
UN
CO

RR
EC

TE
D

PR
OO

F

Swarm and Evolutionary Computation xxx (2018) xxx-xxx

Contents lists available at ScienceDirect

Swarm and Evolutionary Computation
journal homepage: www.elsevier.com

Benchmarking evolutionary algorithms for single objective real-valued constrained
optimization – A critical review
Michael Hellwig⁠∗, Hans-Georg Beyer
Vorarlberg University of Applied Science, Research Centre PPE, Campus V, Hochschulstraße 1, 6850 Dornbirn, Austria

A R T I C L E I N F O

Keywords:
Benchmarking
Constrained optimization
Evolutionary algorithms
Continuous optimization

A B S T R A C T

Benchmarking plays an important role in the development of novel search algorithms as well as for the assess-
ment and comparison of contemporary algorithmic ideas. This paper presents common principles that need to be
taken into account when considering benchmarking problems for constrained optimization. Current benchmark
environments for testing Evolutionary Algorithms are reviewed in the light of these principles. Along with this
line, the reader is provided with an overview of the available problem domains in the field of constrained bench-
marking. Hence, the review supports algorithms developers with information about the merits and demerits of
the available frameworks.

1. Introduction

Representing a subclass of derivative-free, nature-inspired methods
for optimization, Evolutionary Algorithms (EA) provide powerful opti-
mization tools for, but not restricted to, black-box or simulation-based
optimization problems. That is, for problems where the analytical struc-
ture of the optimization problem is unknown by default. EA applications
to such problems can be found in the fields of operations research, engi-
neering, or machine learning [1–5].

Due to the lack of theoretical performance results for optimization
tasks of notable complexity, the development and the performance com-
parison of EA widely rely on benchmarking. First and foremost, bench-
marking experiments are established for performance evaluation and
algorithm comparison on given problem classes. Ideally, this is sup-
posed to support the selection of the algorithm best suitable for given
real-world applications [6]. Yet, benchmarks can also be used to exper-
imentally provide insight into the working principles of an algorithm
(although, usually purpose-built experiments have to be conducted in
addition) and foster the development of algorithms for specific prob-
lem branches. Furthermore, benchmarks may qualify to verify theoreti-
cal predictions of the algorithm behavior [7,8].

Currently, there are basically two main developing lines for EA
benchmarking, the test environments provided in the IEEE Congress on
Evolutionary Computation (CEC) competitions and the Comparing Con-
tinuous Optimizer (COCO) benchmark suite.

The COCO suite [9] represents the most elaborated platform for
benchmarking and comparing unconstrained continuous optimizers for
numerical (non-linear) optimization. The COCO framework advanced
from the Black-box Optimization Benchmarking (BBOB) 2009 bench-
mark set [10,11]. The platform provides tools to ease the process of
quantifying and comparing the performance of optimization algorithms
for single-objective noiseless and noisy problems, and for bi-objective
noiseless problems, respectively. A particular strength of the COCO plat-
form is the large number of algorithm results available for comparison.
Up to now, 231 distinct (classical as well as contemporary) algorithms
have been tested on the COCO testbeds.

Alternatively, the competitions that are organized on a yearly ba-
sis during the CEC aim at the comparison of state-of-the-art stochastic
search algorithms. These competitions, among others, include single ob-
jective, large-scale, noisy, multi-objective, and constrained optimization
problems, respectively. The CEC competitions provide specific test en-
vironments for algorithm assessment and comparison. The test function
environments made available in this context turned out very popular for
benchmarking Evolutionary Algorithms (EA).

Being commonly recognized as successful optimization strategies in
the context of unconstrained optimization, the application of EA to
constrained optimization problems has gained the attention of the re-
search community in recent years. Constrained optimization tasks are
concerned with searching for the optimal solution of an objective func-
tion with respect to limitations on the search space parameter vec-
tor. In many real-world applications, constraints result from physical

∗ Corresponding author.
Email addresses: Michael.Hellwig@fhv.at (M. Hellwig); Hans-Georg.Beyer@fhv.at (H-G Beyer)

https://doi.org/10.1016/j.swevo.2018.10.002
Received 5 June 2018; Received in revised form 14 August 2018; Accepted 3 October 2018
Available online xxx
2210-6502/ © 2018.



