
Matrix Adaptation Evolution Strategies for
Optimization Under Nonlinear Equality Constraints

Patrick Spettela,∗, Hans-Georg Beyera

aResearch Center Process and Product Engineering
Vorarlberg University of Applied Sciences
Hochschulstr. 1, 6850 Dornbirn, Austria

Abstract

This work concerns the design of matrix adaptation evolution strategies for
black-box optimization under nonlinear equality constraints. First, constraints
in form of elliptical manifolds are considered. For those constraints, an algorithm
is proposed that evolves itself on that manifold while optimizing the objective
function. The specialty about the approach is that it is possible to ensure that
the population evolves on the manifold with closed-form expressions. Second,
an algorithm design for general nonlinear equality constraints is presented. For
those constraints considered, an iterative repair approach is presented. This
allows the evolution to happen on the nonlinear manifold defined by the equality
constraints for this more general case as well. For both cases, the algorithms are
interior point methods, i.e., the objective function is only evaluated at feasible
points in the parameter space, which is often required in the area of simulation-
based optimization. For the experimental evaluation, different test problems are
introduced. The proposed algorithms are evaluated on those providing insights
into the working principles of the different approaches. It is experimentally
shown that correcting the mutation vectors after the repair step is important
for an effective evolution strategy. Additional experiments are conducted for
providing a comparison to other evolutionary black-box optimization methods,
which show that the developed algorithms are competitive.

Keywords: Matrix adaptation evolution strategies, Nonlinear constraints,
Nonlinear manifold, Experimental evaluation

1. Introduction

A variety of evolutionary algorithms (EAs) have been proposed for deal-
ing with (black-box) optimization problems containing (black-box) constraints.
An overview of different constraint handling approaches is for example given

∗Corresponding author
Email addresses: Patrick.Spettel@fhv.at (Patrick Spettel), Hans-Georg.Beyer@fhv.at

(Hans-Georg Beyer)

Preprint submitted to Swarm and Evolutionary Computation November 6, 2019

in [1]. Many algorithm designs are based on differential evolution (DE) [2]
and incorporate different constraint handling ideas [3, 4, 5, 6]. Additionally, an
evolution strategy (ES) incorporating the ε-level ordering and gradient-based re-
pair from successful DE variants into the matrix adaptation evolution strategy
(MA-ES) [7] has been proposed [8]. However, in contrast to e.g. DE methods,
extensive study of constraint handling in ESs has only started. Therefore, our
interest is to gain a better understanding of the possibilities of handling con-
straints in ESs. Since Covariance Matrix Adaptation (CMA) ESs such as the
CMA-ES [9, 10] are arguably the most prominent variants, the idea is to incor-
porate constraint handling into such a variant. All of the methods mentioned
above support a black-box objective function and black-box constraints. How-
ever, they evaluate parameter vectors outside of the feasible region. While there
are problems for which this does not pose any issues, in the area of simulation-
based optimization (SBO), the evaluation of infeasible search points is often not
possible. Motivated by real-world applications like the multi-period portfolio
optimization problem with transaction costs [11] or the financial stress-testing
problem presented in [12], interior point methods are the aim of this work.
In the latter work, random stress scenarios are considered and their quality is
determined by a balance sheet simulation. The consideration of only plausi-
ble scenarios introduces an elliptic constraint. In addition, the search-space is
bounded by box constraints, which is not considered in this paper.

In [13], an interior point ES was designed for optimization under linear con-
straints. It evolves itself on a linear manifold by projecting infeasible individuals
onto the constraint manifold. The goal of this work is to extend that idea to non-
linear constraints. In contrast to the approach of discarding infeasible offspring,
repair (by projection) is advantageous especially if the probability of sampling
feasible individuals is small. A peculiarity of repair methods is that they influ-
ence the mutation vectors that are used for the covariance matrix (factor) and
mutation strength updates. Hence, after the repair step, the mutation vectors
are usually corrected (calculated back) such that the parent together with the
mutation results again in the repaired offspring. Such a back-calculation has
been performed in [13] for the linear constraints, however, its influence has not
been investigated deeper. This work addresses that by experimentally evaluat-
ing methods with and without back-calculation on example problems with non-
linear constraints. The experimental results indicate that the back-calculation
is to be preferred.

Besides the stress-testing problem, further application examples are Thom-
son’s problem [14] and Tammes’ problem [15]. The Thomson problem is the task
of determining the position of a given number of electrons on a unit sphere in
3-dimensional space such that their electrostatic potential energy is minimized.
Directly connected to that problem is Tammes’ problem. Instead of optimiz-
ing an electrostatic potential energy, the objective is to maximize the minimum
distance between any pair of a given number of points on the unit sphere in
3-dimensional space.

Considering theoretical aspects, an ES for optimization of a linear function
on a spherical manifold has been theoretically investigated in [16].

2

Contributions

• Design and evaluation of interior point ESs for optimization under non-
linear constraints. Whereas in [13] only linear constraints are supported,
the newly designed ESs in this work support nonlinear constraints. Fur-
thermore, it is different than DE approaches such as [3, 4, 5, 6] since it
ensures that the objective function is only evaluated for feasible search
points, i.e., it is an interior point method.

• A repair approach is developed that supports nonlinear constraints. That
is, infeasible offspring are not discarded. Related work in this direction has
also been done by Arnold in [17, 18]. In those papers, repair is per-formed
by solving an optimization problem for an infeasible search point that finds
a feasible point that has minimal Euclidean distance to the in-feasible
point. The developed ESs in this work are different: The first one considers
an elliptical constraint that can be fulfilled by adapting the sampling step.
The second one uses an iterative repair step based on gradients, whereas
[17, 18] use Matlab’s fmincon.
Since the goal of this work is the design of interior point methods, repair is
the chosen approach for the algorithm with the more general nonlin-ear
equality constraints. However, fulfilling the nonlinear equality con-straints
can be formulated as an optimization problem itself (e.g., projec-tion by
minimizing the Euclidean distance). The proposed method with the
gradient-based repair is arguably relatively simple and is shown to work
well in the experiments.

The remainder of the paper is organized as follows: First, an approach for
known nonlinear constraints defining elliptical manifolds is developed in Sec-
tion 2. With the assumption of knowing the constraints for this case, an al-
gorithm design is presented that enables the evolution on nonlinear manifolds
with closed-form calculations. This is in contrast to the second algorithm that
is presented in Section 3. There, general nonlinear equality constraints are con-
sidered. Hence, the repair is more complex and an iterative repair method is
proposed. Experimental evaluation results of both the algorithms are presented
in Section 4. Finally, the work is concluded with Section 5.

2. A Matrix Adaptation Evolution Strategy for Optimization on El-
liptical Manifolds

In this section, optimization on elliptical manifolds is considered. The fol-
lowing two sections describe the problem (Section 2.1) and the algorithm (Sec-
tion 2.2), respectively.

2.1. Problem Description

The intent is to start investigating extensions of [13], where linear constraints
have been treated by evolution on linear manifolds. The consideration in this

3

chapter is restricted to elliptical manifolds. As it turns out (see Section 2.2),
the evolution on the manifolds considered here can be achieved by closed-form
expressions. This is in contrast to the linear constraint handling in [13], where
an iterative projection repair method was used.

The considered optimization problem can be formulated as

min. f(x)

s.t. xTSx = κ,
(1)

where the objective function f can be a black-box function, S = ST , and κ > 0.
That is, S is assumed to be symmetric and positive definite and hence S = ATA
can be obtained by a Cholesky decomposition. Problems of such form include
the Thomson problem [14] and the Tammes problem [15]. They are explained
in more detail in Section 4.1. The algorithm design is presented and explained
in Section 2.2 and experimentally evaluated in Section 4.

2.2. Algorithm

Algorithm 1 shows the pseudo-code of the algorithm. It is the proposed
(µ/µw, λ)-MA-ES algorithm from [7] with an adapted offspring generation and
parental individual update ensuring that the offspring are created on the el-
liptical manifold and the parental individual for the next generation is also on
the manifold. After the initialization (Lines 1 to 6), the generational loop is
entered (Line 7) and it is run as long as the termination criteria are not fulfilled
(Line 20). Each offspring is created in Lines 8 to 13 by sampling a standard
normally distributed mutation vector z̃l (Line 9). It is then multiplied with the
covariance matrix factor M yielding d̃l (Line 10). The creation of an offspring’s

parameter vector x̃l ←
√
κ
(

x+σA−1d̃l
||Ax+σd̃l||

)
in Line 11 is new and ensures that the

created offspring are on the manifold (refer to Appendix A for the details con-
cerning this update). Throughout the paper, ||·|| is used to denote the Euclidean
norm || · ||2. The fitness evaluation of an offspring finishes its creation (Line 12).
After the offspring creation, they are sorted in ascending order according to
their fitness (Line 14) and x, s, M, and σ are updated (Lines 15 to 18). The
updates of s and M are directly done as proposed in [7]. The update of σ is a
simplified version and is analogous to [19]. Similar to the offspring creation, the
update of the parental individual1 for the next generation

x← √κ
(

x + σA−1
∑µ
m=1 wmd̃m;λ

||Ax + σ
∑µ
m=1 wmd̃m;λ||

)

in Line 15 is new and ensures that it is on the manifold (again, refer to Ap-
pendix A for the details about this update). The update of the generation

1The notation xm;λ is the order statistic notation and denotes the m-th best (w.r.t. fitness)
out of λ values.

4

counter (Line 19) ends one iteration of the generational loop. Notice that since
the objective function is not evaluated for the parental individual x, the standard
MA-ES update x ← x + σ

∑µ
m=1 wmd̃m;λ can alternatively be used. However,

in practical implementations one often keeps track of the best-so-far individual,
where the recombinant is usually taken into account. In this situation, it is

important that the recombinant satisfies the constraint xT Sx = κ, which can
be ensured by the expression in Line 15.

For deriving an upper bound of the asymptotic runtime of one generation of
Algorithm 1, let Tf be an upper bound for the runtime of the objective function
evaluation. Then, notice that the Cholesky decomposition S = AT A and A−1

can be precomputed as an initialization step in O(N3). Hence, for Lines 8 to 13
one obtains O(λN2Tf) (assuming O(1) for the random number generation). For
Lines 14 to 19 one gets O(N3) if Line 17 is implemented as a matrix-matrix
multiplication. Note that it can also be implemented in O(N2) following an idea
analogous to Equation (33). In total, for the asymptotic runtime of one
generation one obtains O(N3) if λTf scales at most linearly in N . If λTf scales
more than linearly in N , then one has O(λN2Tf).

Algorithm 1 The (µ/µw, λ)-MA-ES for optimization on elliptical manifolds
xTSx = κ in RN , where S = ST , κ > 0, and S = ATA (by Cholesky decom-
position).

1: Initialize parameters µ, λ, µeff, cs, c1, cw, and weights wm for 1 ≤ m ≤ µ
2: Initialize x
3: Initialize σ
4: M← I
5: s← 0
6: g ← 0
7: repeat
8: for l← 1 to λ do
9: z̃l ← Nl(0, I)

10: d̃l ←Mz̃l

11: x̃l ←
√
κ
(

x+σA−1d̃l
||Ax+σd̃l||

)
12: f̃l ← f(x̃l)
13: end for
14: Sort offspring according to fitness in ascending order

15: x← √κ
(

x+σA−1 ∑µ
m=1 wmd̃m;λ

||Ax+σ
∑µ
m=1 wmd̃m;λ||

)
16: s← (1− cs) s +

√
µeffcs (2− cs)

∑µ
m=1 wmz̃m;λ

17: M←M
[
I + c1

2

(
ssT − I

)
+ cw

2

((∑µ
m=1 wmz̃m;λz̃

T
m;λ

)
− I
)]

18: σ ← σ exp
[
cs
2

(
||s||2
N − 1

)]
19: g ← g + 1
20: until termination criteria fulfilled

5

3. A Matrix Adaptation Evolution Strategy for Optimization Under
General Nonlinear Equality Constraints

The topic of this section is the optimization considering more general non-
linear equality constraints. Section 3.1 describes the problem and Section 3.2
presents the algorithm.

3.1. General Problem Formulation

Section 2 considered the evolution on elliptical manifolds. This chapter
investigates an extension to more general nonlinear equality constraints. The
considered optimization problem can be stated as

min. f(x)

s.t. hk(x) = 0 for k ∈ {1, . . . ,K}, (2)

where x ∈ RN and K is the number of constraints. The goal is again to design
an interior point method. That is, the evolution should happen on the manifold
defined by the nonlinear equality constraints. Since the objective function and
the constraint functions can be black-box functions, no assumptions are made
about their form. For treating infeasible individuals, a general repair approach
is followed. The algorithm with its repair approach is presented in Section 3.2
and experimentally evaluated in Section 4.

