ ec̃
er̃

e1

xΠ

·

Figure 9: 2D-plane spanned by an offspring x̃ and the x1 coordinate axis. Vectors introduced
for expressing the projection onto the feasible region of Fig. 1 are visualized. The vectors e1,
ex̃, er̃, and ec̃ are unit vectors of the corresponding vectors. The dashed line indicates the
orthogonal projection of x̃ onto the cone boundary.

Analysis of a multi-recombinative ES applied to the presented problem is a
topic for future work. Moreover, it is of interest to analyze cumulative step size
adaptation as the mutation strength control.

Appendix

The sections in this appendix present detailed derivations. They are refer-
enced at the appropriate places in the main text.

A. Derivation of Closed-Form Expressions for the Projection

In this section, a geometrical approach for the projection of points that are
outside of the feasible region onto the cone boundary is described. Fig. 9 shows
a visualization of the 2D-plane spanned by an offspring x̃ and the x1 coordinate
axis. The equation for the cone boundary is a direct consequence of the problem
definition (Eq. (2)). The projected vector is indicated by xΠ. The unit vectors
e1, ex̃, er̃, and ec̃ are introduced. They are unit vectors in the direction of the x1

axis, x̃ vector, r̃ = (0, x̃2, . . . , x̃N )T vector, and the cone boundary, respectively.
The projection line is indicated by the dashed line. It indicates the shortest
Euclidean distance from x̃ to the cone boundary. The goal is to compute the
parameter vector after projection xΠ. By inspecting Fig. 9 one can see that the
projected vector xΠ can be expressed as

xΠ =

{
(eTc̃ x̃)ec̃ if eTc̃ x̃ > 0

0 otherwise.
(A.1)

From Eq. (2), the equation of the cone boundary x√
ξ

follows. Using this, the

vector ec̃ can be expressed as a linear combination of the vectors e1 and er̃.
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After normalization (such that ||ec̃|| = 1) this writes

ec̃ =
e1 + 1√

ξ
er̃√

1 + 1
ξ

. (A.2)

The unit vectors e1 = (1, 0, . . . , 0)T and ex̃ = x̃
||x̃|| are known. The vector er̃ is

a unit vector in direction of x̃ in the dimensions 2 to N , i.e.,

er̃ = (0, (x̃)2, . . . , (x̃)N )T /||r̃||. (A.3)

Inserting Eq. (A.3) into Eq. (A.2) results in

ec̃ =

(
1,

(x̃)2√
ξ||r̃|| , . . . ,

(x̃)N√
ξ||r̃||

)T /√
1 +

1

ξ
. (A.4)

Using Eq. (A.4) it follows that

eTc̃ x̃ =

(
(x̃)1 +

(x̃)2
2 + · · ·+ (x̃)2

N√
ξ||r̃||

)/√
1 +

1

ξ

=

(
(x̃)1 +

||r̃||2√
ξ||r̃||

)/√
1 +

1

ξ

=

(
(x̃)1 +

||r̃||√
ξ

)/√
1 +

1

ξ
=
(

(x̃)1

√
ξ + ||r̃||

)/√
ξ + 1.

(A.5)

Use of Eqs. (A.1), (A.4), and (A.5) yields for the case eTc̃ x̃ > 0

xΠ = (eTc̃ x̃)ec̃

=
1

1 + 1
ξ

(
(x̃)1 +

(x̃)2
2 + · · ·+ (x̃)2

N√
ξ||r̃||

)(
1,

(x̃)2√
ξ||r̃|| , . . . ,

(x̃)N√
ξ||r̃||

)T
.

(A.6)

The first vector component of xΠ writes

q = (xΠ)1 =
1

1 + 1
ξ

(
(x̃)1 +

(x̃)2
2 + · · ·+ (x̃)2

N√
ξ||r̃||

)
=

ξ

ξ + 1

(
(x̃)1 +

||r̃||√
ξ

)
.

(A.7)

The k-th vector component of xΠ for k ∈ {2, . . . , N} writes

(xΠ)k =
ξ

ξ + 1

(
(x̃)1 +

||r̃||√
ξ

)
(x̃)k√
ξ||r̃|| =

ξ

ξ + 1

(
(x̃)1√
ξ||r̃|| +

1

ξ

)
(x̃)k. (A.8)

And the projected distance from the cone axis ||rΠ|| writes

qr = ||rΠ|| =

√√√√
N∑

k=2

(xΠ)2
k =

√√√√
N∑

k=2

(
ξ

ξ + 1

(
(x̃)1√
ξ||r̃|| +

1

ξ

))2

(x̃)2
k

=

(
ξ

ξ + 1

(
(x̃)1√
ξ||r̃|| +

1

ξ

))
||r̃||.

(A.9)
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Note that in terms of the (x, r)T representation, the offspring x̃ can be expressed
as (eT1 x̃, eTr̃ x̃)T = ((x̃)1, ||r̃||)T . This is exactly what is expected. The first
component is the value in direction of the cone axis. The second component is
the distance from the cone axis.

B. Derivation of the Normal Approximation for the Offspring Density
in r Direction

From the offspring generation (Lines 7 and 8) it follows that the distance
from the cone’s axis of the offspring is

r̃ =

√√√√r(g)2
+ 2σ(g)r(g)z2 + σ(g)2

z2
2 + σ(g)2

N∑

k=3

z2
k. (B.1)

Now, 2σ(g)r(g)z2 + σ(g)2
z2

2 and σ(g)2∑N
k=3 z

2
k are replaced with normally dis-

tributed expressions with mean values and standard deviations of the corre-
sponding expressions. With the moments of the i.i.d. variables according to a
standard normal distribution zk, E[zk] = 0, and E[z2

k] = 1, the expected values

E
[
2σ(g)r(g)z2 + σ(g)2

z2
2

]
= σ(g)2

and E
[
σ(g)2∑N

k=3 z
2
k

]
= σ(g)2

(N − 2) follow.