UN
CO

RR
EC

TE
D

PR
OO

F

M. Hellwig, H-G Beyer Swarm and Evolutionary Computation xxx (2018) xxx-xxx

boundaries on the input data, from considering problem specific
trade-offs, or from limiting the resources of a problem. Regardless of the
sources, the introduction of constraints increases the complexity of an
optimization task. This is particularly true in the context of black-box
and simulation-based optimization. Refer to [12] for a survey on com-
monly used constraint handling approaches in the context of nature-in-
spired algorithms. Taking into account constrained optimization prob-
lems, the theoretical background of EA is even less developed. Hence,
usage of benchmarks for performance assessment and algorithm devel-
opment is essential.

Regarding EA benchmarks for constrained optimization, the CEC
competitions on constrained real-parameter optimization [13–15] (or-
ganized in 2006, 2010, and 2017) introduced specific constrained test
environments. The constrained test functions included in the CEC 2006
benchmark definitions were collected from Refs. [16–20]. The following
competitions refined some benchmark definitions and introduced new
problem instances. To this end, the test-case generator developed in Ref.
[21] was called on. The respective paper introduces a method to gen-
erate test problems with varying features, e.g. with respect to the prob-
lem size, the size of the feasible region, or the number and the type of
the constraints. Benchmark problems created by the test-case genera-
tor are included into the CEC2010 and CEC2017 competition on con-
strained real-parameter optimization. Until today, the CEC function sets
are most frequently used for benchmarking contemporary EA in the con-
text of constrained optimization. Refer to Sec. 4 for the review of the
CEC benchmark sets.

Only recently, the development of a COCO branch for constrained
black-box optimization benchmark (BBOB-constrained) problems is near
completion [22].⁠1 Although the BBOB-constrained suite is still under de-
velopment, a review of the corresponding benchmark principles is pro-
vided in Sec. 5. Including the unfinished BBOB-constrained suite into
the considerations is reasonable for the following reason. Represent-
ing the most sophisticated framework for unconstrained benchmarking
problems, the COCO related benchmarking principles clearly add value
to the present discussion. Being near completion, substantial changes to
the BBOB-constrained suite are not expected anymore.

An overview of additional problem collections is available at [23].
Each of these test problem sets is useful for demonstrations of the applic-
ability of interesting algorithmic ideas. However, the presented prob-
lems are mainly related to the field of mathematical programming. They
are provided in different mathematical modeling systems like GAMS⁠2 or
AMPL,⁠3 but also Fortran, C, or MATLAB implementations exist. While
providing a large number of test problems, the collections commonly
leave the initial problem collection as well as the post-processing of
algorithm results to the user. Concentrating on deterministic solvers,
there do not exist guidelines for experimental design, e.g. in terms of
repetitions, or counting function evaluations, respectively. The absence
of a consistent experimental framework often restrains such test func-
tion collections from allowing for broad conclusions with respect to
algorithm performance. Furthermore, most test problems are designed
with a 2fixed search space dimension and a fixed number of constraints
which directly impedes their scalability.

Similar concerns apply to many real-world problem applications that
are present in the literature [8]. They usually come with limited re-
producibility and comparability of the results reported, e.g. due to un-
available data or implicit modeling assumptions. Consequently, these
studies can rather be thought of as a demonstration of the applic

1 The code related to the BBOB-constrained suite under development is available
in the development branch on the project website http://github.com/numbbo/coco/
development.

2 GAMS – General Algebraic Modeling System, https://gams.com.
3 AMPL – A Mathematical Programming Language, https://ampl.com.

ability of a certain algorithm in a particular context than a proof of its
superiority. The focus is more on the algorithm output than on the algo-
rithm efficiency [24].

The main goal of the present paper is to provide a critical review
of state-of-the-art benchmarking environments that can be used for as-
sessing and comparing Evolutionary Algorithms in the context of con-
strained single objective real-valued optimization. To this end, exist-
ing benchmark principles for constrained optimization are collected and
complemented with insights from the context of other benchmarking
fields and experimentation. Current benchmarking environments are
surveyed in the light of these rationales.⁠4 This way, the article may
raise awareness of recent benchmarking techniques as well as their cor-
responding strengths and their incapabilities. By suggesting room for
improvements with respect to framework definitions, experimentation
principles, and reporting styles, the present paper aims at stimulating
the debate on benchmarking principles for constrained real-valued opti-
mization.

Such a discussion seems necessary as the field of constrained op-
timization is spacious and the available benchmarking approaches are
comparably scarce. Although some investigations exist [25], it is by no
means conclusively determined which features are making a constrained
optimization problem hard even for a single algorithm subclass. Con-
strained real-valued optimization problems may differ with respect to
the following features (and their combinations), including but not nec-
essarily restricted to,

∙ the number of constraints,
∙ the type of the constraints (refer to Sec. 2),
∙ the analytical structure of objective function and constraints, e.g.
– the conditioning of the problem
– the modality of the objective function
– the ruggedness of the objective function
– the (non-)linearity of the constraints
– the separability of the objective function and/or constraints
– the number of global optima (inside the feasible region)

∙ the size of the search space,
∙ the relative size of the feasible region in the search space,
∙ the connectedness of the feasible region,
∙ the orientation of the feasible region within the search space,
∙ the location of the global optimum on the boundary or aside.