3.2. Algorithm

Algorithm 2 shows the pseudo-code of the algorithm. After the initialization
in Lines 1 to 7, the generational loop is entered (Line 8) and it is run as long
as the termination criteria are not fulfilled (Line 38). In every generation, λ
offspring are created (Lines 9 to 21): Each offspring is created by sampling a
standard normally distributed mutation vector z̃l, multiplying it with the co-
variance matrix factor M, scaling it with the parental mutation strength σ, and
adding the result to the parental individual’s parameter vector x. If the result-
ing offspring’s parameter vector is not feasible, it is repaired and the mutation
vectors are back-calculated if the configuration is set as such. The evaluation of
the offspring’s fitness ends the offspring creation loop. After that, the offspring
are sorted in ascending order (Line 22). The µ best offspring are used to update
x (Line 23), which is again repaired if it results in an infeasible parameter vector
(Lines 24 to 26). After that, s, M, Minv, σ, and the generation counter g are
updated (Lines 27 to 37). The updates of s and M are directly done as proposed
in [7]. The update of σ is a simplified version and is analogous to [19]. The
iterative update of Minv is explained in Section 3.2.3. It is derived similar to the
update of M. The functions shouldDoBackCalculation and shouldDoIterative-
UpdateOfMInverse are Boolean functions. They are used to indicate different
variants of the same algorithm. The former indicates whether an offspring’s
mutation vector should be calculated back after repair. The latter is used to
differentiate between two different ways for the Minv computation (either an

6

iterative update from one generation to the next or always a full inverse compu-
tation2). The different variants are experimentally evaluated in Section 4. The
main intention of the back-calculation is to have a mutation vector that results
in the offspring after repair, since it influences the learning of the covariance
matrix factor.

For deriving an upper bound of the asymptotic runtime of one generation of
Algorithm 2, let Tf be again the upper bound for the runtime of the objective
function evaluation and let Tc be the upper bound for the evaluation of the
constraints. Additionally, let Tr be an upper bound for the repair algorithm
(Algorithm 3). Since the computation of the pseudo-inverse dominates one
iteration of Algorithm 3 and the maximum number of iterations is bounded
above by T , one has Tr = O(T N3Tc) for the case involving the computation of
the inverse of the Jacobian and Tr = O(T NTc) for the special case of one equality
constraint (Section 3.2.2). Using those observations, for Lines 9 to 21 one obtains
O(λN2Tf TcTr) (assuming O(1) for the random number generation). For Lines 14
to 19 one gets O(N3) considering all possible branches. In total, for the
asymptotic runtime of one generation one obtains O(N3) if λTf TcTr scales at
most linearly in N . If λTf TcTr scales more than linearly in N , then one has
O(λN2Tf TcTr).

3.2.1. Repair – General Case

Assume the N -dimensional problem with K equality constraints hk(x) = 0
for k ∈ {1, . . . ,K} presented as Equation (2). The goal is to repair a vector x
that violates some of those K constraints. More formally, given a vector x with

hk(x) = dk, (3)

where dk denotes the error of x for the the k-th constraint, the goal is to find
∆x such that

hk(x + ∆x)
!
= 0 (4)

for all k ∈ {1, . . . ,K}. Note that if for all k ∈ {1, . . . ,K} it is true that dk = 0,
x is feasible and no repair is necessary.

By applying a Taylor expansion with cut-off after the linear term to the
left-hand side of Equation (4), one obtains3

hk(x) +
N∑
i=1

∂ hk
∂ (x)i

(∆x)i
!
= 0. (5)

2In practical implementations, one might consider using the pseudoinverse. It makes the
inverse less exact but can handle covariance matrix factors that are degenerate to some extent.

3Note that xi and (x)i are equivalent notations used for indicating the i-th element of a
vector x.

7

Algorithm 2 The (µ/µw, λ)-MA-ES for optimization under general nonlinear
equality constraints in RN .

1: Initialize parameters µ, λ, µeff, cs, c1, cw, and weights wm for 1 ≤ m ≤ µ
2: Initialize x
3: Initialize σ
4: M← I
5: Minv ← I
6: s← 0
7: g ← 0
8: repeat
9: for l← 1 to λ do

10: z̃l ← Nl(0, I)
11: d̃l ←Mz̃l
12: x̃l ← x + σd̃l
13: if not isFeasible(x̃l) then
14: x̃l ← repair(x̃l) . see Algorithm 3
15: if shouldDoBackCalculation() then
16: d̃l ← x̃l−x

σ

17: z̃l ←Minvd̃l
18: end if
19: end if
20: f̃l ← f(x̃l)
21: end for
22: Sort offspring according to fitness in ascending order
23: x← x + σ

∑µ
m=1 wmd̃m;λ

24: if not isFeasible(x) then
25: x← repair(x) . see Algorithm 3
26: end if
27: s← (1− cs) s +

√
µeffcs (2− cs)

∑µ
m=1 wmz̃m;λ

28: M←M
[
I + c1

2

(
ssT − I

)
+ cw

2

((∑µ
m=1 wmz̃m;λz̃

T
m;λ

)
− I
)]

29: if shouldDoBackCalculation() then
30: if shouldDoIterativeUpdateOfMInverse() then

31: Minv ←
[
I− c1

2

(
ssT − I

)
− cw

2

((∑µ
m=1 wmz̃m;λz̃

T
m;λ

)
− I
)]

Minv

32: else
33: Minv ←M−1

34: end if
35: end if
36: σ ← σ exp

[
cs
2

(
||s||2
N − 1

)]
37: g ← g + 1
38: until termination criteria fulfilled

8

By insertion of Equation (3) into Equation (5), one can write

N∑
i=1

∂ hk
∂ (x)i

(∆x)i = −dk. (6)

Studying Equation (6), one notes that ∂ hk
∂ (x)i

is exactly the entry of the Jacobi

matrix J on the k-th row and i-th column. Hence, one can write

N∑
i=1

(J)ki(∆x)i = −dk, (7)

which can be written in matrix-vector form as

J∆x = −d, (8)

where J ∈ RK×N , ∆x ∈ RN , and d ∈ RK . J in Equation (8) is not invertible
in general. Consequently, an alternative way of solving Equation (8) for ∆x
is to compute a least-squares solution. To this end, multiplying both sides of
Equation (8) with JT from the left yields

JTJ∆x = −JTd. (9)

Provided that JTJ has full rank N , it is invertible and one gets

∆x = −(JTJ)−1JTd. (10)

Otherwise, if JTJ is not invertible, one can use Tikhonov’s regularization with
a regularizer α for the smallest ||∆x||:

∆x = − lim
α→0

[
(JTJ + αI)−1JT

]
d. (11)

Since the limit expression in Equation (10) is a definition of the pseudo-inverse
J+ (refer for example to [20] for more details), one can write

∆x = −J+d. (12)

Since the quadratic and higher-order terms of the Taylor expansion have been
neglected from Equation (4) to Equation (5), Equation (12) inserted into the
condition stated as Equation (4) does usually not satisfy that condition. Nev-
ertheless, the derived result in Equation (12) can be used as an iterative im-
provement method as depicted in Algorithm 3. Note that depending on how ε is
set, a maximum number of iterations can be used as an additional termination
criterion in practical implementations of the algorithm. Since the constraint
functions hk can be black-box functions, a limit for the maximum number of
repair iterations also ensures that the loop is quit eventually in case that it does
not converge.

9

One way to numerically compute the entries of the Jacobi matrix in Line 6
of Algorithm 3 is by using the central difference method. More formally,

∂ hk
∂ (x(t))i

≈ hk(x(t) + Ξi)− hk(x(t) −Ξi)

2ξ
,

where

ξ =

{
εJ if (x(t))i = 0

|(x(t))i| εJ otherwise

with a small εJ > 0. The notation Ξi indicates the i-th column vector of

Ξ = ξ IN×N .

Algorithm 3 The iterative repair method based on gradients for K equality
constraints hk(x) with k ∈ {1, . . . ,K}. Note that those K functions can also be
written as h(x) returning a K-dimensional vector d ∈ RK .

1: function repair(x)
2: Initialize ε
3: x(0) ← x
4: t← 0
5: repeat
6: Compute (numerically) the Jacobian J(t), where (J(t))ki = ∂ hk

∂ (x(t))i

7: J+ ← pseudo-inverse of J
8: d(t) ← h(x(t))
9: x(t+1) ← x(t) − J+d(t)

10: t← t+ 1
11: until ||h(x(t))|| < ε or t ≥ T
12: return (x(t))
13: end function

3.2.2. Repair – Special Case of One Equality Constraint

Considering an N -dimensional problem with only one (i.e., K = 1) equality
constraint h(x) = 0, one can derive an iterative repair method making use of
the gradient ∇h as a special case from the general case theory presented above.
With K = 1, the Jacobian writes

J =

(
∂ h

∂ x1
, . . . ,

∂ h

∂ xN

)
= ∇Th. (13)

From Equation (11), one has

∆x = − lim
α→0

[(
∇h∇Th+ αI

)−1∇h
]
d. (14)

10

For computing the inverse
(
∇h∇Th+ αI

)−1
, a spectral decomposition

∇h∇Th+ αI = UΛUT (15)

is performed, where U is an orthonormal matrix with the eigenvectors as
columns (UTU = I) and Λ is a diagonal matrix containing the eigenvalues.
Since U is an orthonormal matrix and Λ is a diagonal matrix, the inverse can
be obtained by (

UΛUT
)−1

= UΛ−1UT , (16)

where (
Λ−1

)
ij

=

{
1/(Λ)ij if i = j

(Λ)ij = 0 otherwise.
(17)

The calculation of the spectral decomposition leads to the eigenvalue problem(
∇h∇Th+ αI

)
um = λmum. (18)

For the first normalized eigenvector, one gets

u1 =
∇h
||∇h|| . (19)

Insertion of Equation (19) into Equation (18) leads to

∇h||∇h||+ α

||∇h||∇h = λ1
∇h
||∇h|| , (20)

which implies
λ1 = ||∇h||2 + α. (21)

Since the intention is to have orthonormal eigenvectors and the first eigenvector
(Equation (19)) is in direction of ∇h, one has

uTm∇h = 0,uTmum′ = δmm′ for m ∈ {2, . . . , N}, (22)

where

δij =

{
1 if i = j

0 otherwise
(23)

is the Kronecker delta function. Consideration of Equation (22) for calculating
the m-th eigenvalue using Equation (18) leads to

λm = α for m ∈ {2, . . . , N}. (24)

Usage of Equation (19) and Equation (22) with Equation (15) results in

(
∇h∇Th+ αI

)
=
(
||∇h||2 + α

) ∇h∇Th
||∇h||2 + α

N∑
m=2

umuTm. (25)

11

For the inverse, notice that one only needs to invert the diagonal matrix Λ of
eigenvalues as shown in Equations (16) and (17), which leads to

(
∇h∇Th+ αI

)−1
=

1

(||∇h||2 + α)

∇h∇Th
||∇h||2 +

1

α

N∑
m=2

umuTm. (26)

Insertion of Equation (26) into Equation (14) yields

∆x = − lim
α→0

 1

(||∇h||2 + α)

∇h(

=||∇h||2︷ ︸︸ ︷
∇Th∇h)

||∇h||2 +
1

α

N∑
m=2

um(uTm∇h︸ ︷︷ ︸
=0

)

 d
=

[∇h
(||∇h||2 + α)

]
d

= − d

||∇h||2∇h. (27)

Equation (27) can now be used to design an iterative repair algorithm for K = 1
similar to Algorithm 3. In particular, Equation (27) replaces the expression
involving the pseudo-inverse in Line 9 of Algorithm 3. Again, the entries of the
gradient can be numerically computed by the central difference method.

3.2.3. Iterative Update of Minv

The motivation for an iterative update of Minv is two-fold. First, inversion of
M can lead to numerical problems in the case that it degenerates to some extent.
Second, as shown below, it can be implemented as matrix-vector operations
requiring less computation time.