The variances are computed as

Var
[
2σ(g)r(g)z2 + σ(g)2

z2
2

]

= E
[
(2σ(g)r(g)z2 + σ(g)2

z2
2)2
]
− E

[
2σ(g)r(g)z2 + σ(g)2

z2
2

]2

= E
[
4σ(g)2

r(g)2
z2

2 + 4σ(g)3
r(g)z3

2 + σ(g)4
z4

2

]
− σ(g)4

= 4σ(g)2
r(g)2

+ 3σ(g)4 − σ(g)4
= 4σ(g)2

r(g)2
+ 2σ(g)4

(B.2)

and

Var

[
σ(g)2

N∑

i=3

z2
i

]
= σ(g)4

N∑

i=3

Var
[
z2
i

]
= σ(g)4

N∑

i=3

E
[
z4
i

]
− E

[
z2
i

]2

= σ(g)4
N∑

i=3

2 = 2σ(g)4
(N − 2)

(B.3)

where the moments of the i.i.d. variables according to a standard normal dis-
tribution zi E[z2

i ] = 1, E[z3
i ] = 0, and E[z4

i ] = 3 were used.
With these results, the normal approximation follows as

r̃ ≈
√
r(g)2

+N (σ(g)2
, 4σ(g)2

r(g)2
+ 2σ(g)4

) +N (σ(g)2
(N − 2), 2σ(g)4

(N − 2))

=

√
r(g)2

+ σ(g)2
(N − 1) +

√
4σ(g)2

r(g)2
+ 2σ(g)4

(N − 1)N (0, 1).

(B.4)
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Substitution of the normalized quantity σ(g)∗ = σ(g)N
r(g) yields after simplification

r̃ ≈ r(g)

√

1 +
σ(g)∗2

N

(
1− 1

N

)
√√√√√1 +

2σ(g)∗

N

√
1 + σ(g)∗2

2N

(
1− 1

N

)

1 + σ(g)∗2

N

(
1− 1

N

) N (0, 1).

(B.5)

As the expression 2σ(g)∗

N

√
1+σ(g)∗2

2N (1− 1
N )

1+σ(g)∗2
N (1− 1

N )
N (0, 1) → 0 with N → ∞ (σ(g)∗ <

∞), a further asymptotically simplified expression can be obtained by Taylor
expansion of the square root at 0 and cutoff after the linear term

r̃ ≈ r(g)

√

1 +
σ(g)∗2

N

(
1− 1

N

)

︸ ︷︷ ︸
r̄

+ r(g)σ
(g)∗

N

√√√√1 + σ(g)∗2

2N

(
1− 1

N

)

1 + σ(g)∗2

N

(
1− 1

N

)
︸ ︷︷ ︸

σr

N (0, 1).

(B.6)

Consequently, the mean of the asymptotic normal approximation of r̃ is r̄ and
its standard deviation is σr

pr(r) ≈
1

σr
φ

(
r − r̄
σr

)
=

1√
2πσr

exp

[
−1

2

(
r − r̄
σr

)2
]
. (B.7)

C. Derivation of a PQ(q) Approximation

In the following, asymptotic lower and upper bounds for PQ(q) are derived.
Use of the approximations in Eqs. (20), (21), and (23), and subsequent insertion
into Eq. (16) yield

PQ(q) ≈
∫ x=q

x=−∞
px(x)

∫ r=∞

r=0

pr(r) dr

︸ ︷︷ ︸
=1

dx

−
∫ r=∞

r=q/
√
ξ

[∫ x=q

x=−(1/
√
ξ)r+(1+1/ξ)q

px(x) dx

]
pr(r) dr

(C.1)

≈
∫ x=q

x=−∞

1√
2πσ(g)

exp

[
−1

2

(
x− x(g)

σ(g)

)2
]

dx

−
∫ r=∞

r=q/
√
ξ

{∫ x=q

x=−(1/
√
ξ)r+(1+1/ξ)q

1√
2πσ(g)

exp

[
−1

2

(
x− x(g)

σ(g)

)2
]

dx

}

× 1√
2πσr

exp

[
−1

2

(
r − r̄
σr

)2
]

dr.

(C.2)

26



Expressing the integrals where possible using the cumulative distribution func-
tion of the standard normal distribution Φ(·), Eq. (C.2) can be turned into

PQ(q) ≈ Φ

(
q − x(g)

σ(g)

)

−
∫ r=∞

r=q/
√
ξ

[
Φ

(
q − x(g)

σ(g)

)
− Φ

(−(1/
√
ξ)r + (1 + 1/ξ)q − x(g)

σ(g)

)]

× 1√
2πσr

exp

[
−1

2

(
r − r̄
σr

)2
]

dr.

(C.3)

Eq. (C.3) can further be simplified to yield

PQ(q) ≈ Φ

(
q − x(g)

σ(g)

)
Φ

(
q/
√
ξ − r̄
σr

)

+

∫ r=∞

r=q/
√
ξ

Φ

(−(1/
√
ξ)r + (1 + 1/ξ)q − x(g)

σ(g)

)

× 1√
2πσr

exp

[
−1

2

(
r − r̄
σr

)2
]

dr.