As there certainly is no such thing as free lunch [26], and as the
EA development for constraint optimization tasks will further rely on
the availability of suitable benchmarks, the need for benchmark defin-
itions that take into account consistent subgroups of conceivable prob-
lems is beyond dispute. The test-case generator introduced in Ref. [21]
or test problem collections like [27], can be regarded as a meaningful
step towards creating well structured problem groups of distinct charac-
teristics. However, these problems and their reported solutions are com-
monly not scalable with respect to the problem dimensionality. Further,
the issue of proposing a well-defined benchmarking framework as well
as providing coherent reporting and ranking principles for meta-heuris-
tic algorithms is not in the scope of these test suites.

The remainder of this paper is organized as follows: Section 2 intro-
duces the general real-valued constrained optimization problem (COP),
particularly with regard to a classification of the constraint functions
commonly used for benchmarking EA on black-box problems. Section
3 presents benchmarking principles appropriate for the comparison of

4 Note that the classification of the great number of solitary test problems [23] is
not considered the purpose of this review. Instead, the focus is on the most elaborated
constrained benchmarking environments for Evolutionary Algorithms, i.e. the constrained
test environments established for the CEC competitions as well as the COCO
BBOB-constrained suite.

2



UN
CO

RR
EC

TE
D

PR
OO

F

M. Hellwig, H-G Beyer Swarm and Evolutionary Computation xxx (2018) xxx-xxx

constrained optimization benchmarks. Afterward, the design of the CEC
test function sets for constrained optimization and the COCO BBOB-con-
strained suite are presented in greater detail in Sec. 4, and Sec. 5, re-
spectively. Both sections particularly expand on the priorly motivated
principles. A discussion of the recent benchmarking principles for EA on
constrained optimization problems concludes the paper in Sec. 6.

2. Problem formulation

The present paper focuses on continuous optimization problems.
That is, both the objective function and the constraint functions are as-
sumed to be real-valued functions. The objective function might either
be represented as a reward or as a cost function. While the former calls
for maximization, a cost function representation needs to be minimized.
Some collections of benchmark functions may even use both representa-
tions, but this paper without loss of generality focuses on minimization
problems.

The constraint functions fall into even more classes. A detailed tax-
onomy of constraints is provided in Ref. [28]. The paper subdivides con-
straints into nine distinct constraint classes which rely on the catego-
rization according to the following features.

Non-/Quantifiable A constraint is said to be quantifiable if its degree of
feasibility and/or constraint violation can be determined. Otherwise, the
constraint is denoted nonquantifiable. That is, nonquantifiable constraints
may only return a boolean expression regarding a constraint's feasibil-
ity.
Un-/Relaxable Unrelaxable constraints define conditions for the para-
meter vectors that are required to be satisfied to obtain meaningful out-
puts from either objective functions or simulations. In contrast, relaxable
constraints represent desired conditions which do not have to be satis-
fied at each stage of the optimization process.
A priori/Simulation In case that the feasibility of a constraint can be
evaluated directly, it is referred to as a priori constraint. A constraint
that requires running a simulation to verify its feasibility is denoted a
simulation constraint.
Known/Hidden While hidden constraints are unknown to a solver,
known constraints are explicitly stated in the problem formulation and
thus available to the solver. Notice, hidden constraints are distinctive of
simulation-based optimization problems. They are nonquantifiable and
unrelaxable by definition.

All combinations of the above categories are reasonable for the defi-
nition of problem instances for a constrained benchmark problem. How-
ever, the benchmark suites considered in this paper are usually ded-
icated to known, a-priori, and quantifiable constraints. Whether some
constraints are relaxable or unrelaxable is depending on the respective
benchmark definitions. Particularly, the (in-)equality constraint defini-
tions provided in the CEC and COCO constrained benchmarks must be
considered Quantifiable/Relaxable/A-priori/Known (or simply QRAK)
constraints in this taxonomy. Further, the related box-constraints which
are assumed to be satisfied prior to the evaluation of a candidate solu-
tion, represent an example of QUAK constraints (Quantifiable/Unrelax-
able/A-priori/Known). Refer to [28] for a more detailed explanation.