Similar to the derivation leading to the update of M in Line 28 of Algo-
rithm 2, the update of Minv in Line 31 of Algorithm 2 can be derived. The
derivation is briefly summarized here, but for the details regarding the M-
update it is referred to the derivations leading to [7, Eq. (30)]. The starting
point is

M(g+1) = M(g)
[
I + B(g)

]
, (28)

where

B(g) =
c1
2

(
ssT − I

)
+
cw
2

((
µ∑

m=1

wmz̃m;λz̃
T
m;λ

)
− I

)
. (29)

For the inverse of M(g), it holds(
M(g+1)

)−1

=
(
M(g)

[
I + B(g)

])−1

=
(
I + B(g)

)−1 (
M(g)

)−1

. (30)

12

Now,
(
I + B(g)

)−1
can be expanded by a matrix power series into(
I + B(g)

)−1

= I−B(g) +
(
B(g)

)2

− · · · . (31)

Neglecting the quadratic and higher order terms, one gets(
M(g+1)

)−1

=
[
I−B(g)

] (
M(g)

)−1

=

[
I− c1

2

(
ssT − I

)
− cw

2

((
µ∑

m=1

wmz̃m;λz̃
T
m;λ

)
− I

)](
M(g)

)−1

.

(32)

If one implements Equation (32) as it is written, it is a matrix-matrix multipli-
cation. One can reduce the computation time by implementing a rewritten form
that results in matrix-vector multiplications. This idea is analogous to the one

proposed in [19] for the M update: By distributing
(
M(g)

)−1
over the terms in

the square bracket, one obtains(
M(g+1)

)−1

=
(

1 +
c1
2

+
cw
2

)(
M(g)

)−1

− c1
2

s

(
sT
(
M(g)

)−1
)

− cw
2

µ∑
m=1

wmz̃m;λ

(
z̃Tm;λ

(
M(g)

)−1
)
.

(33)

Hence, one can reduce the update of M and Minv to Θ(N2).

4. Experimental Evaluation

Thomson’s problem [14] is a problem for which both presented algorithms
(Algorithm 1 and Algorithm 2) can be experimentally evaluated and compared
because it is an optimization problem constrained to the surface of a sphere.
Directly related to Thomson’s problem is Tammes’ problem [15]. Both problems
differ only w.r.t. their objective functions as described in Section 4.1.

Another interesting problem for the experimental evaluation of Section 3.2
in comparison to other black-box optimization methods that support nonlinear
equality constraints is the problem of maximizing the area of a polygon con-
strained to having a given circumference. A more detailed description is given
in Section 4.2.

4.1. Thomson’s Problem

Thomson’s problem is the problem of determining the position ofM electrons
on a unit sphere in 3-dimensional space such that their electrostatic potential
energy is minimized. More formally, an abstract version of the problem can be

13

(xM+1, yM+1)
T = (0, 0)T

(x1, y1)
T

(x2, y2)
T

(x3, y3)
T(xM , yM)T

. .
.

Figure 1: Visualization of a polygon in R2 with M + 1 nodes numbered in counterclockwise
order.

stated as

min
M∑
i=2

i−1∑
j=1

1

||ri − rj ||

s.t. ∀k ∈ {1, . . . ,M} : ||rk|| = 1,

(34)

where ri = (xi, yi, zi)
T . That is, ri is a 3-dimensional vector containing the x,

y, and z coordinates of the corresponding electron.
Tammes’ problem is directly connected to Thomson’s problem and results

in the same optimal values for some values of M . Instead of optimizing an elec-
trostatic potential energy, the objective is to maximize the minimum distance
between any pair of M points on the unit sphere:

max min
i,j
||ri − rj ||

s.t. ∀k ∈ {1, . . . ,M} : ||rk|| = 1,
(35)

where ri = (xi, yi, zi)
T . Again, ri is a 3-dimensional vector containing the x, y,

and z coordinates of the corresponding point.

4.2. Polygon With Fixed Perimeter Constraint

Given a number of points M and a circumference L, the goal of the polygon
problem is to optimize the position of M+1 nodes in the 2-dimensional space R2

such that the circumference is L and the area is maximal. It is assumed w.l.o.g.
that the M + 1-st node is at the origin (0, 0)T . Let xi and yi denote the x
coordinate and the y coordinate, respectively, of the i-th point. A visualization
is given in Figure 1, in which a polygon with M + 1 nodes in counterclockwise
order is shown in the R2 space.

More formally, the optimization problem can be stated as

min. Amax −A(x,y)

s.t. h(x,y) = 0,
(36)

14

where Amax is the maximal possible area4, A(x,y) is the area of the polygon
defined by the x and y coordinates of all the points given as the vectors x and
y, respectively, and h(x,y) represents the equality constraint. The Amax value
can be derived as

Amax =
L2

4 tan π
M+1

1

M + 1
. (37)

For the derivation of this formula, it is referred to Appendix B.
Since non-self-intersecting (i.e., simple) polygons are considered, the (signed)

area A(x,y) can be calculated using the so-called shoelace formula as

A(x,y) =
1

2

M−1∑
i=1

(xiyi+1 − xi+1yi). (38)

It yields a positive area if the points of the polygon are in counterclockwise
order. In addition, remember again that (xM+1, yM+1)T = (0, 0)T and hence
the products involving the M + 1-st node yield 0.

The equality constraint can be calculated as the sum of all the segments of
the polygon. Remembering that (xM+1, yM+1)T = (0, 0)T , it can be written
using the Pythagorean Theorem as

h(x,y) =
√
x2

1 + y2
1 +

(
M∑
i=1

√
(xi − xi+1)2 + (yi − yi+1)2

)
− L. (39)

4.3. Results

For the experimental evaluation, Thomson’s problem, the polygon problem,
and problems with only nonlinear equality constraints from the CEC 2006 com-
petition5 on constrained optimization [23] have been implemented in the COCO
framework [24]. The code is provided in a GitHub fork of the COCO frame-
work, https://github.com/patsp/coco. The changes are in the new branch
development-sppa-manifold. This branch is based on the development
branch of https://github.com/numbbo/coco. The new code for the Thomson
problem, the polygon problem, and the CEC 2006 problems with only nonlin-
ear constraints6 extends the test suite called custom (code-experiments/src/
suite_custom.c, code-experiments/src/coco_suite.c).

4Amax is used to have the minimum at 0. This allows for a better assessment of the
optimization dynamic. However, it is not needed for the algorithm to work.

5Further test problems of the CEC 2010 and CEC 2017 competitions on constrained op-
timization [21, 22] with only nonlinear equality constraints have been considered. However, note
that in order for the benchmark to be the same as for the Thomson and the polygon problem, the
optima of the problems have to be known to define targets. Hence, only the CEC 2006 problems
have been used in this work.

6Notice that box constraints are not considered in our proposed method, however, the
CEC 2006 g17 problem requires them. Hence, that problem’s objective function has been
adapted to return a large value for search points that are outside of the box constraints.

15

https://github.com/patsp/coco
https://github.com/numbbo/coco

The implementations of those problems exhibit two peculiarities that are
explained in the following two paragraphs.

Following the convention of the bbob-constrained COCO suite, which only
supports inequality constraints, each equality constraint in the implementation
of the Thomson problem and the polygon problem is implemented using two
inequality constraints with an error tolerance of 10−8. That is, a particular
equality constraint hk(x) = 0 is represented as −10−8 ≤ hk(x) ≤ 10−8. More
explicitly, one can introduce two inequality constraints gk(x) ≤ 0 and g′k(x) ≤ 0
for each equality constraint hk(x), where gk(x) := −hk(x) − 10−8 ≤ 0 and
g′k(x) := hk(x) − 10−8 ≤ 0. This formulation does not have an impact on the
search behavior of the considered algorithms because they work with the equality
constraint. The required conversion happens in a software layer between COCO
and the ES implementation.

Since the objective function and the constraint function expect one in-
put vector, the Thomson problem and the polygon problem use one vec-
tor that contains all the points. For the Thomson problem with M elec-
trons, the implementation referenced above uses the parameterization x =
(x1, y1, z1, x2, y2, z2, . . . , xM , yM , zM)T and the evolution takes place in R3M .
The objective function and the k constraints are implemented based on Equa-
tion (34). The implementation of the polygon problem with M +1 nodes makes
use of the parameterization x = (x1, x2, . . . , xM , y1, y2, . . . , yM)T and the op-
timization happens in R2M . The objective function and the constraint are
implemented based on Equation (36).

In what follows, the performance of the various algorithm variants is
visualized using bootstrapped Empirical Cumulative Distribution Functions
(ECDF)7. Such figures show the percentages of function target values reached
for a given budget of function and constraint evaluations divided by the pa-
rameter space dimensionality. On the x-axis, the sum of objective function and
constraint evaluations normalized by the dimension is shown on a logarithmic
scale. On the y-axis, the percentage of targets reached for the given sum of
objective function and constraint evaluations is indicated. Each of the targets
is defined as a particular distance from the optimum. The standard COCO tar-
gets in the feasible region are used: ftarget = fopt + 10k for 51 different values of
k between −8 and 2. COCO does not define any targets in the infeasible region.
The crosses indicate the medians of the sum of objective function and constraint
evaluations of those instances that were not able to reach the most difficult tar-
get. The top-left corner of every plot provides details about the experiments
(suite, function number, targets, and number of instances). The legend is pro-
vided at the right end, where every entry is connected to the corresponding line
in the graph.

For the experiments, the default parameters stated in [7] have been used (N
is the problem parameterization’s dimension, i.e., N = 3M for the Thomson
problem and N = 2M for the polygon problem): λ = 4 + b3 lnNc, µ = bλ2 c,

7Results in tabular form are provided in Appendix D.

16

wm =
ln(λ+1

2)−lnm∑µ
k=1(ln(λ+1

2)−ln k)
for 1 ≤ m ≤ µ, µeff = 1∑µ

m=1 w
2
m

, cs = µeff+2
µeff+N+5 ,

c1 = 2
(N+1.3)2+µeff

, cw = min
(

1− c1, 2(µeff+1/µeff−2)
(N+2)2+µeff

)
. The budget of the sum

of function and constraint evaluations has been set to 105N . The iterative repair
accuracy has been set to ε = 10−9 and the maximum number of iterations in the
repair step has been set to T = 10. For the polygon problem, L = 10 has been used
in the experiments.

4.3.1. Benchmarking the Different MA-ES Variants

In the plots that follow, the abbreviations as outlined in the list below are
used.

• elli: denotes the (µ/µw, λ)-MA-ES for optimization on ellipsoidal mani-
folds (Algorithm 1).

• repfeval: is the (µ/µw, λ)-MA-ES for optimization under general non-
linear equality constraints (Algorithm 2) with the repair only performed
for the objective function evaluation. The evolution itself happens in an
unconstrained manner. That is, shouldDoBackCalculation is set to false
and Line 25 is omitted.

• backcalc1: indicates Algorithm 2 with shouldDoBackCalculation set to
true and shouldDoIterativeUpdateOfMInverse set to false.

• backcalc2: denotes Algorithm 2, where shouldDoBackCalculation and
shouldDoIterativeUpdateOfMInverse are set to true.

• nobackcalc: indicates Algorithm 2 with shouldDoBackCalculation set to
false.

Figures 2 and 3 show the ECDF plots of the different algorithm variants in
comparison on the Thomson problem. Since exact optima are not known for
all the different numbers of electrons considered, the values of fopt used in the
experiments are summarized in the appendix (see Table C.1 in Appendix C).
For the targets, the corresponding relative error to the optimal value is used.

The largest performance difference is observed between the ES variant that
evolves on the ellipsoidal manifold and the ES variants with the repair approach.
The ellipsoidal variant reaches between about 60% and 80% of the targets with
fewer evaluations than the other methods. The reason is that the iterative repair
method requires constraint evaluations whereas the ellipsoidal variant assumes a
known elliptic constraint and evolves itself on it. Additionally, one observes that
the two update variants of Minv exhibit similar behaviors. This suggests that
the iterative Minv update can be used instead of the full inverse computation.

Analogously, Figures 4 and 5 show the ECDF plots of the different algorithm
variants in comparison on the polygon problem. Note that the way the polygon
problem is stated in (36), 0 is the optimal value to be reached. Hence, for
the polygon problem, the absolute error to 0 with the corresponding target’s
tolerance is used for each target considered.