(C.4)

Because Φ(·) and 1
σr
φ
(
r−r̄
σr

)
= 1√

2πσr
exp

[
− 1

2

(
r−r̄
σr

)2
]

are non-negative func-

tions and the second summand is non-negative, Eq. (C.4) can be lower bounded

PQ(q) ≥ Φ

(
q − x(g)

σ(g)

)
Φ

(
q/
√
ξ − r̄
σr

)
. (C.5)

To arrive at an upper bound, the integration order in the subtrahend of
Eq. (16) can be reversed yielding Eq. (17). Analogously to the derivation of
the lower bound, Eqs. (20), (21), (23), and (C.2), and insertion into Eq. (17)
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(different order of integration in the subtrahend) yield

PQ(q) ≈
∫ x=q

x=−∞
px(x)

∫ r=∞

r=0

pr(r) dr

︸ ︷︷ ︸
=1

dx

−
∫ x=q

x=−∞
px(x)

[∫ r=∞

r=−√ξx+(
√
ξ+1/

√
ξ)q

pr(r) dr

]
dx

(C.6)

≈
∫ x=q

x=−∞

1√
2πσ(g)

exp

[
−1

2

(
x− x(g)

σ(g)

)2
]

dx

−
∫ x=q

x=−∞

1√
2πσ(g)

exp

[
−1

2

(
x− x(g)

σ(g)

)2
]

×
{∫ r=∞

r=−√ξx+(
√
ξ+1/

√
ξ)q

1√
2πσr

exp

[
−1

2

(
r − r̄
σr

)2
]

dr

}
dx.

(C.7)

Expressing the integrals where possible using the cumulative distribution func-
tion of the standard normal distribution Φ(·), Eq. (C.7) can be turned into

PQ(q) ≈ Φ

(
q − x(g)

σ(g)

)
− Φ

(
q − x(g)

σ(g)

)

+

∫ x=q

x=−∞

1√
2πσ(g)

exp

[
−1

2

(
x− x(g)

σ(g)

)2
]

× Φ

(−√ξx+ (
√
ξ + 1/

√
ξ)q − r̄

σr

)
dx.

(C.8)

Eq. (C.8) can be upper bounded yielding

PQ(q) ≤
∫ x=∞

x=−∞

1√
2πσ(g)

exp

[
−1

2

(
x− x(g)

σ(g)

)2
]

× Φ

(−√ξx+ (
√
ξ + 1/

√
ξ)q − r̄

σr

)
dx

(C.9)

= Φ


 (1 + 1/ξ)q − x(g) − r̄/√ξ√

σ(g)2
+ σ2

r/ξ


 . (C.10)

The bound is justified because the expression inside the integral is non-negative.
Therefore, an increase in the upper bound of the integral results in an increase
of the result of evaluating the integral. While the integral in Eq. (C.8) has an
upper bound of q and a closed form solution is not apparent, the integral in
Eq. (C.9) has an upper bound of∞ and can be solved analytically. To this end,
the identity ∫ ∞

−∞
e−

1
2 t

2

Φ(at+ b) =
√

2πΦ

(
b√

1 + a2

)
, (C.11)
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which has been derived and proven in [10, Equation A.10], is used. The substi-

tution t := x−x(g)

σ(g) that implies dx = σ(g) dt yields for Eq. (C.9)

∫ x=∞

x=−∞

1√
2πσ(g)

exp

[
−1

2

(
x− x(g)

σ(g)

)2
]

Φ

(−√ξx+ (
√
ξ + 1/

√
ξ)q − r̄

σr

)
dx =

∫ t=∞

t=−∞

1√
2π
e−

1
2 t

2

Φ

(−√ξ(σ(g)t+ x(g)) + (
√
ξ + 1/

√
ξ)q − r̄

σr

)
dt.

(C.12)

In this form, Eq. (C.11) can directly be used for Eq. (C.12) with

b =
−√ξx(g) + (

√
ξ + 1/

√
ξ)q − r̄

σr
(C.13)

and

a =
−√ξσ(g)

σr
. (C.14)

Insertion of Eq. (C.13) and Eq. (C.14) into Eq. (C.11) results, after simplifi-
cation, in Eq. (C.10). Consequently, PQ(q) can be bounded in the asymptotic
case considered, as

Φ

(
q − x(g)

σ(g)

)
Φ

(
q/
√
ξ − r̄
σr

)
≤ PQ(q) ≤ Φ


 (1 + 1/ξ)q − x(g) − r̄/√ξ√

σ(g)2
+ σ2

r/ξ


 .

(C.15)

C.1. The Derived PQ(q) Upper Bound as an Approximation for PQ(q)

The goal is to find a good approximation for PQ(q) for the asymptotic cases.
As it turns out, the upper bound (Eq. (C.10)) is a good approximation for large
ξ. It is referred to [9, Section 3.1.2.1.2.3, pp. 33-34] for an error analysis.

C.2. The PQ(q) Approximation in the case that the probability of feasible off-
spring tends to 1

By taking a close look at the integral in Eq. (C.8), one can see that the
expression can be further simplified under certain conditions. Normalization of
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σr and multiplication of the argument to Φ(·) by 1/
√
ξ

1/
√
ξ

in Eq. (C.8) results in

PQ(q) ≈
∫ x=q

x=−∞

1√
2πσ(g)

exp

[
−1

2

(
x− x(g)

σ(g)

)2
]

× Φ

(−x+ (1 + 1/ξ)q − r̄/√ξ
σ∗rr(g)/(N

√
ξ)

)
dx

(C.16)

=

∫ x=q

x=−∞

1√
2πσ(g)

exp

[
−1

2

(
x− x(g)

σ(g)

)2
]

× Φ

(
N
√
ξ
−x/r(g) + (1 + 1/ξ)q/r(g) − r̄/(r(g)

√
ξ)

σ∗r

)
dx.