Note that, by interpreting all constraints as unrelaxable, the prob-
lem instances would become considerably harder for EA to satisfy. That
is, suitable algorithms would have to be equipped with a sophisticated
repair technique that allows generating usable candidate solutions in
every situation.

The real-valued constrained optimization problems (COP) consid-
ered in this report have the general representation

(COP)

In this context, denotes the N-dimensional search space parame-
ter vector. The set usually comprises a number of box-constraints
specifying reasonable intervals of the parameter vector components, i.e.

(1)

where the vector consists of the component-wise lower bounds,
and ŷ the vector of upper bounds, respectively. Note that, ⪯ is under-
stood as the component-wise less than or equal inequality. The set is
also referred to as the box of problem (COP).

The feasible region of the search space is additionally restricted by
m= l + k real-valued constraint functions. These constraint functions
are separated into l inequality constraints g⁠i(y), i=1, …, l, and k equal-
ity constraints h⁠j(y), j=1, …, k. A vector that satisfies all con-
straints is called feasible. The set of all feasible parameter vectors is re-
ferred to as

(2)

The global optimum of (COP) is denoted by . Note that the ob-
jective function f(y) subject to some constraints is also referred to as
constrained function. Multiple representations of one specific constrained
function that are subject to small variations are denoted as instances of
that respective constrained function. Such variations involve, for exam-
ple, the orientation of the feasible region, negligible change in the size
of the feasible region or the location of the optimum. Contrary, (COP)
instances are similar with respect to the objective functions as well as
number and analytical type of the constraint functions.⁠5

The box-constraints which impose restrictions on the parameter vec-
tor components are usually considered unrelaxable. On the contrary, in-
equality and equality constraints are considered relaxable insofar as the
constrained functions can be evaluated for infeasible parameter vectors
and such infeasible candidate solutions may also be employed in the
search process.

The size of the feasible region relative to the box size is de-
noted by

(3)

The parameter ρ can be estimated by uniformly sampling a sufficiently
large number of candidate solutions inside the set and by counting the
feasible candidate solutions among these, as suggested in Ref. [29].

Considering problem (COP), evolutionary algorithms employ a mea-
sure of infeasibility to guide the search process into feasible regions of
the search space. The constraint violation ν(y) of a candidate solution y
is usually specified as

(4)

Multiple definitions of the constraint violation measure ν can be found
in the literature, and the choice of which definition to use is essentially
left to the search algorithm. EA commonly use ν to create penalty func-
tions, to derive appropriate repair terms, or to rank infeasible candi-
date solutions. A popular method to calculate the constraint violation

5 Aiming at a consistent terminology for the remainder of this article, this denotation of
a constrained problem instance does not demand generality.

3



UN
CO

RR
EC

TE
D

PR
OO

F

M. Hellwig, H-G Beyer Swarm and Evolutionary Computation xxx (2018) xxx-xxx

ν(y) of the parameter vector y is

(5)

with functions G⁠i(y) and H⁠j(y) defined by

(6)

and

(7)

In contrast to classical deterministic solvers, equality constraints cause
real difficulties for meta-heuristics like EAs. In order to enable EA to
satisfy the equality constraints at least up to a fair degree, Eq. (7) intro-
duces the error margin δ. Hence, parameter vectors that realize smaller
deviations than δ are considered feasible. The explicit choice of δ may
differ with each benchmark specification, see Sec. 4 and Sec. 5.

Having obtained a notion of feasibility and infeasibility of candidate
solutions allows for the introduction of a corresponding order relation.
Such order relations permit the comparison of both feasible and infea-
sible candidate solutions. A commonly used order relation in the field
of constrained optimization is the lexicographic ordering ⪯lex which is de-
fined in a very intuitive way. Two solutions are compared at a time ac-
cording to the following criteria:

∙ Any feasible solution is preferred to an infeasible solution.
∙ Among two feasible solutions, the one having the better objective

function value is considered superior.
∙ Two infeasible solutions are ranked according to their constraint vio-

lation value (the lower the better).

In mathematical form, this order relation reads

(8)

Introduced in Ref. [30], the concept of the lexicographic ordering ⪯lex
is also referred to as superiority of feasible solutions. The presented order
relation is commonly used for the ranking of algorithm realizations in
the CEC benchmarks [13–15].

3. Principles for EA benchmarks on constrained optimization
tasks

Having introduced the general problem formulation in Sec. 2, this
section is concerned with the collection of requirements and preferable
features that have to be taken into account when creating a credible
benchmark problem (or even framework) for constrained optimization.
To this end, the already established principles used in current bench-
mark sets for EA are considered. Additional thoughts with respect to
benchmarking guidelines [31], experimental rigor [24], and the presen-
tation style [32] of results obtained are appended.