17

M = 4 M = 6

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 fu
nc

tio
n,

ta
rg

et
 p

ai
rs

nobackcalc

elli

repfeval

backcalc1

backcalc2custom f2, 12-D
51 targets: 100..1e-08
15 instances

version sppa

2 Thomson problem

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

nobackcalc

elli

repfeval

backcalc1

backcalc2custom f2, 18-D
51 targets: 100..1e-08
15 instances

version sppa

2 Thomson problem

M = 8 M = 10

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

elli

nobackcalc

repfeval

backcalc2

backcalc1custom f2, 24-D
51 targets: 100..1e-08
15 instances

version sppa

2 Thomson problem

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

elli

nobackcalc

repfeval

backcalc2

backcalc1custom f2, 30-D
51 targets: 100..1e-08
15 instances

version sppa

2 Thomson problem

Figure 2: Bootstrapped empirical cumulative distribution function of the number of objec-
tive function and constraint evaluations divided by dimension: comparison of the different
approaches on the Thomson problem. Notice that due to the problem’s parameterization, the
optimization is performed in N = 3M dimensions. (Part 1/2)

The figures show that the repair without back-calculation performs worse
than the variants with back-calculation. Interestingly, the difference in perfor-
mance shows up already for M = 5, i.e., for a polygon with 6 nodes. Further in-
vestigations concerning the behavior for this case showed that a steady decrease
toward the optimizer is only achieved with back-calculation. The dynamics of a
single run with and without back-calculation are shown side by side in Figure 6.
Furthermore, one observes again that the two update variants of Minv exhibit
similar behaviors, which indicates that the iterative Minv update can be used.

4.3.2. Comparison With Other Approaches

The MA-ES variant with back-calculation shows the best performance in
Figures 2 to 5. Since the variants with the full inverse computation and the
iterative computation of Minv perform similarly, the back-calculation variant
with iterative Minv update has been used in further experiments. It has been
compared to the other evolutionary optimization methods that are described in
the following paragraphs.

18

M = 12 M = 14

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

elli

nobackcalc

repfeval

backcalc2

backcalc1custom f2, 36-D
51 targets: 100..1e-08
15 instances

version sppa

2 Thomson problem

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

elli

repfeval

nobackcalc

backcalc1

backcalc2custom f2, 42-D
51 targets: 100..1e-08
15 instances

version sppa

2 Thomson problem

M = 16 M = 18

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

elli

nobackcalc

repfeval

backcalc2

backcalc1custom f2, 48-D
51 targets: 100..1e-08
15 instances

version sppa

2 Thomson problem

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

elli

repfeval

nobackcalc

backcalc1

backcalc2custom f2, 54-D
51 targets: 100..1e-08
15 instances

version sppa

2 Thomson problem

Figure 3: Bootstrapped empirical cumulative distribution function of the number of objec-
tive function and constraint evaluations divided by dimension: comparison of the different
approaches on the Thomson problem. (Part 2/2)

19

M = 5 M = 7

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

nobackcalc

repfeval

backcalc1

backcalc2custom f3, 10-D
51 targets: 100..1e-08
15 instances

version sppa

3 Polygon problem

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

nobackcalc

repfeval

backcalc1

backcalc2custom f3, 14-D
51 targets: 100..1e-08
15 instances

version sppa

3 Polygon problem

M = 9 M = 11

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

nobackcalc

repfeval

backcalc1

backcalc2custom f3, 18-D
51 targets: 100..1e-08
15 instances

version sppa

3 Polygon problem

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

nobackcalc

repfeval

backcalc2

backcalc1custom f3, 22-D
51 targets: 100..1e-08
15 instances

version sppa

3 Polygon problem

Figure 4: Bootstrapped empirical cumulative distribution function of the number of objec-
tive function and constraint evaluations divided by dimension: comparison of the different
approaches on the polygon problem. Notice that due to the problem’s parameterization, the
optimization is performed in N = 2M dimensions. (Part 1/2)

20

M = 13 M = 15

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

nobackcalc

repfeval

backcalc2

backcalc1custom f3, 26-D
51 targets: 100..1e-08
15 instances

version sppa

3 Polygon problem

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

nobackcalc

repfeval

backcalc2

backcalc1custom f3, 30-D
51 targets: 100..1e-08
15 instances

version sppa

3 Polygon problem

M = 17 M = 19

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

nobackcalc

repfeval

backcalc2

backcalc1custom f3, 34-D
51 targets: 100..1e-08
15 instances

version sppa

3 Polygon problem

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 fu
nc

tio
n,

ta
rg

et
 p

ai
rs

nobackcalc

repfeval

backcalc2

backcalc1custom f3, 38-D
51 targets: 100..1e-08
15 instances

version sppa

3 Polygon problem

Figure 5: Bootstrapped empirical cumulative distribution function of the number of objec-
tive function and constraint evaluations divided by dimension: comparison of the different
approaches on the polygon problem. (Part 2/2)

0

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

0 20 40 60 80 100 120 140 160 180 200
generation

Polygon problem (M = 5) with back-calculation

|f − fopt|
σ-dynamics

0

10−3

10−2

10−1

100

101

102

0 20 40 60 80 100 120 140 160
generation

Polygon problem (M = 5) without back-calculation

|f − fopt|
σ-dynamics

Figure 6: Dynamics of a single run of the variants with back-calculation (left) and without
back-calculation (right) on the polygon problem for M = 5.

21

g03 g11

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

nobackcalc

backcalc1

repfeval

backcalc2custom f5, 10-D
51 targets: 100..1e-08
15 instances

version sppa

5 CEC 2006 g03

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

repfeval

nobackcalc

backcalc2

backcalc1custom f6, 2-D
51 targets: 100..1e-08
15 instances

version sppa

6 CEC 2006 g11

g13 g17

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

nobackcalc

repfeval

backcalc1

backcalc2custom f7, 5-D
51 targets: 100..1e-08
15 instances

version sppa

7 CEC 2006 g13

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

backcalc2

repfeval

nobackcalc

backcalc1custom f8, 6-D
51 targets: 100..1e-08
15 instances

version sppa

8 CEC 2006 g17

Figure 7: Bootstrapped empirical cumulative distribution function of the number of objec-tive
function and constraint evaluations divided by dimension: comparison of the different
approaches on the CEC 2006 problems with only nonlinear constraints.

22

ConSaDE (denoted conSaDE in the plots). The Self-adaptive Differential Evo-
lution Algorithm for Constrained Real-Parameter Optimization (ConSaDE) [3]
is an extension of the Self-adaptive Differential Evolution (SaDE) algorithm
with constraint handling. The two main aspects of the SaDE algorithm are
the use of multiple mutation operators and self-adaptive parameter adaptation.
Furthermore, a local search is performed every 500 generations with the idea
of speeding up the convergence. The variant ConSaDE incorporates constraint
handling into SaDE by using lexicographic ordering in the selection step.

ECHT-DE (denoted ECHT-DE o in the plots). Differential Evolution with En-
semble of Constraint Handling Techniques (ECHT-DE) as proposed in [4] is a
combination of various constraint handling methods. The constraint handling
methods used are superiority of feasibility, self-adaptive penalty, ε-level con-
straint handling, and stochastic ranking. Each of them has its own population
with a set of parameters and each generates offspring. For the computation of
the next generation’s population all the different current populations are con-
sidered.

εDEag (denoted epsDEga o in the plots). The method Constrained Optimiza-
tion by the ε Constrained Differential Evolution with an Archive and Gradient-
Based Mutation (εDEag) [5] uses an archive to maintain diversity, incorpo-
rates the ε-level constraint handling approach and the gradient-based mutation
method for dealing with constraints.

Active-Set-ES (denoted active se in the plots). The Active-Set-ES [17] is a
(1 + 1)-ES with an evolution of the active set of constraints. In each generation,
a feasible offspring is created. This is then projected either onto a reduced search
space or onto the whole feasible region. That choice is performed uniformly at
random with a fixed probability. In the reduced search space, all the inequality
constraints that are active at the parent are turned into equality ones. For the
mutation strength adaptation, the 1/5th rule is used.

εMAg-ES (denoted epsMAg-ES in the plots). The εMAg-ES [8] incorporates
three constraint handling techniques into the MA-ES. It makes use of a re-
flection approach for dealing with the box-constraints and the ε-level constraint
handling. Further, a repair method based on estimated gradients is used.

LSHADE44 (denoted LSHADE44 in the plots). The L-SHADE with Competing
Strategies Applied to Constrained Optimization (LSHADE44) has been pro-
posed in [6]. It is the winner of the CEC 2017 competition on constrained
optimization and improves the Success History based DE with linear popula-tion
size reduction (L-SHADE) [25]. Four different combinations of mutation and
crossover operators are used that compete with each other to create a trial point.
The lexicographic ordering approach is used for the constraint handling.

23

iUDE (denoted iUDE in the plots). The iUDE is an improved version of the
Unified Differential Evolution (UDE) [26] algorithm. The iUDE method was the
winner of the CEC 2018 competition on constrained optimization8. The
algorithm uses three trial vector generation approaches. Additionally, a dual
population approach with strategy adaptation is incorporated. Lexicographic
and ε-level constraint handling are used for dealing with the restrictions.

fmincon (denoted fmincon in the plots). Matlab’s fmincon has been used with
the option interior-point to have a further interior-point method besides the
Active-Set-ES and the proposed algorithms.

ECDF plots. The corresponding comparison ECDF plots are shown in Figures 8
and 9 for the Thomson problem, in Figures 10 and 11 for the polygon problem,
and in Figure 12 for the CEC 2006 problems with only nonlinear equality con-
straints.

They show that the proposed method is competitive. On the Thomson
problem, fmincon (interior-point) exhibits the best performance and reaches the
most difficult target for all dimensions shown. The proposed approach as well as
the Active-Set-ES show a similar performance and reach the most difficult target
(note that the Active-Set-ES requires more evaluations). For smaller dimensions,
the εMAg-ES reaches the most difficult target, however, it requires more
evaluations. It is not able to reach the most difficult target for the higher
dimensions. Considering the DE variants, the conSaDE is competitive9 up to M
= 10. For the higher dimensions considered, the performance of all the DE
variants is inferior to the ESs considered.

On the polygon problem, for the smaller dimensions the situation is similar
to the Thomson problem. However, for the larger dimensions the proposed
approach shows the best performance. The εMAg-ES reaches about 60% of the
targets. All the other approaches reach less than 20% of the targets for the
larger dimensions.

Considering the CEC 2006 problems with only nonlinear equality con-
straints, the results show that the proposed approach and the Active-Set-ES
achieve best performance over all problems. In particular for g17, the others
perform worse. On g03 and g13, additionally the conSaDE and the εMAg-ES
reach the most difficult target. On g11, all methods except the iUDE reach the
most difficult target.

5. Conclusion

Two different ESs have been presented for dealing with nonlinear equality
constraints. The first algorithm is for optimizing a black-box function and as-

8A technical report and the source code (Matlab) of iUDE have been made available as
part of the CEC 2018 competition materials.

9It is worth noting that conSaDE uses Matlab’s fmincon at a pre-defined interval of passed
generations to speed up the convergence.

24

M = 4 M = 6

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

iUDE on c

LSHADE44

ECHT-DE o

epsDEga o

epsMAg-ES

conSaDE o

backcalc2

active se

fmincon ocustom f2, 12-D
51 targets: 100..1e-08
15 instances

version sppa

2 Thomson problem

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

iUDE on c

LSHADE44

epsDEga o

ECHT-DE o

epsMAg-ES

active se

backcalc2

conSaDE o

fmincon ocustom f2, 18-D
51 targets: 100..1e-08
15 instances

version sppa

2 Thomson problem

M = 8 M = 10

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

iUDE on c

epsDEga o

LSHADE44

ECHT-DE o

epsMAg-ES

active se

conSaDE o

backcalc2

fmincon ocustom f2, 24-D
51 targets: 100..1e-08
15 instances

version sppa

2 Thomson problem

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

iUDE on c

epsDEga o

LSHADE44

ECHT-DE o

epsMAg-ES

active se

conSaDE o

backcalc2

fmincon ocustom f2, 30-D
51 targets: 100..1e-08
15 instances

version sppa

2 Thomson problem

Figure 8: Bootstrapped empirical cumulative distribution function of the number of objective
function and constraint evaluations divided by dimension: comparison with other methods on
the Thomson problem. Notice that due to the problem’s parameterization, the optimization
is performed in N = 3M dimensions. (Part 1/2)