(C.17)

Assuming N
√
ξ →∞, one observes that

Φ

(
N
√
ξ
− x
r(g) + (1 + 1

ξ ) q
r(g) − r̄

r(g)
√
ξ

σ∗r

)
≈ 1 (C.18)

⇐⇒
(

1 +
1

ξ

)
q

r(g)
− x

r(g)
− r̄

r(g)
√
ξ
> 0 (C.19)

⇐⇒ x <

(
1 +

1

ξ

)
q − r̄√

ξ
. (C.20)

Making use of x ≤ q that follows from the bounds of the integration, this can
further be rewritten to

x <

(
1 +

1

ξ

)
q − r̄√

ξ
⇐⇒ q <

(
1 +

1

ξ

)
q − r̄√

ξ
⇐⇒ r̄

√
ξ

q
< 1. (C.21)

The resulting condition (Eq. (C.21)) means that the simplification can be used
if the probability of generating feasible offspring is high. This can be seen in the
following way. The probability for a particular value q to be feasible is given by

Pr
[√

ξr̃ ≤ |q|
]

=

∫ r̃=q/
√
ξ

r̃=0

pr(r̃) dr̃ ≈ Φ

(
q/
√
ξ − r̄
σr

)
= Φ

(
N
q/
√
ξ − r̄

σ∗rr(g)

)
.

(C.22)
It is the integration from the cone axis up to the cone boundary at the given
value q. For N →∞, it follows that

Φ

(
N
q/
√
ξ − r̄

σ∗rr(g)

)
≈ 1 ⇐⇒ q/

√
ξ − r̄

σ∗rr(g)
> 0 ⇐⇒ r̄

√
ξ

q
< 1. (C.23)

Under this condition, Eq. (C.16) can be simplified in the asymptotic case N →
∞ to

PQ(q) ≈ Φ

(
q − x(g)

σ(g)

)
for q > r̄

√
ξ. (C.24)

with

pQ(q) =
d

dq
PQ(q) ≈ 1√

2πσ
e
− 1

2

(
q−x(g)

σ(g)

)2

for q > r̄
√
ξ. (C.25)
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D. Derivation of an E[q1;λfeas] Approximation

Insertion of Eqs. (24) and (26) into Eq. (15) yields for the feasible case

E[q1;λfeas] ≈ λ
∫ q=∞

q=0

q pQfeas(q)[1− PQfeas(q)]
λ−1 dq (D.1)

= λ

∫ q=∞

q=r̄
√
ξ

q
1√

2πσ(g)
e
− 1

2

(
q−x(g)

σ(g)

)2 [
1− Φ

(
q − x(g)

σ(g)

)]λ−1

dq.

(D.2)

The substitution q−x(g)

σ(g) := −t is used. It follows that q = −tσ(g)+x(g) and dq =

−σ(g) dt. Using normalized quantities, t can be expressed as t = −N(q−x(g))
σ(g)∗r(g) .

Assuming N →∞ yields for the upper bound tu = −∞ and for the lower bound
tl = ∞. The derivation of the these bounds is provided in more detail in [9,
Section 3.1.2.1.2.6, pp. 40-41]. Applying the substitution results in

E[q1;λfeas] ≈ −λ
∫ t=−∞

t=∞
(x(g) − tσ(g))

σ(g)

√
2πσ(g)

e−
1
2 t

2


1− Φ(−t)︸ ︷︷ ︸

=Φ(t)




λ−1

dt (D.3)

= x(g) λ√
2π

∫ t=∞

t=−∞
e−

1
2 t

2

Φ(t)λ−1 dt− σ(g) λ√
2π

∫ t=∞

t=−∞
te−

1
2 t

2

Φ(t)λ−1 dt

(D.4)

= x(g) − σ(g)c1,λ. (D.5)

In the step from Eq. (D.3) to Eq. (D.4), the fact that taking the negative of
an integral can be expressed by exchanging the lower and upper bounds of the
integral, the symmetry of the standard normal distribution have been used, and
the fact that the integral of a sum can be expressed as a sum of integrals have
been used. In Eq. (D.4), the integrals contain the probability density function
of the order statistic of standard normals. The first integral is an integration
over all possible values. Hence, this equals 1. The second integral is its expected
value and is the so-called progress coefficient c1,λ (see Eq. (30)).
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E. Derivation of an E[q1;λinfeas] Approximation

Analogously to the feasible case, insertion of Eqs. (25) and (27) into Eq. (15)
yields for the other case

E[q1;λinfeas] ≈ λ
∫ q=∞

q=0

q pQinfeas(q)[1− PQinfeas(q)]
λ−1 dq (E.1)

= λ

∫ q=r̄
√
ξ

q=0

q


 (1 + 1/ξ)√

σ(g)2
+ σ2

r/ξ


 1√

2π

× exp


−1

2


 (1 + 1/ξ)q − x(g) − r̄/√ξ√

σ(g)2
+ σ2

r/ξ




2



×


1− Φ


 (1 + 1/ξ)q − x(g) − r̄/√ξ√

σ(g)2
+ σ2

r/ξ





λ−1

dq.

(E.2)

The substitution
(1 + 1/ξ)q − x(g) − r̄/√ξ√

σ(g)2
+ σ2

r/ξ

:= −t (E.3)

is used. It follows that

q =
1

(1 + 1/ξ)

(
−
√
σ(g)2

+ σ2
r/ξ t+ x(g) + r̄/

√
ξ

)
(E.4)

and

dq = −

√
σ(g)2

+ σ2
r/ξ

(1 + 1/ξ)
dt. (E.5)

Using the normalized σ(g)∗, σr ' σ(g) for N → ∞, and σ(g)∗ � N (derived
from Eq. (B.6)), t can be expressed as

t = − (1 + 1/ξ)q − x(g) − r̄/√ξ√
σ(g)∗2r(g)2

N2 + σ(g)∗2r(g)2

N2ξ

= −N
√
ξ

[
(1 + 1/ξ)q − x(g) − r̄/√ξ

σ(g)∗r(g)
√
ξ + 1

]
. (E.6)