The section is divided into three parts: the fundamental principles
of the test environment, the design of adequate experiments, and the
reporting of test results. Overlaps of these concepts cannot entirely be
avoided.

In many cases, it is not possible to give a final recommendation
of the best practice. Hence, it is not within the scope of this article
to provide definitive answers to these questions, but rather to create
categories that allow a comparative study of distinct benchmark envi-
ronments. Ultimately, benchmarking suites are designed with respect
to various aspects of a given problem domain and certain design deci

sions. Hence, it is the responsibility of the benchmark designers to de-
mand the compliance of tested algorithms with these predefined bench-
mark principles.

Taking into account publications that report on benchmarking re-
sults, ignorance of some of these principles is frequently observed.⁠6
Hence, this survey may also serve as a (by no means exhaustive) check-
list to support authors and/or reviewers of such papers.

3.1. Fundamental principles of a test environment

Each set of benchmark problems should ensure reproducibility of the
results obtained by a specific algorithm as well as the comparability
of outcome generated by other strategies. Accordingly, this subsection
proposes guidelines necessary to provide a common basis for algorithm
benchmarking on constrained optimization environments.

3.1.1. Problem domain and documentation
A benchmark suite that covers all conceivable features of con-

strained optimization problems and their combinations appears unman-
ageable. Hence, it is recommended that a benchmark design systemat-
ically focuses on a specific problem subdomain instead of collecting a
vast amount of arbitrary problem definitions.

Well-developed benchmarking environments are supposed to guide
the user through the benchmarking process. Users should receive clear
instructions regarding the correct use of the benchmark environment,
its working principles, the related benchmarking conventions, and the
required reporting style. This calls for the clear definition and documen-
tation of the related way of proceeding.

3.1.2. Problem publicity
It is to some degree necessary to decide whether the analytical de-

scription of a single problem instance is openly available or whether it
is generated at random. The first case allows the user to obtain a notion
of the problem complexity. Further, it facilitates the incorporation of
real-world problems into the test problem collection. On the other hand,
fixed problem statements in analytical form embrace the possibility of
hand-tuning algorithm parameters for specific constrained problems or
even cheating by exploiting analytical information.

Such issues can be partly circumvented by generating individual in-
stances of a fixed constrained optimization problem at random. This in-
volves the implementation of an elaborated test-case generator. Due to
the complexity of instantiation of real-world applications, this comes
with the need for designing suitable artificial test problems. According
to [31], the user should not at all be involved in the evaluation of the
constrained function. To this end, the benchmark collection would need
to provide an easily and freely accessible software environment that of-
fers well-defined input/output specifications. The availability of inter-
faces to multiple programming languages would additionally support
the usability of such a benchmark suite.

3.1.3. Function evaluations
It is imperative to provide a clear policy of how to count objective

function evaluations and constraint evaluations, respectively. A first op-
tion is to interpret the evaluation of the whole constrained function,
i.e. the evaluation of the objective function as well as all related con-
straints, as one single function evaluation. This is essentially equal to
just counting objective function evaluations. Another possibility is to
count the objective function evaluations as well as the constraint eval-
uations separately. In this case, the question remains whether to think
of the constraints as a single vector-valued function that returns all con-
straint values at a single evaluation, or as multiple real-valued func

6 Note, that the present paper refrains from citing bad examples.

4



UN
CO

RR
EC

TE
D

PR
OO

F

M. Hellwig, H-G Beyer Swarm and Evolutionary Computation xxx (2018) xxx-xxx

tions that account for even more function evaluations. Distinguish-
ing between inequality and equality constraints may also represent an
option. More accurate counting may result in improved explanatory
power, e.g. the separation of objective function and constraint evalua-
tions allows to draw conclusions about the number of constraints inside
a black-box constrained function.

The finest-grained approach would be accounting the objective func-
tion and all real-valued constrained functions separately. By proper ag-
gregation, this would still allow to use recent presentation styles (re-
fer to Sec. 4 and Sec. 5). It might further reveal insights into algorithm
working principles on specific problems and with respect to different
constraint types. On the other hand, depending on the constrained prob-
lem definition, the detailed information may also be used for algorithm
comparison. For example, given two algorithms A and B that show sim-
ilar performance with respect to solution quality after an equal number
of objective function evaluations. Observing that A needs considerably
less evaluations than B on just one single constraint function would po-
tentially render A more preferable. Of course, this somehow depends on
the aims and the application area of the algorithm developer.