25

M = 12 M = 14

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

iUDE on c

epsDEga o

LSHADE44

ECHT-DE o

epsMAg-ES

conSaDE o

active se

backcalc2

fmincon ocustom f2, 36-D
51 targets: 100..1e-08
15 instances

version sppa

2 Thomson problem

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

iUDE on c

epsDEga o

conSaDE o

LSHADE44

ECHT-DE o

epsMAg-ES

active se

backcalc2

fmincon ocustom f2, 42-D
51 targets: 100..1e-08
15 instances

version sppa

2 Thomson problem

M = 16 M = 18

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

iUDE on c

epsDEga o

conSaDE o

LSHADE44

ECHT-DE o

epsMAg-ES

active se

backcalc2

fmincon ocustom f2, 48-D
51 targets: 100..1e-08
15 instances

version sppa

2 Thomson problem

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

iUDE on c

epsDEga o

conSaDE o

LSHADE44

ECHT-DE o

epsMAg-ES

active se

backcalc2

fmincon ocustom f2, 54-D
51 targets: 100..1e-08
15 instances

version sppa

2 Thomson problem

Figure 9: Bootstrapped empirical cumulative distribution function of the number of objective
function and constraint evaluations divided by dimension: comparison with other methods on
the Thomson problem. (Part 2/2)

26

M = 5 M = 7

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

ECHT-DE o

epsDEga o

LSHADE44

iUDE on c

epsMAg-ES

active se

backcalc2

conSaDE o

fmincon ocustom f3, 10-D
51 targets: 100..1e-08
15 instances

version sppa

3 Polygon problem

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

iUDE on c

ECHT-DE o

epsDEga o

LSHADE44

active se

epsMAg-ES

backcalc2

conSaDE o

fmincon ocustom f3, 14-D
51 targets: 100..1e-08
15 instances

version sppa

3 Polygon problem

M = 9 M = 11

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

iUDE on c

ECHT-DE o

epsDEga o

LSHADE44

conSaDE o

epsMAg-ES

active se

backcalc2

fmincon ocustom f3, 18-D
51 targets: 100..1e-08
15 instances

version sppa

3 Polygon problem

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

iUDE on c

conSaDE o

ECHT-DE o

fmincon o

epsDEga o

LSHADE44

active se

epsMAg-ES

backcalc2custom f3, 22-D
51 targets: 100..1e-08
15 instances

version sppa

3 Polygon problem

Figure 10: Bootstrapped empirical cumulative distribution function of the number of objective
function and constraint evaluations divided by dimension: comparison with other methods on
the polygon problem. Notice that due to the problem’s parameterization, the optimization is
performed in N = 2M dimensions. (Part 1/2)

27

M = 13 M = 15

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

LSHADE44

conSaDE o

active se

ECHT-DE o

epsDEga o

fmincon o

iUDE on c

epsMAg-ES

backcalc2custom f3, 26-D
51 targets: 100..1e-08
15 instances

version sppa

3 Polygon problem

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

iUDE on c

active se

LSHADE44

ECHT-DE o

conSaDE o

fmincon o

epsDEga o

epsMAg-ES

backcalc2custom f3, 30-D
51 targets: 100..1e-08
15 instances

version sppa

3 Polygon problem

M = 17 M = 19

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

iUDE on c

active se

LSHADE44

ECHT-DE o

epsDEga o

conSaDE o

fmincon o

epsMAg-ES

backcalc2custom f3, 34-D
51 targets: 100..1e-08
15 instances

version sppa

3 Polygon problem

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

iUDE on c

active se

LSHADE44

ECHT-DE o

epsDEga o

conSaDE o

fmincon o

epsMAg-ES

backcalc2custom f3, 38-D
51 targets: 100..1e-08
15 instances

version sppa

3 Polygon problem

Figure 11: Bootstrapped empirical cumulative distribution function of the number of objective
function and constraint evaluations divided by dimension: comparison with other methods on
the polygon problem. (Part 2/2)

28

g03 g11

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

iUDE on c

ECHT-DE o

epsDEga o

fmincon o

LSHADE44

epsMAg-ES

backcalc2

active se

conSaDE ocustom f5, 10-D
51 targets: 100..1e-08
15 instances

version sppa

5 CEC 2006 g03

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

iUDE on c

LSHADE44

epsDEga o

epsMAg-ES

ECHT-DE o

conSaDE o

backcalc2

active se

fmincon ocustom f6, 2-D
51 targets: 100..1e-08
15 instances

version sppa

6 CEC 2006 g11

g13 g17

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

iUDE on c

fmincon o

LSHADE44

epsDEga o

active se

ECHT-DE o

epsMAg-ES

conSaDE o

backcalc2custom f7, 5-D
51 targets: 100..1e-08
15 instances

version sppa

7 CEC 2006 g13

0 2 4 6 8
log10(# (f+g)-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

iUDE on c

fmincon o

LSHADE44

backcalc2

conSaDE o

ECHT-DE o

epsDEga o

epsMAg-ES

active secustom f8, 6-D
51 targets: 100..1e-08
15 instances

version sppa

8 CEC 2006 g17

Figure 12: Bootstrapped empirical cumulative distribution function of the number of objective
function and constraint evaluations divided by dimension: comparison with other methods on
the CEC 2006 problems with only nonlinear equality constraints.

29

sumes a known constraint in the form of an elliptical manifold. The second
algorithm supports general nonlinear (black-box) equality constraints optimiz-
ing a black-box objective function. Both algorithms have been evaluated on
Thomson’s problem and a problem of maximizing the area of a polygon given
a fixed circumference.

Different variations of the algorithms have been compared. As a remarkable
result, it has been experimentally shown that the back-calculation is crucial for
a working ES for the consideration in this work. In particular, the experiments
revealed that for the second algorithm the part that is enabled if shouldDoBack-
Calculation is set to true yields better results for the polygon problem. As a
reason for it, the dynamics of a single run have been shown to yield a desired
behavior only for the former case. In addition, the iterative update of the co-
variance factor indicated by shouldDoIterativeUpdateOfMInverse has not shown
qualitative differences. Hence, one can conclude from the experiments that the
cheaper and more robust iterative update can be preferred to the full inverse
computation.

Comparisons of the variant for the case that shouldDoBackCalculation and
shouldDoIterativeUpdateOfMInverse are set to true with other evolutionary op-
timization methods have also been performed. They show that the proposed
methods are competitive on the problems considered.

Gaining even further insight into the inner workings of the algorithms is a
topic for future work. If possible, theoretical investigations of parts of the algo-
rithm can result in a deeper knowledge. Another direction for future research
can be the investigation of parabolic and hyperbolic constraints. It would be of
interest to study whether a closed form evolution on parabolic and hyperbolic
manifolds is possible with a similar approach as for the ellipsoidal constraint
presented in this work.

Appendix

A. Offspring Creation and Parental Individual Update on the Ellip-
tical Manifold

Lines 11 and 15 of Algorithm 1 are designed such that the created offspring
and the parental individual for the next generation, respectively, are on the
manifold, i.e., it is ensured by design that they satisfy the constraint xTSx = κ.
A straightforward calculation (remembering S = ATA) shows that such an

30

algorithm design yields the desired result:

x̃Tl Sx̃l = κ

(
x + σA−1d̃l

)T
ATA

(
x + σA−1d̃l

)
(
Ax + σd̃l

)T (
Ax + σd̃l

) (A.1)

= κ

(
A
(
x + σA−1d̃l

))T
A
(
x + σA−1d̃l

)
(
Ax + σd̃l

)T (
Ax + σd̃l

) (A.2)

= κ

(
Ax + σd̃l

)T (
Ax + σd̃l

)
(
Ax + σd̃l

)T (
Ax + σd̃l

) = κ. (A.3)

This result is for the offspring creation. The same result can be shown analo-
gously for the parental individual update.

B. Derivation of the Maximal Area Amax

In the limit case of infinitely many points with infinitesimally small segment
lengths, the goal of maximal area given a fixed circumference yields a circle.
Therefore, Amax can be calculated as depicted in Figure B.13 by considering
equal angles β for all the P = M + 1 segments of equal length d. The radius of
the circle is denoted as R. The visualization is for the case of a polygon with
P = 4 segments. For the general case,

β =
2π

P
. (B.1)

In general, the dashed line intersects the segment with 90◦. Hence, one can
write

sin
β

2
=
d/2

R
, (B.2)

which implies

d = 2R sin
β

2
. (B.3)

Since all the segments have the same length, the circumference L of the polygon
can be calculated as

L = Pd. (B.4)

Insertion of Equation (B.3) into Equation (B.4) yields

L = 2PR sin
β

2
, (B.5)

which implies

R =
L

2P sin β
2

. (B.6)

31

C
A

B

R
d
2

d
2

β
2β

2

Figure B.13: Visualization for the computation of Amax. One particular segment of a polygon
with 4 segments is considered. Its length is d. It is shown as a solid line, whereas the other 3
segments are dotted. A triangle is shown with the corners C, A, and B, where C denotes the
center of the depicted circle with radius R and the two corners A and B are the intersection
points of the shown segment with the circle. The angle ∠CAB is denoted as β. Note that in
the case considered β = 90◦.

Inserting Equation (B.1) into Equation (B.6) results in

R =
L

2P sin π
P

. (B.7)

The area of each segment can be calculated leading to

Aseg =
d

2
R cos

β

2
(B.8)

(refer to the triangle CAB in Figure B.13). Since there are P segments, one
gets

Amax = PAseg = P
d

2
R cos

β

2
. (B.9)

Usage of Equation (B.4) and Equation (B.7) results in

Amax =
L

2

L

2P

cos β2
sin β

2

=
L2

4P

1

tan β
2

(B.10)

for Equation (B.9). Taking into account Equation (B.1) and P = M + 1, one
gets

Amax =
L2

4P

1

tan π
P

=
L2

4 tan π
M+1

1

M + 1
. (B.11)

32

M fopt

2 0.500000000
3 1.732050808
4 3.674234614
5 6.474691495
6 9.985281374
7 14.452977414
8 19.675287861
9 25.759986531
10 32.716949460
11 40.596450510
12 49.165253058
13 58.853230612
14 69.306363297
15 80.670244114
16 92.911655302
17 106.050404829
18 120.084467447

Table C.1: The optimal values used for benchmarking the Thomson problem.

C. Considered Best Known Values for the Thomson Problem

The optimal values10 considered for benchmarking the Thomson problem
are summarized in Table C.1.

D. Experimental Results in Tabular Form

Using the COCO post-processing tool, tabular results that accompany the
comparison plots with other approaches shown in Section 4.3 have been gen-
erated. They are presented in the following tables: Tables D.2 to D.9 show
tabular results for the Thomson problem. Tables D.10 to D.17 show tabular
results for the polygon problem. Tables D.18 to D.21 show tabular results for
the CEC 2006 problems g03, g11, g13, and g17.

Acknowledgments

This work was supported by the Austrian Science Fund FWF under grant
P29651-N32.

10They are listed in https://en.wikipedia.org/wiki/Thomson_problem#Configurations_

of_smallest_known_energy (accessed: June 14, 2019) and present best known values.

33

https://en.wikipedia.org/wiki/Thomson_problem#Configurations_of_smallest_known_energy
https://en.wikipedia.org/wiki/Thomson_problem#Configurations_of_smallest_known_energy

M=4

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f2

ECHT-DE 1.4e6(6e5) 1.4e6(6e5) ∞ ∞ ∞ ∞ ∞ 1e6 0/15

LSHADE4 5.7e7(5e7) 5.7e7(7e7) ∞ ∞ ∞ ∞ ∞ 1e7 0/15

active 262(14) 275(44) 981(926) 6824(1840) 1.2e4(2081) 2.0e4(1935) 2.8e4(3352) 15/15

conSaDE 5.1e4(122) 5.1e4(532) 5.1e4(328) 5.1e4(322) 5.1e4(338) 5.1e4(556) 5.1e4(126) 15/15

epsDEga 5.3e5(9e4) 5.9e5(9e4) 7.2e5(1e5) 7.2e6(1e7) ∞ ∞ ∞ 5e5 0/15

epsMAg- 1.4e5(3238) 1.4e5(3404) 2.0e5(2e5) 2.0e5(2e5) 2.0e5(2e5) 3.5e5(6e5) 6.6e5(5e5) 10/15

fmincon 1(0)?5 79(128) 269(128)?2 283(148)?5 283(107)?5 283(78)?5 286(114)?5 15/15

iUDE on ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1e6 0/15

backcal 54(0) 76(54) 1494(1235) 4236(2592) 1.0e4(4890) 2.1e4(3740) 3.0e4(3422) 15/15

Table D.2: Average runtime (aRT) to reach given targets, measured in number of function and
constraint evaluations for the Thomson problem with M = 4. For each function, the aRT and, in
braces as dispersion measure, the half difference between 10 and 90%-tile of (bootstrapped)
runtimes is shown for the different target ∆f -values as shown in the top row. #succ is the
number of trials that reached the last target fopt + 10−8. The median number of conducted
function and constraint evaluations is additionally given in italics, if the target in the last
column was never reached. Entries, succeeded by a star, are statistically significantly better
(according to the rank-sum test) when compared to all other algorithms of the table, with p =
0.05 or p = 10−k when the number k following the star is larger than 1. Best results are printed
in bold.