The lower bound in the transformed integral therefore follows assuming ξ � 1,
N → ∞, using ∞ > r̄ ' r(g) ≥ 0, and knowing that 0 ≤ x(g) < ∞ as tl ' ∞.
Similarly, the upper bound follows with the same assumptions tu ' −∞. The
derivation of the these bounds is provided in more detail [9, Section 3.1.2.1.2.7,
pp. 41-44]. Actually applying the substitution to Eq. (E.2) leads to

E[q1;λinfeas] =
λ√
2π

(
1

1 + 1/ξ

)∫ t=∞

t=−∞

(
−
√
σ(g)2

+ σ2
r/ξ t+ x(g) + r̄/

√
ξ

)

× e− 1
2 t

2

Φ(t)λ−1 dt

(E.7)
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where the fact that taking the negative of an integral can be expressed by
exchanging the lower and upper bounds of the integral and the symmetry of
the standard normal distribution have been used. This can be further treated
yielding

E[q1;λinfeas] = −

√
σ(g)2

+ σ2
r/ξ

1 + 1/ξ

λ√
2π

∫ t=∞

t=−∞
te−

1
2 t

2

Φ(t)λ−1 dt

︸ ︷︷ ︸
=c1,λ

+
x(g) + r̄/

√
ξ

1 + 1/ξ

λ√
2π

∫ t=∞

t=−∞
e−

1
2 t

2

Φ(t)λ−1 dt

︸ ︷︷ ︸
=1

(E.8)

=
ξ

1 + ξ

(
x(g) + r̄/

√
ξ
)
− ξ

1 + ξ

(√
σ(g)2

+ σ2
r/ξ

)
c1,λ. (E.9)

In Eq. (E.8), the integrals in the first and second summands contain the prob-
ability density function of the order statistic of standard normals. The second
integral is an integration over all possible values. Hence, this equals 1. The
second integral is its expected value and is the so-called progress coefficient c1,λ
(see Eq. (30)).

F. Derivation of an Approximation for the Offspring Feasibility Prob-
ability

An offspring with values (x̃, r̃)T is feasible if the condition r̃ ≤ x̃/
√
ξ holds.

For a particular value q = x̃, this probability is denoted by

Pr
[√

ξr̃ ≤ |q|
]

=

∫ r̃=q/
√
ξ

r̃=0

pr(r̃) dr̃ ≈ Φ

(
q/
√
ξ − r̄
σr

)
' Φ

(
q/
√
ξ − r̄

σ(g)

)
.

(F.1)
It is computed by integrating from the cone axis up to the constraint boundary
at the given q value. The last equality results from Eq. (B.6) (σr ≈ σ(g) for
N → ∞). This particular q is the best projected value among λ with prob-
ability density p1;λ(q) = λpQ(q)[1 − PQ(q)]λ−1. As an approximation for the
best offspring probability, the probability for a single offspring to be feasible is
computed and considered here. In [9, Section 3.1.2.1.2.8, pp. 44-47] it is shown
in more detail that this single offspring probability can be derived from the best
offspring feasibility in the asymptotic case N → ∞. For the single offspring
case, integrating Eq. (F.1) over all possible values of q results in

Pfeas(x
(g), r(g), σ(g)) '

∫ q=∞

q=−∞
Φ

[
1

σ(g)

(
q√
ξ
− r̄
)]

px(q) dq. (F.2)

with px(q) = 1√
2πσ(g)

exp

[
− 1

2

(
q−x(g)

σ(g)

)2
]

from Eq. (21). The substitution t :=

q−x(g)

σ(g) is used. It implies q = σ(g)t + x(g) and dq = σdt. With normalization
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it follows further that t = N
(

q−x(g)

σ(g)∗r(g)

)
. This implies tl = −∞ and tu = ∞.

Application of the substitution yields

∫ q=∞

q=0

Φ

[
1

σ(g)

(
q√
ξ
− r̄
)]

1√
2πσ(g)

exp

[
−1

2

(
q − x(g)

σ(g)

)2
]

dq (F.3)

=

∫ t=∞

t=−∞
Φ

[
1

σ(g)

(
σ(g)t+ x(g)

√
ξ

− r̄
)]

1√
2π
e−

1
2 t

2

dt. (F.4)

Now, Eq. (C.11) can be applied with a = 1√
ξ

and b = x(g)
√
ξσ(g) − r̄

σ(g) resulting in

∫ t=∞

t=−∞
Φ

[
1

σ(g)

(
σ(g)t+ x(g)

√
ξ

− r̄
)]

1√
2π
e−

1
2 t

2

dt (F.5)

= Φ


 1

σ(g)
√

1 + 1
ξ

(
x(g)

√
ξ
− r̄
)
 ' Φ

[
1

σ(g)

(
x(g)

√
ξ
− r̄
)]

. (F.6)

The last step was derived under the assumption ξ →∞.

G. Derivation of an E[qr1;λinfeas] Approximation

This section presents the derivation of an approximation for the expectation
of the r value after projection of the best offspring in r direction

E[qr1;λ |x(g), r(g), σ(g)] := E[qr1;λ] =

∫ qr=∞

qr=0

qr pqr1;λ
(qr) dqr. (G.1)

Eq. (G.1) follows directly from the definition of expectation where

pqr1;λ
(qr) := pqr1;λ

(qr |x(g), r(g), σ(g))

indicates the probability density function of the best (offspring with smallest
q value) offspring’s qr value. Considering an arbitrary offspring with (x̃, r̃)T

values before projection and (q, qr)
T values after projection. The qr value is

the best among the λ values if its corresponding q value is the smallest among
the λ offspring’s q values. This follows from the definition of the objective
function (Eq. (1)). One arbitrarily selected mutation out of the total λ muta-
tions has joint probability density pQ,Qr (q, qr) := pQ,Qr (q, qr |x(g), r(g), σ(g)) for
its projected values q and qr. With a similar order statistic argument as for
the x progress case in Section 4.2.1, one obtains λpQ,Qr (q, qr)[1 − PQ(q)]λ−1.
Integration over all possible values of q yields

pqr1;λ
(qr) = λ

∫ q=∞

q=0

pQ,Qr (q, qr)[1− PQ(q)]λ−1 dq. (G.2)
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Insertion of Eq. (G.2) into Eq. (G.1) results in