3.1.4. Box-constraints
A recommendation for the treatment of box-constraints needs to be

stated to ensure reproducibility and comparability of the algorithm re-
sults.

According to [33], its absence may have significant implications on
the comparability of algorithm results. In the respective paper, it was
pointed out that different box-constraint handling interpretations can
produce dissimilar outcomes even for a single algorithm. The study dis-
tinguished three box-constraint scenarios:

(S1) unrelaxable box-constraints,
(S2) relaxable box-constraints, and
(S3) no box constraints at all.

While scenario (S3) is self-explanatory, the box-constraints are defined
and enforced at any stage of the search process in situation (S1). Can-
didate solutions outside the box are considered invalid and thus have
to be repaired or discarded. In case of (S2), box-constraints are speci-
fied, but only enforced for the final candidate solutions. That is, infeasi-
ble candidate solutions outside the box may be used to drive the search.
It was shown in Ref. [33] that algorithms were sometimes able to find
solutions of better quality when facing situation (S2) or (S3) instead of
(S1), and even if the global optimizer was not located on the boundary
of the specified box .

In order to avoid inconsistencies, various options come to mind.
First, the box-constrained treatment can be completely eliminated if
the admissible intervals of the parameter vector components y⁠i are di-
rectly included in the inequality constraints g⁠i(y). In case of one specific
lower and upper bound for each parameter vector component, the num-
ber of inequality constraints increases by 2N. Regarding high dimen-
sional problems, one can think of situations where this can potentially
blow the problem complexity out of proportion. Inducing that most al-
gorithms would have to be adapted, this approach would limit the us-
ability of such a benchmark problem. However, the least invasive op-
tion is giving permission to apply the individual box-constraint handling
techniques of choice. This clearly comes with the need for a proper re-
porting of its corresponding modus operandi.

3.2. Experimental design

The experimental design of a benchmark testbed is supposed to
properly reflect the characteristics of the chosen problem (sub)domain.
This requires the unambiguous description of the constrained test prob

lems, initialization practices, as well as appropriate quality indicators.
The benchmark problems are expected to be efficiently implemented
in order to speed up the experiments. Moreover, the following subjects
have to be adopted in the design process.

3.2.1. Initialization
Differences with respect to the initialization parameter vectors are

present. These have varying implications on the applicability of certain
optimizers. A benchmark problem might either provide a feasible initial
candidate solution, supply a subset of not necessarily feasible parameter
vectors (e.g. by specifying unrelaxable box-constraints), or give no as-
sistance at all. In case that no feasible solution is given, algorithms that
rely on initially feasible solutions essentially have to priorly solve a con-
straint satisfaction problem before the original constrained optimization
problem is tackled. This can significantly impair their performance and
would complicate the comparability of such approaches with strategies
that do not assume the existence of a feasible solution.

3.2.2. Precision
Considering randomized algorithms, a test environment needs to

make assumptions on the termination precision and reasonable error
margins for constraint satisfaction. The latter is particularly important
in the context of equality constraints because it is otherwise highly im-
probable to find feasible candidate solutions. Further, a statement on the
required precision of reported statistics appears necessary to ensure an
appropriate ranking of two distinct algorithms on a single constrained
function. For example, assuming two algorithms A and B both reliably
approach the optimal objective function value of zero on the same con-
strained function. While A realizes a mean function value of 10⁠−10 in
multiple, independent runs, B achieves a mean value of 10⁠−11. Rank-
ing algorithm B better than A based only on the observed mean values
is quite questionable in this scenario. Considering precisions below the
floating point accuracy also appears misguided.

Actually, although it is commonly done, the consideration of relative
precisions (or absolute precisions in the case of f(y⁠∗)=0) of order 10⁠−6

or even smaller does not always reflect the needs of real-world optimiza-
tion problems. That is, at some point of the search process the effort to
realize very small improvements might be expendable from a practical
point of view.

3.2.3. Constrained problems
A sufficient number of profound constrained optimization problems

suitable to represent the chosen problem domain need to be appointed.
The problems might either be automatically generated or collected from
test problem collections. Each problem needs to be specified in the
manner of (COP). That is, objective function, constraint functions, and
box-constraints have to be well-defined. In case that this information is
not made public, a black-box framework has to be developed that sup-
plies the objective function value and at least an indicator of constraint
satisfaction (or violation) to the solver.