M=6

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f2

ECHT-DE 3.6e6(1e6) 4.1e6(8e5) 2.8e7(4e7) ∞ ∞ ∞ ∞ 2e6 0/15

LSHADE4 1.0e8(9e7) 1.0e8(8e7) ∞ ∞ ∞ ∞ ∞ 3e7 0/15

active 485(21) 497(34) 1764(2226) 2.1e4(2762) 3.0e4(3014) 4.9e4(4580) 6.7e4(3501) 15/15

conSaDE 5.1e4(500) 5.1e4(320) 5.1e4(91) 5.1e4(532) 5.1e4(137) 5.1e4(112) 5.1e4(132) 15/15

epsDEga 2.3e6(8e5) 2.3e6(2e6) 6.0e6(6e6) ∞ ∞ ∞ ∞ 7e5 0/15

epsMAg- 2.1e5(1655) 2.1e5(2720) 3.0e5(3e5) 3.4e5(1e5) 4.3e5(4e5) 1.3e6(8e5) 4.6e6(6e6) 1/15

fmincon 1(0)?5 62(229)?4 621(239)?2 677(334)?5 677(252)?5 677(380)?5 693(265)?5 15/15

iUDE on ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/15

backcal 78(0) 94(20) 1802(1920) 1.3e4(5658) 2.7e4(6556) 4.7e4(5538) 6.3e4(8448) 15/15

Table D.3: Average runtime (aRT) to reach given targets, measured in number of function
and constraint evaluations for the Thomson problem with M = 6.

M=8

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f2

ECHT-DE 7.2e6(2e6) 8.1e6(3e6) ∞ ∞ ∞ ∞ ∞ 2e6 0/15

LSHADE4 1.9e8(3e8) 1.9e8(2e8) ∞ ∞ ∞ ∞ ∞ 6e7 0/15

active 780(30) 797(52) 3580(1570) 3.8e4(8124) 5.9e4(7624) 1.6e5(6e4) 2.3e5(8e4) 15/15

conSaDE 1.3e5(3e4) 1.3e5(3e4) 1.3e5(3e4) 1.3e5(3e4) 1.3e5(3e4) 1.3e5(3e4) 1.3e5(3e4) 15/15

epsDEga ∞ ∞ ∞ ∞ ∞ ∞ ∞ 9e5 0/15

epsMAg- 2.8e5(6920) 2.8e5(3698) 4.0e5(4e5) 5.4e5(7668) 5.9e5(4e5) 2.6e7(3e7) ∞ 2e6 0/15

fmincon 1(0)?5 86(318)?4 1277(187) 1368(355)?5 1368(328)?5 1416(401)?5 1507(389)?5 15/15

iUDE on ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/15

backcal 102(0) 109(0) 3784(4042) 1.6e4(5815) 5.1e4(1e4) 1.1e5(3e4) 1.5e5(3e4) 15/15

Table D.4: Average runtime (aRT) to reach given targets, measured in number of function
and constraint evaluations for the Thomson problem with M = 8.

34

M=10

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f2

ECHT-DE∞ ∞ ∞ ∞ ∞ ∞ ∞ 3e6 0/15

LSHADE4∞ ∞ ∞ ∞ ∞ ∞ ∞ 3240 0/15

active 1135(32) 1135(27) 5382(5631) 5.8e4(1e4) 9.4e4(2e4) 5.3e5(2e5) 8.7e5(4e5) 15/15

conSaDE 3.6e5(2e5) 3.6e5(1e5) 3.6e5(9e4) 3.6e5(2e5) 3.6e5(2e5) 3.6e5(1e5) 3.6e5(9e4) 15/15

epsDEga ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1e6 0/15

epsMAg- 3.6e5(5898) 3.6e5(5931) 4.7e5(4e5) 7.4e5(2e6) 2.1e6(1e6) ∞ ∞ 2e6 0/15

fmincon 1(0)?5 138(0) 1765(671)?2 2064(421)?5 2064(237)?5 2278(638)?5 2527(370)?5 15/15

iUDE on ∞ ∞ ∞ ∞ ∞ ∞ ∞ 3e6 0/15

backcal 126(0) 126(0) 7073(8032) 2.8e4(1e4) 8.0e4(2e4) 1.8e5(7e4) 2.6e5(6e4) 15/15

Table D.5: Average runtime (aRT) to reach given targets, measured in number of function
and constraint evaluations for the Thomson problem with M = 10.

M=12

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f2

ECHT-DE∞ ∞ ∞ ∞ ∞ ∞ ∞ 4e6 0/15

LSHADE4∞ ∞ ∞ ∞ ∞ ∞ ∞ 3888 0/15

active 1543(60) 1543(16) 6366(7313) 9.3e4(1e4) 2.0e5(5e4) 2.9e5(5e4) 3.8e5(7e4) 15/15

conSaDE 2.8e5(1e5) 2.8e5(7e4) 2.8e5(2e5) 2.8e5(1e5) 2.8e5(3e4) 2.8e5(9e4) 2.8e5(2e5) 15/15

epsDEga ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1e6 0/15

epsMAg- 4.4e5(8911) 4.4e5(7726) 4.4e5(6293) 4.4e5(6883) 5.9e6(9e6) ∞ ∞ 2e6 0/15

fmincon 1(0)?5 210(1566) 2870(402) 2870(358)?5 3023(942)?5 3061(694)?5 3185(472)?5 15/15

iUDE on ∞ ∞ ∞ ∞ ∞ ∞ ∞ 4e6 0/15

backcal 150(0) 150(0) 1.0e4(7256) 4.8e4(2e4) 1.5e5(3e4) 2.2e5(3e4) 2.8e5(1e4) 15/15

Table D.6: Average runtime (aRT) to reach given targets, measured in number of function
and constraint evaluations for the Thomson problem with M = 12.

M=14

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f2

ECHT-DE∞ ∞ ∞ ∞ ∞ ∞ ∞ 4e6 0/15

LSHADE4∞ ∞ ∞ ∞ ∞ ∞ ∞ 4536 0/15

active 2025(52) 2025(55) 1.1e4(6485) 1.2e5(7368) 2.3e5(1e4) 7.2e5(3e5) 1.1e6(3e5) 15/15

conSaDE ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/15

epsDEga ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/15

epsMAg- 5.2e5(1e4) 5.2e5(1e4) 7.1e5(1e4) 2.4e6(3e6) 1.2e7(1e7) ∞ ∞ 3e6 0/15

fmincon 1(0)?5 146(1088)?4 3596(1233)?2 3596(606)?5 3596(1082)?5 3761(805)?5 4052(670)?5 15/15

iUDE on ∞ ∞ ∞ ∞ ∞ ∞ ∞ 4e6 0/15

backcal 174(0) 174(0) 1.1e4(7526) 4.7e4(2e4) 1.7e5(4e4) 4.0e5(1e5) 5.2e5(1e5) 15/15

Table D.7: Average runtime (aRT) to reach given targets, measured in number of function
and constraint evaluations for the Thomson problem with M = 14.

M=16

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f2

ECHT-DE∞ ∞ ∞ ∞ ∞ ∞ ∞ 5e6 0/15

LSHADE4∞ ∞ ∞ ∞ ∞ ∞ ∞ 5184 0/15

active 2587(88) 2587(91) 1.1e4(3352) 1.6e5(1e4) 2.8e5(7e4) 1.2e6(7e5) 1.8e6(8e5) 12/15

conSaDE ∞ ∞ ∞ ∞ ∞ ∞ ∞ 3e6 0/15

epsDEga ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/15

epsMAg- 6.1e5(1e4) 6.1e5(1e4) 6.1e5(5911) 1.4e6(8e5) 1.3e7(1e7) ∞ ∞ 3e6 0/15

fmincon 1(0)?5 1(0)?5 3495(890)?3 3766(744)?5 3766(811)?5 5760(1180)?4 6473(2798) 13/15

iUDE on ∞ ∞ ∞ ∞ ∞ ∞ ∞ 5e6 0/15

backcal 198(0) 211(99) 1.2e4(1e4) 6.2e4(3e4) 2.3e5(4e4) 6.0e5(1e5) 7.7e5(9e4) 9/15

Table D.8: Average runtime (aRT) to reach given targets, measured in number of function
and constraint evaluations for the Thomson problem with M = 16.

35

M=18

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f2

ECHT-DE∞ ∞ ∞ ∞ ∞ ∞ ∞ 5e6 0/15

LSHADE4∞ ∞ ∞ ∞ ∞ ∞ ∞ 5832 0/15

active 3263(239) 3263(314) 1.5e4(9600) 2.1e5(2e4) 4.1e5(1e5) 1.7e6(9e5) 3.1e6(1e6) 14/15

conSaDE ∞ ∞ ∞ ∞ ∞ ∞ ∞ 3e6 0/15

epsDEga ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/15

epsMAg- 6.8e5(2e4) 6.8e5(2e4) 9.3e5(2e4) 1.8e6(4e6) 2.9e7(3e7) ∞ ∞ 4e6 0/15

fmincon 1(0)?5 1(0)?5 4188(2788)?2 4514(1169)?5 4514(1388)?5 5716(1515)?5 7364(1336) 15/15

iUDE on ∞ ∞ ∞ ∞ ∞ ∞ ∞ 5e6 0/15

backcal 222(0) 222(0) 1.3e4(7465) 7.5e4(1e4) 2.9e5(4e4) 6.8e5(2e5) 9.6e5(2e5) 15/15

Table D.9: Average runtime (aRT) to reach given targets, measured in number of function
and constraint evaluations for the Thomson problem with M = 18.

M=5

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f3

ECHT-DE 2.3e6(2e6) ∞ ∞ ∞ ∞ ∞ ∞ 1e6 0/15

LSHADE4 2.0e6(2e6) ∞ ∞ ∞ ∞ ∞ ∞ 1e7 0/15

active 1.5e5(5e4) 1.8e5(1e5) 1.7e5(4e4) 1.8e5(4e4) 1.9e5(6e4) 2.0e5(6e4) 2.1e5(6e4) 7/15

conSaDE 5.1e4(328) 5.1e4(126) 5.1e4(332) 5.1e4(332) 5.1e4(325) 5.1e4(333) 5.1e4(523) 15/15

epsDEga 2.7e5(2e4) ∞ ∞ ∞ ∞ ∞ ∞ 4e5 0/15

epsMAg- 1.1e5(3669) 1.1e5(3981) 1.1e5(4646) 1.1e5(2798) 1.1e5(3251) 1.5e5(3e4) 2.0e5(3e4) 15/15

fmincon 1(0)?5 1114(0) 1114(0) 1114(0) 1114(0) 1186(0) 1258(0) 15/15

iUDE on 7.5e6(7e6) 7.5e6(8e6) ∞ ∞ ∞ ∞ ∞ 1e6 0/15

backcal 381(407) 7074(4154) 1.8e4(7236) 3.0e4(9938) 3.8e4(1e4) 5.3e4(4763) 6.4e4(3702) 15/15

Table D.10: Average runtime (aRT) to reach given targets, measured in number of function and
constraint evaluations for the polygon problem with M = 5. For each function, the aRT and, in
braces as dispersion measure, the half difference between 10 and 90%-tile of (bootstrapped)
runtimes is shown for the different target ∆f -values as shown in the top row. #succ is the
number of trials that reached the last target fopt + 10−8. The median number of conducted
function and constraint evaluations is additionally given in italics, if the target in the last
column was never reached. Entries, succeeded by a star, are statistically significantly better
(according to the rank-sum test) when compared to all other algorithms of the table, with p =
0.05 or p = 10−k when the number k following the star is larger than 1. Best results are printed
in bold.