E[qr1;λ] =

∫ qr=∞

qr=0

qr λ

∫ q=∞

q=0

pQ,Qr (q, qr)[1− PQ(q)]λ−1 dq dqr (G.3)

= λ

∫ q=∞

q=0

[∫ qr=∞

qr=0

qrpQ,Qr (q, qr) dqr

]

︸ ︷︷ ︸
=:I(q)

[1− PQ(q)]λ−1 dq. (G.4)

The integral in I(q) in Eq. (G.4) can be expressed in terms of the values before
the projection. Because the value qr is an individual’s r value after projection,
it only takes values in the interval [0, x/

√
ξ] for x ∈ R, x ≥ 0. All values outside

this interval are projected onto the cone boundary. The integral in Eq. (G.4) is
therefore split into multiple parts. Considering an infinitesimally small dq,

I(q)dq =

∫ r̃=q/
√
ξ

r̃=0

r̃p1;1(q, r̃) dr̃ dq +
q√
ξ

(
pQ(q) dq −

∫ r̃=q/
√
ξ

r̃=0

p1;1(q, r̃) dr̃ dq

)

︸ ︷︷ ︸
= dPline

(G.5)

is derived. The first summand in Eq. (G.5) corresponds to the part inside the
cone (r̃ ≤ q/√ξ). There, no projection occurs. Consequently, this part is equal
to the first summand in I(q). The second summand corresponds to the projected
part. Everything on the projection line resulting in particular (q, qr)

T values, is
projected to qr = q/

√
ξ. It can be expressed in terms of Q. The probability for

an offspring to fall onto the infinitesimally small area at q around the projection
line, equals dPline. The summand in dPline corresponds to the probability that
the projected x value equals q. It includes the feasible case. The subtrahend
subtracts the probability for an offspring to fall onto the infinitesimally small
area at q around the line from the cone axis to the cone boundary. As described
in Section 4.2.1, p1;1(x, r) denotes the joint probability density of an offspring’s
(x, r)T values before projection. The same argument leading to Eq. (20) is used.
That is, assuming a sufficiently small value for τ , the log-normally distributed
offspring mutation strength σ̃l tends to the parental mutation strength σ(g).
Under this assumption that σ̃l ≈ σ(g), Eq. (G.5) can be simplified yielding

I(q) dq = px(q) dq

∫ r̃=q/
√
ξ

r̃=0

r̃pr(r̃) dr̃

+
q√
ξ

(
pQ(q) dq − px(q) dq

∫ r̃=q/
√
ξ

r̃=0

pr(r̃) dr̃

)

(G.6)

I(q) = px(q)

∫ r̃=q/
√
ξ

r̃=0

r̃pr(r̃) dr̃ +
q√
ξ

(
pQ(q)− px(q)

∫ r̃=q/
√
ξ

r̃=0

pr(r̃) dr̃

)
.

(G.7)
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Insertion of Eqs. (21) and (23) into Eq. (G.7) yields

I(q) ≈ 1√
2πσ(g)

exp

[
−1

2

(
q − x(g)

σ(g)

)2
]

∫ r̃=q/
√
ξ

r̃=0

r̃
1√

2πσr
exp

[
−1

2

(
r̃ − r̄
σr

)2
]

dr̃

+
q√
ξ

(
pQ(q)− 1√

2πσ(g)
exp

[
−1

2

(
q − x(g)

σ(g)

)2
]

×
∫ r̃=q/

√
ξ

r̃=0

1√
2πσr

exp

[
−1

2

(
r̃ − r̄
σr

)2
]

dr̃

)
.

(G.8)

The integral ∫ r̃=q/
√
ξ

r̃=0

r̃
1√

2πσr
exp

[
−1

2

(
r̃ − r̄
σr

)2
]

dr̃ (G.9)

can be solved by substituting t := r̃−r̄
σr

, which implies dr̃ = σr dt and r̃ = σrt+ r̄.

The upper bound tu = q/
√
ξ−r̄
σr

and lower bound tl = − r̄
σr

follow. The lower

bound tl tends to −∞ for N →∞ because normalization yields tl = −N r̄
σ∗rr

(g) .

The application of the substitution results in

∫ t=
q/
√
ξ−r̄
σr

t=−∞
(σrt+ r̄)

1√
2π
e−

1
2 t

2

dt = σr
1√
2π

∫ t=
q/
√
ξ−r̄
σr

t=−∞
te−

1
2 t

2

dt

+ r̄

∫ t=
q/
√
ξ−r̄
σr

t=−∞

1√
2π
e−

1
2 t

2

dt

(G.10)

= −σr
1√
2π

exp

[
−1

2

(
q/
√
ξ − r̄
σr

)2
]

+ r̄Φ

(
q/
√
ξ − r̄
σr

)
.