Taking into account that current algorithms have to deal with con-
tinuously increasing problem complexity, the constrained functions are
ideally designed in a scalable fashion [7]. Scalability with respect to
the search space dimension, and also the number of constraint func-
tions, permits an understanding of the inherent problem complexity.
It further allows assessing these factors of influence on the algorithm
performance. In this regard, the creation of artificial test problems
represents a much easier way to generate constrained test functions.
On the downside, such test problems are usually easier to solve than
real-world problems. However, real-world problems are hardly scalable
as they often state a purpose-built mathematical representation of a
certain application. Modifications in terms of dimension or constraint
numbers may result in a change of the problem structure. Further, the
design of constrained test functions should incorporate characteristics

5



UN
CO

RR
EC

TE
D

PR
OO

F

M. Hellwig, H-G Beyer Swarm and Evolutionary Computation xxx (2018) xxx-xxx

that are commonly observed in real-world situations. This way, algorith-
mic ideas that proved themselves successful on the benchmark suite can
be transferred to corresponding real-world applications with partly sim-
ilar characteristics.

Building clusters of constrained problems with similar features facil-
itates insight into the algorithm performance on each of the problem
subgroups. It further supports the decision whether an algorithmic idea
is useful when dealing with specific real-world applications of a certain
characteristic [6]. For example, regarding a practical application that
involves satisfying a great number of constraints, algorithms that have
been observed to perform well on test problem subgroups with similar
features are of interest. These are usually expected to be better suited
than the collectively best algorithm which ultimately might represent a
compromise over all benchmark problems.

Moreover, the design of problem instances preferably should exclude
biases towards certain algorithm classes. To this end, problem formula-
tions aligned in the Cartesian axes should be avoided. Further, problems
whose optimum is located on the boundary of the box may exhibit
the tendency to favor EA that use specific box-constraint handling tech-
niques. Such issues may be bypassed by considering different instances
of a problem, e.g. by introducing small modifications with respect to the
orientation of the feasible region or the location of the optimum (see
Sec. 2). The creation of new instances is usually simpler for theoretically
derived constrained functions. Real-world problems determined by spe-
cific application cases usually have a rather rigid formal representation
without any information about the optimum.

3.2.4. Order relation
Benchmark environments that compare algorithms on the basis of

solution quality need a consistent order relation for ranking the pro-
vided candidate solution realizations. To this end the order relation
should be able to deal with feasible and infeasible candidate solutions. A
commonly used approach is the so-called superiority of feasible solutions
[30] which is recapped in Eq. (8). Benchmarking environments might
take into account different ordering instructions. However, these need
to be motivated convincingly.

3.2.5. Quality indicators
Multiple aspects of algorithm performance have to be covered by the

experimental design [24,31]. The benchmark environment has to use a
number of well-defined quality indicators that are computed in the ex-
periments. The quality indicators reflect the suitability of a respective
algorithm for a specific constrained function, a subgroup of constrained
function, and the whole problem collection. Moreover, the quality in-
dicators build the basis for algorithm comparison. That is, the bench-
marks essentially need to introduce measures of effectiveness, efficiency
and variability. A high effectiveness of an algorithm refers to its ability
to realize solutions close the best-known or optimal solution of a prob-
lem. On the other hand, an efficiency measure accounts for the number
of resources (e.g. function evaluations or time) consumed for computing
high-quality solutions. Further, a measure of variability quantifies the re-
liability of an algorithm to realize equally good candidate solutions in
multiple independent runs. There exist multiple ways to define such in-
dicators. Hence, it is left to the benchmark designers to choose the most
appropriate measures of algorithm performance for the corresponding
problems.

To obtain the quantity of variability, benchmarking of randomized
algorithms involves running multiple independent algorithmic runs on
the same problem instances. The appropriate number of repetitions is
connected to the choice of quality indicators [32]. In order to obtain
reasonable statistics a minimum number of 10–25 algorithm runs is usu-
ally recommended.

3.2.6. Termination
A benchmark collection might determine strict rules on the termina-

tion conditions for participating algorithms, e.g. a fixed budget of func-
tion evaluations. Another approach would be to set multiple targets for
an optimization strategy. Termination takes place after hitting the fi-
nal target. By measuring the number of functions evaluations needed to
reach a specified target a notion of algorithm speed can additionally be
established. However, introducing targets assumes knowledge about the
optimal function values of the constrained problems.

3.3. Reporting

This section takes into account useful principles that support a repro-
ducible and comprehensible presentation of obtained algorithm results.
Further, it is concerned with the aspect of algorithm comparison and
mentions the need for encouraging algorithm developers to thoroughly
report algorithmic details.