M=7

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f3

ECHT-DE 1.9e6(2e6) ∞ ∞ ∞ ∞ ∞ ∞ 1e6 0/15

LSHADE4 2.1e6(1e6) 2.6e8(3e8) ∞ ∞ ∞ ∞ ∞ 2e7 0/15

active 1.7e5(2e4) 3.3e5(1e5) 4.0e5(9e4) 4.3e5(1e5) 4.6e5(8e4) 5.1e5(7e4) 5.5e5(1e5) 13/15

conSaDE 1.1e5(1e4) 1.1e5(3e4) 1.1e5(5e4) 1.1e5(4e4) 1.1e5(3e4) 1.1e5(1e4) 1.1e5(3e4) 15/15

epsDEga 5.3e5(1e5) ∞ ∞ ∞ ∞ ∞ ∞ 5e5 0/15

epsMAg- 1.5e5(3999) 1.5e5(3042) 1.5e5(4422) 1.5e5(3704) 1.5e5(4212) 2.8e5(6e4) 3.5e5(7e4) 15/15

fmincon 1(0)?5 1351(0) 1351(0) 1351(0) 1351(0) 1382(0) 1627(0) 15/15

iUDE on ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1e6 0/15

backcal 1417(1961) 1.7e4(8005) 4.9e4(1e4) 7.6e4(1e4) 9.6e4(2e4) 1.3e5(1e4) 1.5e5(1e4) 15/15

Table D.11: Average runtime (aRT) to reach given targets, measured in number of function
and constraint evaluations for the polygon problem with M = 7.

36

M=9

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f3

ECHT-DE 5.1e6(9e6) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/15

LSHADE4 2.8e6(2e6) 1.2e8(7e7) ∞ ∞ ∞ ∞ ∞ 3e7 0/15

active 2.3e5(1e4) 8.7e5(1e5) 9.8e5(1e5) 1.0e6(6e4) 1.1e6(1e5) 1.3e6(7e4) 1.5e6(1e5) 3/15

conSaDE 2.1e6(2e6) 2.9e6(4e6) 2.9e6(3e6) 2.9e6(2e6) 2.9e6(2e6) 2.9e6(3e6) 2.9e6(2e6) 5/15

epsDEga 9.0e5(1e5) ∞ ∞ ∞ ∞ ∞ ∞ 7e5 0/15

epsMAg- 2.0e5(8633) 2.0e5(8309) 2.0e5(7168) 2.0e5(6509) 2.0e5(4598) 5.4e5(1e5) 7.3e5(5e5) 14/15

fmincon 1(0)?5 2243(0)?2 2243(0)?2 2243(0)?2 2243(0)?2 2243(0)?2 2354(0)?2 15/15

iUDE on ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/15

backcal 2486(1849) 3.4e4(7294) 1.0e5(2e4) 1.6e5(1e4) 2.0e5(2e4) 2.6e5(2e4) 3.0e5(2e4) 15/15

Table D.12: Average runtime (aRT) to reach given targets, measured in number of function
and constraint evaluations for the polygon problem with M = 9.

M=11

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f3

ECHT-DE 3.0e6(4e6) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/15

LSHADE4 2.1e6(7e5) 1.1e8(1e8) ∞ ∞ ∞ ∞ ∞ 4e7 0/15

active 5.6e5(3e5) 1.6e6(1e5) 1.8e6(5e4) 2.0e6(9587) ∞ ∞ ∞ 44 0/15

conSaDE 2.5e6(2e6) ∞ ∞ ∞ ∞ ∞ ∞ 1e6 0/15

epsDEga 1.2e6(2e5) ∞ ∞ ∞ ∞ ∞ ∞ 8e5 0/15

epsMAg- 2.2e5(1e4) 2.2e5(9455) 2.2e5(9956) 2.2e5(9447) 2.3e5(5e4) 6.9e5(2e5) 9.0e5(3e5) 15/15

fmincon 1(0)?5 ∞ ∞ ∞ ∞ ∞ ∞ 1e6 0/15

iUDE on 3.0e7(7e7) 3.0e7(6e7) ∞ ∞ ∞ ∞ ∞ 2e6 0/15

backcal 1383(2398) 3.6e4(2e4) 1.2e5(5e4) 2.0e5(4e4) 2.6e5(5e4) 3.5e5(6e4) 4.0e5(4e4) 15/15

Table D.13: Average runtime (aRT) to reach given targets, measured in number of function
and constraint evaluations for the Thomson problem with M = 11.

M=13

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f3

ECHT-DE 5.8e6(5e6) ∞ ∞ ∞ ∞ ∞ ∞ 3e6 0/15

LSHADE4∞ ∞ ∞ ∞ ∞ ∞ ∞ 2808 0/15

active 1.3e6(7e5) ∞ ∞ ∞ ∞ ∞ ∞ 9 0/15

conSaDE 2.9e6(3e6) ∞ ∞ ∞ ∞ ∞ ∞ 1e6 0/15

epsDEga 2.2e6(2e5) ∞ ∞ ∞ ∞ ∞ ∞ 1e6 0/15

epsMAg- 3.0e5(3e4) 3.0e5(2e4) 3.0e5(3e4) 3.0e5(1e4) 3.3e5(7e4) 2.6e6(2e6) 3.5e6(4e6) 8/15

fmincon 1(0)?5 ∞ ∞ ∞ ∞ ∞ ∞ 1e6 0/15

iUDE on 3.9e7(2e7) 3.9e7(3e7) ∞ ∞ ∞ ∞ ∞ 3e6 0/15

backcal 7347(9790) 7.3e4(5e4) 2.3e5(9e4) 4.5e5(9e4) 6.0e5(8e4) 8.0e5(2e4) 9.2e5(6e4) 15/15

Table D.14: Average runtime (aRT) to reach given targets, measured in number of function
and constraint evaluations for the polygon problem with M = 13.

M=15

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f3

ECHT-DE 4.8e7(7e7) ∞ ∞ ∞ ∞ ∞ ∞ 3e6 0/15

LSHADE4∞ ∞ ∞ ∞ ∞ ∞ ∞ 3240 0/15

active ∞ ∞ ∞ ∞ ∞ ∞ ∞ 9 0/15

conSaDE 4.4e6(5e6) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/15

epsDEga 4.0e6(3e6) ∞ ∞ ∞ ∞ ∞ ∞ 1e6 0/15

epsMAg- 3.5e5(2e4) 3.5e5(2e4) 3.5e5(2e4) 3.5e5(2e4) 2.1e6(3e6) 1.5e7(1e7) 2.9e7(2e7) 1/15

fmincon 1(0)?5 ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/15

iUDE on ∞ ∞ ∞ ∞ ∞ ∞ ∞ 3e6 0/15

backcal 7373(1e4) 9.1e4(5e4) 3.5e5(1e5) 7.4e5(3e5) 9.7e5(2e5) 1.3e6(8e4) 1.5e6(2e5) 15/15

Table D.15: Average runtime (aRT) to reach given targets, measured in number of function
and constraint evaluations for the polygon problem with M = 15.

37

M=17

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f3

ECHT-DE 1.3e7(1e7) ∞ ∞ ∞ ∞ ∞ ∞ 3e6 0/15

LSHADE4∞ ∞ ∞ ∞ ∞ ∞ ∞ 3672 0/15

active ∞ ∞ ∞ ∞ ∞ ∞ ∞ 9 0/15

conSaDE 7.3e6(1e7) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/15

epsDEga 1.2e7(5e6) ∞ ∞ ∞ ∞ ∞ ∞ 1e6 0/15

epsMAg- 3.9e5(2e4) 3.9e5(2e4) 3.9e5(2e4) 3.9e5(1e4) 3.4e6(2e6) ∞ ∞ 2e6 0/15

fmincon 1(0)?5 ∞ ∞ ∞ ∞ ∞ ∞ 9e5 0/15

iUDE on ∞ ∞ ∞ ∞ ∞ ∞ ∞ 3e6 0/15

backcal 1.0e4(4678) 1.4e5(4e4) 4.7e5(2e5) 1.1e6(6e5) 1.4e6(1e5) 1.9e6(1e5) 2.2e6(2e5) 15/15

Table D.16: Average runtime (aRT) to reach given targets, measured in number of function
and constraint evaluations for the polygon problem with M = 17.

M=19

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f3

ECHT-DE 3.0e7(4e7) ∞ ∞ ∞ ∞ ∞ ∞ 4e6 0/15

LSHADE4∞ ∞ ∞ ∞ ∞ ∞ ∞ 4104 0/15

active ∞ ∞ ∞ ∞ ∞ ∞ ∞ 9 0/15

conSaDE 3.6e6(5e6) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/15

epsDEga 1.2e7(1e7) ∞ ∞ ∞ ∞ ∞ ∞ 1e6 0/15

epsMAg- 4.4e5(3e4) 4.4e5(4e4) 4.4e5(4e4) 4.4e5(3e4) 7.3e6(6e6) ∞ ∞ 2e6 0/15

fmincon 1(0)?5 ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/15

iUDE on ∞ ∞ ∞ ∞ ∞ ∞ ∞ 4e6 0/15

backcal 1.4e4(2e4) 1.7e5(7e4) 6.5e5(5e5) 1.6e6(7e5) 2.2e6(7e5) 3.0e6(5e5) 3.2e6(5e5) 12/15

Table D.17: Average runtime (aRT) to reach given targets, measured in number of function
and constraint evaluations for the polygon problem with M = 19.

g03

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f5

ECHT-DE 1.7e6(2e6) 1.7e6(9e5) ∞ ∞ ∞ ∞ ∞ 1e6 0/15

LSHADE4 8.9e5(8e5) 8.9e5(6e5) ∞ ∞ ∞ ∞ ∞ 3e6 0/15

active 492(45) 601(91) 1.9e4(1684) 2.6e4(1874) 3.1e4(2200) 4.2e4(3373) 5.3e4(3567) 15/15

backcal 127(11)?5 211(73)?5 5.0e4(5e4) 5.8e4(4e4) 6.7e4(4e4) 7.9e4(3e4) 8.9e4(3e4) 15/15

conSaDE 5.1e4(59) 5.1e4(136) 5.1e4(134) 5.1e4(85) 5.1e4(44) 5.1e4(148) 5.1e4(93) 15/15

epsDEga 2.5e5(2e4) 2.5e5(2e4) ∞ ∞ ∞ ∞ ∞ 4e5 0/15

fmincon 1.1e5(2027) 1.1e5(1663) 1.1e5(1935) 1.1e5(2108) 1.1e5(2164) 1.2e5(2e4) 1.3e5(2e4) 15/15

iUDE on 1874(0) 1874(0) ∞ ∞ ∞ ∞ ∞ 1333 0/15

backcal ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1e6 0/15

Table D.18: Average runtime (aRT) to reach given targets, measured in number of function and
constraint evaluations for the CEC 2006 problem g03. For each function, the aRT and, in braces
as dispersion measure, the half difference between 10 and 90%-tile of (bootstrapped) runtimes is
shown for the different target ∆f -values as shown in the top row. #succ is the number of trials
that reached the last target fopt + 10−8. The median number of conducted function and
constraint evaluations is additionally given in italics, if the target in the last column was never
reached. Entries, succeeded by a star, are statistically significantly better (according to the
rank-sum test) when compared to all other algorithms of the table, with p = 0.05 or p = 10−k

when the number k following the star is larger than 1. Best results are printed in bold.

38

g11

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f6

ECHT-DE 7.9e4(8e4) 7.9e4(2e5) 8.8e4(3e4) 8.8e4(1e5) 8.9e4(7e4) 1.1e5(2e4) 1.3e5(7e4) 9/15

LSHADE4 1.9e4(3808) 1.9e4(1988) 1.1e6(1e6) 2.9e6(2e6) 5.6e6(3e6) 5.6e6(6e6) 5.6e6(5e6) 1/15

active 503(438) 516(394) 884(794) 1844(1395) 2178(1431) 2623(1203) 3155(1072) 14/15

backcal 34(16) 54(78) 131(122)?3 229(150)? 561(827) 1579(1250) 2341(1027) 15/15

conSaDE 5.0e4(220) 5.0e4(79) 5.0e4(22) 5.0e4(159) 5.0e4(152) 5.0e4(154) 5.0e4(22) 15/15

epsDEga 3.1e4(2618) 3.1e4(2224) 1.8e5(2e5) 5.5e5(1e6) 1.1e6(2e6) 1.1e6(2e6) 1.2e6(6e5) 1/15

fmincon 2.2e4(7578) 2.2e4(3847) 8.1e4(1e5) 1.5e5(2e5) 2.2e5(2e5) 3.1e5(3e5) 3.1e5(4e5) 6/15

iUDE on 1(0)?5 1(0)?5 308(0) 308(0) 308(0) 308(0)?4 308(0)?5 15/15

backcal 2.3e5(4e5) 2.3e5(5e5) ∞ ∞ ∞ ∞ ∞ 2e5 0/15

Table D.19: Average runtime (aRT) to reach given targets, measured in number of function
and constraint evaluations for the CEC 2006 problem g11.

g13

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f7

ECHT-DE 7.7e5(7e4) 1.3e6(2e6) 1.5e6(1e6) 1.9e6(2e6) 2.3e6(2e6) 2.3e6(3e6) 3.0e6(1e6) 0/15