(G.11)

In the last step, the identity
∫ t=x
t=−∞ te−

1
2 t

2

dt = −e− 1
2x

2

from [10, Equation A.16]
and the cumulative distribution function of the standard normal distribution
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have been used. Insertion of Eq. (G.11) into Eq. (G.8) results in

I(q) ≈ 1√
2πσ(g)

exp

[
−1

2

(
q − x(g)

σ(g)

)2
]

×
{
−σr

1√
2π

exp

[
−1

2

(
q/
√
ξ − r̄
σr

)2
]

+ r̄Φ

(
q/
√
ξ − r̄
σr

)}

+
q√
ξ

(
pQ(q)− 1√

2πσ(g)
exp

[
−1

2

(
q − x(g)

σ(g)

)2
]

×
∫ r̃=q/

√
ξ

r̃=0

1√
2πσr

exp

[
−1

2

(
r̃ − r̄
σr

)2
]

dr̃

)

(G.12)

=
1√

2πσ(g)
e
− 1

2

(
q−x(g)

σ(g)

)2

×
[(
r̄ − q√

ξ

)
Φ

(
q/
√
ξ − r̄
σr

)
− σr√

2π
e
− 1

2

(
q/
√
ξ−r̄
σr

)2
]

+
q√
ξ
pQ(q)

(G.13)

after simplification.

The Approximate r Progress Rate in the case that the probability of feasible off-
spring tends to 0. Insertion of Eq. (G.13) into Eq. (G.4) results in the expected
r value after projection of the best offspring for the infeasible case

E[qr1;λinfeas
] ≈ λ

∫ q=∞

q=0

1√
2πσ(g)

e
− 1

2

(
q−x(g)

σ(g)

)2

×
[(
r̄ − q√

ξ

)
Φ

(
q/
√
ξ − r̄
σr

)
− σr√

2π
e
− 1

2

(
q/
√
ξ−r̄
σr

)2
]

[1− PQ(q)]λ−1 dq

+
1√
ξ
λ

∫ q=∞

q=0

q pQ(q)[1− PQ(q)]λ−1 dq

︸ ︷︷ ︸
=E[q1;λ]

.

(G.14)

≈ 1√
ξ

E[q1;λ]. (G.15)

In the last step the remaining integral is assumed to be negligible in the asymp-
totic case.
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H. Derivations for Expressions leading to the SAR Approximation

In this section, the expressions f(σ(g)), ∂f∂σ

∣∣∣
σ=σ(g)

, and ∂2f
∂σ2

∣∣∣
σ=σ(g)

are calcu-

lated where

f(σ) =

(
σ − σ(g)

σ(g)

)
λ

∫ q=∞

q=0

pQ(q |x(g), r(g), σ)[1− PQ(q)]λ−1 dq. (H.1)

Because f(σ(g)) = σ(g)−σ(g)

σ(g) × · · · = 0,

f(σ(g)) = 0 (H.2)

immediately follows. For ∂f
∂σ

∣∣∣
σ=σ(g)

, one derives with the product rule

∂f

∂σ
=

1

σ(g)
λ

∫ q=∞

q=0

pQ(q |x(g), r(g), σ)[1− PQ(q)]λ−1 dq

+
σ − σ(g)

σ(g)
λ

∫ q=∞

q=0

∂

∂σ
pQ(q |x(g), r(g), σ)[1− PQ(q)]λ−1 dq.

(H.3)
Therefore, it follows that

∂f

∂σ

∣∣∣
σ=σ(g)

=
1

σ(g)
λ

∫ q=∞

q=0

pQ(q |x(g), r(g), σ(g))[1− PQ(q)]λ−1 dq

︸ ︷︷ ︸
=1

+
σ(g) − σ(g)

σ(g)︸ ︷︷ ︸
=0

λ

∫ q=∞

q=0

∂

∂σ
pQ(q |x(g), r(g), σ)

× [1− PQ(q)]λ−1 dq
∣∣∣
σ=σ(g)

=
1

σ(g)
.

(H.4)

Computing the derivative with respect to σ of Eq. (H.3) using the product rule
for the second summand results in

∂2f

∂σ2
=

2

σ(g)
λ

∫ q=∞

q=0

∂

∂σ
pQ(q |x(g), r(g), σ)[1− PQ(q)]λ−1 dq

+
σ − σ(g)

σ(g)
λ

∫ q=∞

q=0

∂2

∂σ2
pQ(q |x(g), r(g), σ)[1− PQ(q)]λ−1 dq.

(H.5)

This implies that

∂2f

∂σ2

∣∣∣
σ=σ(g)

=
2

σ(g)
λ

∫ q=∞

q=0

∂

∂σ
pQ(q |x(g), r(g), σ)[1− PQ(q)]λ−1 dq

∣∣∣
σ=σ(g)

.

(H.6)
Hence, ∂

∂σpQ(q |x(g), r(g), σ) has to be derived next. To this end, Eqs. (24)
and (25) are revisited. The infeasible case is treated first followed by the feasible
case.
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H.1. The case that the probability of feasible offspring tends to 0

For the derivation in the case that the probability of feasible offspring tends
to 0, Eq. (25) is simplified further using

√
1 + x ' 1 + x

2 +O(x2)

r̄ '

√

1 +
σ(g)2

N

r(g)2 ' 1 +
σ(g)2

N

2r(g)2 (H.7)

and (for N →∞) σ(g) ≈ σr yielding

PQinfeas(q |x(g), r(g), σ) ≈ Φ




(
1 + 1

ξ

)
q − x(g) − r(g)

√
ξ

(
1 + σ2N

2r(g)2

)

σ
√

1 + 1
ξ


 (H.8)

and

pQinfeas(q |x(g), r(g), σ) =
d

dq
PQinfeas(q) (H.9)

≈ 1√
2π

√
1 + 1

ξ

σ
exp


−1

2




(
1 + 1

ξ

)
q − x(g) − r(g)

√
ξ

(
1 + σ2N

2r(g)2

)

σ
√

1 + 1
ξ




2

 .