LSHADE4∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/15

active 2772(711) 9276(2e4) 1.1e4(3e4) 1.2e4(2e4) 1.3e4(9227) 1.6e4(2e4) 2.2e4(2e4) 0/15

backcal 1925(1974) 5050(3754) 8617(5126) 1.1e4(5180) 1.3e4(9460) 1.9e4(1e4) 2.2e4(1e4) 5/15

conSaDE 5.5e4(404) 1.2e5(2e5) 1.2e5(6e4) 1.2e5(2e5) 1.2e5(1e5) 1.2e5(5e4) 1.2e5(3e4) 15/15

epsDEga 5.0e5(7e5) ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15

fmincon 2.9e5(6e5) 5.8e5(5e5) 7.6e5(8e5) 7.6e5(2e6) 7.6e5(4e5) 1.5e6(2e6) 2.5e6(3e6) 2/15

iUDE on ∞ ∞ ∞ ∞ ∞ ∞ ∞ 7 0/15

backcal ∞ ∞ ∞ ∞ ∞ ∞ ∞ 5e5 0/15

Table D.20: Average runtime (aRT) to reach given targets, measured in number of function
and constraint evaluations for the CEC 2006 problem g13.

g17

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f8

ECHT-DE 3.2e5(4e4) 3.2e5(4e4) 3.2e5(3e4) 1.2e6(1e6) ∞ ∞ ∞ 6e5 0/15

LSHADE4∞ ∞ ∞ ∞ ∞ ∞ ∞ 3e6 0/15

active 877(553) 877(912) 877(804) 9606(7330) 3.7e4(3e4) 5.0e4(5e4) 5.0e4(4e4) 7/15

backcal 514(246) 514(280) 514(204) ∞ ∞ ∞ ∞ 16 0/15

conSaDE 5.2e4(2611) 5.2e4(1613) 5.2e4(1261) 9.4e4(2e5) ∞ ∞ ∞ 3e5 0/15

epsDEga 1.6e5(3e4) 1.6e5(2e4) 1.6e5(3e4) 6.3e5(5e5) ∞ ∞ ∞ 2e5 0/15

fmincon 6.9e4(1484) 6.9e4(1615) 6.9e4(1200) 9.9e4(893) 6.0e6(7e6) 6.0e6(9e6) 6.1e6(6e6) 0/15

iUDE on ∞ ∞ ∞ ∞ ∞ ∞ ∞ 31 0/15

backcal ∞ ∞ ∞ ∞ ∞ ∞ ∞ 6e5 0/15

Table D.21: Average runtime (aRT) to reach given targets, measured in number of function
and constraint evaluations for the CEC 2006 problem g17.

39

References

[1] E. Mezura-Montes, C. A. C. Coello, Constraint-handling in nature-inspired
numerical optimization: Past, present and future, Swarm and Evolutionary
Computation 1 (4) (2011) 173–194.

[2] R. Storn, K. Price, Differential evolution – a simple and efficient heuristic
for global optimization over continuous spaces, Journal of Global Optimiza-
tion 11 (4) (1997) 341–359.

[3] V. L. Huang, A. K. Qin, P. N. Suganthan, Self-adaptive differential evo-
lution algorithm for constrained real-parameter optimization, in: IEEE
Congress on Evolutionary Computation (CEC), IEEE, 2006, pp. 17–24.

[4] R. Mallipeddi, P. N. Suganthan, Differential evolution with ensemble of
constraint handling techniques for solving CEC 2010 benchmark problems,
in: IEEE Congress on Evolutionary Computation (CEC), IEEE, 2010, pp.
1–8.

[5] T. Takahama, S. Sakai, Constrained optimization by the ε constrained dif-
ferential evolution with an archive and gradient-based mutation, in: IEEE
Congress on Evolutionary Computation (CEC), IEEE, 2010, pp. 1–9.

[6] R. Poláková, L-SHADE with competing strategies applied to constrained
optimization, in: 2017 IEEE Congress on Evolutionary Computation
(CEC), 2017, pp. 1683–1689. doi:10.1109/CEC.2017.7969504.

[7] H.-G. Beyer, B. Sendhoff, Simplify your covariance matrix adaptation evo-
lution strategy, IEEE Transactions on Evolutionary Computation 21 (5)
(2017) 746–759.

[8] M. Hellwig, H.-G. Beyer, A matrix adaptation evolution strategy for con-
strained real-parameter optimization, in: 2018 IEEE Congress on Evolu-
tionary Computation (CEC), IEEE, Rio de Janeiro, Brazil, Brazil, 2018,
pp. 1–8. doi:10.1109/CEC.2018.8477950.
URL https://ieeexplore.ieee.org/document/8477950

[9] N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in
evolution strategies, Evolutionary Computation 9 (2) (2001) 159–195.

[10] N. Hansen, S. D. Müller, P. Koumoutsakos, Reducing the time complexity
of the derandomized evolution strategy with covariance matrix adaptation
(CMA-ES), Evolutionary Computation 11 (1) (2003) 1–18.

[11] H.-G. Beyer, S. Finck, T. Breuer, Evolution on trees: On the design of an
evolution strategy for scenario-based multi-period portfolio optimization
under transaction costs, Swarm and Evolutionary Computation 17 (2014)
74–87.

40

https://doi.org/10.1109/CEC.2017.7969504
https://ieeexplore.ieee.org/document/8477950
https://ieeexplore.ieee.org/document/8477950
https://doi.org/10.1109/CEC.2018.8477950
https://ieeexplore.ieee.org/document/8477950

[12] S. Finck, Worst case search over a set of forecasting scenarios applied to
financial stress-testing, in: Proceedings of the Genetic and Evolutionary
Computation Conference Companion, GECCO ’19, ACM, New York, NY,
USA, 2019, pp. 1722–1730.

[13] P. Spettel, H.-G. Beyer, M. Hellwig, A covariance matrix self-adaptation
evolution strategy for optimization under linear constraints, IEEE Transac-
tions on Evolutionary Computation 23 (3) (2019) 514–524. doi:10.1109/
TEVC.2018.2871944.

[14] J. J. Thomson, On the structure of the atom: an investigation of the sta-
bility and periods of oscillation of a number of corpuscles arranged at
equal intervals around the circumference of a circle; with application of
the results to the theory of atomic structure, The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science 7 (39) (1904) 237–
265. doi:10.1080/14786440409463107.
URL https://doi.org/10.1080/14786440409463107

[15] P. M. L. Tammes, On the origin of number and arrangement of the places of
exit on the surface of pollen-grains, Ph.D. thesis, University of Groningen,
relation: https://www.rug.nl/ Rights: De Bussy (1930).

[16] D. V. Arnold, On the use of evolution strategies for optimization on spheri-
cal manifolds, in: T. Bartz-Beielstein, J. Branke, B. Filipič, J. Smith (Eds.),
Parallel Problem Solving from Nature – PPSN XIII, Springer International
Publishing, Cham, 2014, pp. 882–891.

[17] D. V. Arnold, An active-set evolution strategy for optimization with known
constraints, in: International Conference on Parallel Problem Solving from
Nature, Springer, 2016, pp. 192–202.

[18] D. V. Arnold, Reconsidering constraint release for active-set evolution
strategies, in: Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’17, ACM, New York, NY, USA, 2017, pp. 665–672.
doi:10.1145/3071178.3071294.
URL http://doi.acm.org/10.1145/3071178.3071294

[19] I. Loshchilov, T. Glasmachers, H.-G. Beyer, Limited-memory matrix adap-
tation for large scale black-box optimization, CoRR abs/1705.06693 (2017).
URL http://arxiv.org/abs/1705.06693

[20] J. C. A. Barata, M. S. Hussein, The moore-penrose pseudoinverse: A tu-
torial review of the theory, Brazilian Journal of Physics 42 (1-2) (2012)
146–165. doi:10.1007/s13538-011-0052-z.

[21] R. Mallipeddi, P. N. Suganthan, Problem definitions and evaluation
criteria for the CEC 2010 competition on constrained real-parameter
optimization, Tech. rep., Nanyang Technological University, Singapore
(2010).

41

https://doi.org/10.1109/TEVC.2018.2871944
https://doi.org/10.1109/TEVC.2018.2871944
https://doi.org/10.1080/14786440409463107
https://doi.org/10.1080/14786440409463107
https://doi.org/10.1080/14786440409463107
https://doi.org/10.1080/14786440409463107
https://doi.org/10.1080/14786440409463107
https://doi.org/10.1080/14786440409463107
http://doi.acm.org/10.1145/3071178.3071294
http://doi.acm.org/10.1145/3071178.3071294
https://doi.org/10.1145/3071178.3071294
http://doi.acm.org/10.1145/3071178.3071294
http://arxiv.org/abs/1705.06693
http://arxiv.org/abs/1705.06693
http://arxiv.org/abs/1705.06693
https://doi.org/10.1007/s13538-011-0052-z
http://www3.ntu.edu.sg/home/epnsugan/index_files/CEC10- Const/CEC10-Const.htm
http://www3.ntu.edu.sg/home/epnsugan/index_files/CEC10- Const/CEC10-Const.htm
http://www3.ntu.edu.sg/home/epnsugan/index_files/CEC10- Const/CEC10-Const.htm

URL http://www3.ntu.edu.sg/home/epnsugan/index_files/

CEC10-Const/CEC10-Const.htm

[22] G. Wu, R. Mallipeddi, P. N. Suganthan, Problem definitions and evaluation
criteria for the CEC 2017 competition on constrained real-parameter opti-
mization, Tech. rep., Nanyang Technological University, Singapore (2017).
URL http://www3.ntu.edu.sg/home/epnsugan/index_files/CEC2017/

CEC2017.htm

[23] J. J. Liang, T. P. Runarsson, E. Mezura-Montes, M. Clerc, P. N. Sug-
anthan, C. A. Coello Coello, K. Deb, Problem definitions and evaluation
criteria for the CEC 2006 competition on constrained real-parameter opti-
mization, Tech. rep., Nanyang Technological University, Singapore (2006).
URL http://www3.ntu.edu.sg/home/epnsugan/index_files/CEC-06/

CEC06.htm

[24] S. Finck, N. Hansen, R. Ros, A. Auger, COCO Documentation, Release
15.03 (2017).
URL http://coco.gforge.inria.fr/

[25] R. Tanabe, A. S. Fukunaga, Improving the search performance of SHADE
using linear population size reduction, in: IEEE Congress on Evolution-
ary Computation (CEC), 2014, pp. 1658–1665. doi:10.1109/CEC.2014.

6900380.

[26] A. Trivedi, K. Sanyal, P. Verma, D. Srinivasan, A unified differential evo-
lution algorithm for constrained optimization problems, in: 2017 IEEE
Congress on Evolutionary Computation, CEC 2017, Donostia, San Se-
bastián, Spain, June 5-8, 2017, 2017, pp. 1231–1238. doi:10.1109/CEC.

2017.7969446.

42

http://www3.ntu.edu.sg/home/epnsugan/index_files/CEC10- Const/CEC10-Const.htm
http://www3.ntu.edu.sg/home/epnsugan/index_files/CEC10- Const/CEC10-Const.htm
http://www3.ntu.edu.sg/home/epnsugan/index_files/CEC2017/ CEC2017.htm
http://www3.ntu.edu.sg/home/epnsugan/index_files/CEC2017/ CEC2017.htm
http://www3.ntu.edu.sg/home/epnsugan/index_files/CEC2017/ CEC2017.htm
http://www3.ntu.edu.sg/home/epnsugan/index_files/CEC2017/ CEC2017.htm
http://www3.ntu.edu.sg/home/epnsugan/index_files/CEC2017/ CEC2017.htm
http://www3.ntu.edu.sg/home/epnsugan/index_files/CEC-06/ CEC06.htm
http://www3.ntu.edu.sg/home/epnsugan/index_files/CEC-06/ CEC06.htm
http://www3.ntu.edu.sg/home/epnsugan/index_files/CEC-06/ CEC06.htm
http://www3.ntu.edu.sg/home/epnsugan/index_files/CEC-06/ CEC06.htm
http://www3.ntu.edu.sg/home/epnsugan/index_files/CEC-06/ CEC06.htm
http://coco.gforge.inria.fr/
http://coco.gforge.inria.fr/
http://coco.gforge.inria.fr/
https://doi.org/10.1109/CEC.2014.6900380
https://doi.org/10.1109/CEC.2014.6900380
https://doi.org/10.1109/CEC.2017.7969446
https://doi.org/10.1109/CEC.2017.7969446