(H.10)

Taking the derivative of Eq. (H.10) with respect to σ one obtains

∂

∂σ
pQinfeas(q |x(g), r(g), σ)

=
1√
2π

√
1 + 1

ξ

σ2



−1 +




(
1 + 1

ξ

)
q − x(g) − r(g)

√
ξ

σ
√

1 + 1
ξ

+
σN

2
√
ξr(g)

√
1 + 1

ξ




×




(
1 + 1

ξ

)
q − x(g) − r(g)

√
ξ

(
1 + σ2N

2r(g)2

)

σ
√

1 + 1
ξ







× exp


−1

2




(
1 + 1

ξ

)
q − x(g) − r(g)

√
ξ

(
1 + σ2N

2r(g)2

)

σ
√

1 + 1
ξ




2

 .

(H.11)

Addition of the term σN

2
√
ξr(g)

√
1+ 1

ξ

− σN

2
√
ξr(g)

√
1+ 1

ξ

, which is equal to 0, to the

expressions inside the first pair of square brackets, regrouping, and subsequent
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insertion of the resulting expression and Eq. (H.8) into Eq. (H.6) result in

∂2finfeas

∂σ2

∣∣∣
σ=σ(g)

=
2

σ(g)
λ

∫ q=r̄
√
ξ

q=0

1√
2π

√
1 + 1

ξ

σ(g)2

{
− 1

+




(
1 + 1

ξ

)
q − x(g) − r(g)

√
ξ

(
1 + σ(g)2

N
2r(g)2

)

σ(g)
√

1 + 1
ξ

+
σ(g)N

√
ξr(g)

√
1 + 1

ξ






(
1 + 1

ξ

)
q − x(g) − r(g)

√
ξ

(
1 + σ(g)2

N
2r(g)2

)

σ(g)
√

1 + 1
ξ







× exp


−1

2




(
1 + 1

ξ

)
q − x(g) − r(g)

√
ξ

(
1 + σ(g)2

N
2r(g)2

)

σ(g)
√

1 + 1
ξ




2



×


1− Φ




(
1 + 1

ξ

)
q − x(g) − r(g)

√
ξ

(
1 + σ(g)2

N
2r(g)2

)

σ(g)
√

1 + 1
ξ





λ−1

dq.

(H.12)

For solving this integral, −t :=
(1+ 1

ξ )q−x(g)− r(g)
√
ξ

(
1+σ(g)2

N

2r(g)2

)
σ(g)

√
1+ 1

ξ

is substituted. It

further implies dq = − σ(g)√
1+1/ξ

dt. Expressing t with normalized σ(g) = r(g)σ(g)∗

N

one obtains t = −N
(1+ 1

ξ )q−x(g)− r(g)
√
ξ

(
1+σ(g)∗2

2N

)
σ(g)∗r(g)

√
1+ 1

ξ

. For N → ∞, the integration

bounds after substitution follow as tl =∞ and tu = −∞. The resulting integral
reads

∂2finfeas

∂σ2

∣∣∣
σ=σ(g)

(H.13)

= − 2

σ(g)2

λ√
2π

∫ t=−∞

t=∞



−1 + t2 − σ(g)N√

1 + 1
ξ

√
ξr(g)

t



 e−

1
2 t

2

[1− Φ(−t)︸ ︷︷ ︸
=Φ(t)

]λ−1 dt

(H.14)

=
2

σ(g)2

λ√
2π

∫ t=∞

t=−∞



−1 + t2 − σ(g)N√

1 + 1
ξ

√
ξr(g)

t



 e−

1
2 t

2

[Φ(t)]λ−1 dt (H.15)

=
2

σ(g)2

(
d

(2)
1,λ − 1

)
− 2

σ(g)2

σ(g)N√
1 + 1

ξ

√
ξr(g)

d
(1)
1,λ. (H.16)

In the step from Eq. (H.14) to Eq. (H.15), the fact that negating an integral
is equivalent to exchanging the upper and lower bounds and the identity 1 −
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Φ(−t) = Φ(t) have been used. In the step from Eq. (H.15) to Eq. (H.16) the

higher-order progress coefficients (see Eq. (61)) d
(1)
1,λ and d

(2)
1,λ have been used to

express the integrals. It holds that d
(1)
1,λ = c1,λ.

H.2. The case that the probability of feasible offspring tends to 1

Now, the case that the probability of feasible offspring tends to 1 is con-
sidered in Eq. (H.6). Note that Eqs. (H.2) and (H.4) are the same for both
cases, the infeasible case and the feasible case. To treat Eq. (H.6) further for
the feasible case,

∂

∂σ
pQfeas(q |x(g), r(g), σ) =

∂

∂σ

[
1√
2πσ

e
− 1

2

(
q−x(g)

σ

)2]
(H.17)

has to be derived. With the use of the product rule and subsequent simplification
one obtains

∂

∂σ

[
1√
2πσ

e
− 1

2

(
q−x(g)

σ

)2]
=

1√
2πσ2

[
−1 +

(
q − x(g)

σ

)2
]
e
− 1

2

(
q−x(g)

σ

)2

.

(H.18)

Insertion of this result and Eq. (25) into Eq. (H.6) results in

∂2ffeas

∂σ2

∣∣∣
σ=σ(g)

=
2

σ(g)
λ

∫ q=∞

q=r̄
√
ξ

1√
2πσ(g)2

[
−1 +

(
q − x(g)

σ(g)

)2
]
e
− 1

2

(
q−x(g)

σ(g)

)2

× [1− Φ

(
q − x(g)

σ(g)

)
]λ−1 dq.

(H.19)

The substitution −t := q−x(g)

σ(g) , which implies dq = −σ(g)dt, and therefore for
N →∞ lower bound tl =∞ and upper bound tu = −∞, yields

∂2ffeas

∂σ2

∣∣∣
σ=σ(g)

=
2

σ(g)2

λ√
2π

∫ t=∞

t=−∞
[−1 + t2]e−

1
2 t

2

[Φ(t)]λ−1 dt (H.20)

=
2

σ(g)2

(
d

(2)
1,λ − 1

)
. (H.21)
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