3.3.1. Newsworthiness and presentation
To ensure that meaningful results are generated, the benchmarking

environment can support the user by providing a performance baseline.
Such a baseline may represent performance results obtained by applica-
tion of comparable algorithms for constrained optimization. If a collec-
tion of algorithm results is not present, even the performance results of
random search can be considered useful. Such information is necessary
to realize whether the benchmarked algorithm is, in fact, superior for
a number of problems. This way, publications with respect to already
dominated algorithmic ideas can be avoided.

The performance results have to be presented in informative ways to
support the interpretation of the individual algorithmic behavior. This is
preferably realized by stipulating a presentation style that uses a combi-
nation of tables and figures. By providing aggregated algorithm results
for the complete benchmark collection as well as for predefined con-
strained function subgroups, the benchmark suite allows for establishing
a connection between a tested algorithm and suitably constrained prob-
lems that it can solve.

3.3.2. Ranking of algorithms
Alongside with the presentation of individual algorithm perfor-

mance, it is the purpose of a benchmark environment to answer the
question which algorithm is best suited for solving (a subset of) the
benchmark problems. The comparability of the algorithmic results is en-
sured by defining an appropriate ranking procedure.

Regarding constrained benchmarking functions, the comparability of
algorithms results is in need of an ordering approach that is able to
distinguish between feasible and infeasible realizations of the obtained
quality indicators. A suitable representation of such an order relation
is provided by the lexicographic ordering that has been defined in the
context of Sec. 2. By introducing an order of priority to multiple qual-
ity indicators, the lexicographic ordering can be analogously defined to
determine a proper algorithm ranking. The question which quality indi-
cators to use for ranking competing algorithms involves a certain degree
of subjectivity. For that reason, it is recommended in Ref. [6] to make
use of consensus rankings which comprise more than one order relation.
This way, a consensus ranking allows computing an appropriate algo-
rithm ranking over the whole benchmark suite, or subsets of constrained
problems, respectively.

In order to decide whether comparably small performance differ-
ences can be considered significant, the algorithm comparison usu-
ally benefits from factoring in statistical hypothesis testing. Being less
restrictive than parametric approaches and requiring smaller sample
sizes, non-parametric tests are usually recommended when testing EA
realizations for statistical significance [34]. However, statistical and

6



UN
CO

RR
EC

TE
D

PR
OO

F

M. Hellwig, H-G Beyer Swarm and Evolutionary Computation xxx (2018) xxx-xxx

practical significance are not necessarily equivalent and a well-estab-
lished graphical representation of the algorithm results may suffice [8].

3.3.3. Algorithm description
When providing benchmark results, it should be mandatory to re-

quire a proper characterization of a tested algorithm. Such a description
includes the detailed motivation of prior investigations and a compre-
hensive description of the implemented algorithmic ideas. Further, an
exact pseudo-code representation is desirable to illustrate the working
principles. Among others, this includes a specification of box-constraint
handling techniques, or the use of (approximated) gradient information,
respectively. All algorithm specific strategy parameters need to be re-
ported together with an explanation of their impact on the algorithm
performance at best.

3.3.4. PC configuration
When it comes to measuring the computational running time of an

algorithm, the users of benchmark collections should be required to re-
port on the complete PC configuration. This includes detailed informa-
tion about the processor architecture, memory, operating system, and
the programming language, confer [15]. The use of performance bench-
marks to calibrate algorithm speed is also recommended in order to ob-
tain a perception of the system-depending performance. This way algo-
rithm comparability can be maintained over long periods of time [24].

3.3.5. Runtime and algorithm complexity
Algorithm efficiency can be assessed by accounting the number of

resources needed to reach a given high-quality solution.
To this end, the CPU time (or wall-clock time) needed for a pred-

ifed number of elementary operations can be determined. The con-
sumed time provides an estimate of the algorithm complexity. In or-
der to ensure comparable results, baseline measurements are neces-
sary. However, measuring algorithm efficiency by means of CPU time is
machine-dependent and comes with reduced reproducibility (if perfor-
mance benchmarks are omitted, see PC configuration above).

According to [35], a machine-independent performance criterion
suitable for direct search algorithms is the algorithm runtime in terms of
the number of function evaluations executed. That is, the measurement
of CPU time can be regarded irrelevant in the context of derivative-free
optimization. This approach assumes the availability of well-defined al-
gorithm targets, e.g. the knowledge about the optimal solution of a con-
strained function that has to be approached with reasonable accuracy.
Algorithm efficiency can then be identified with the number of function
evaluations consumed until the (final) target is reached.

Further, benchmark suites may concentrate on the computation of
different indicators like mean or median solution quality. Such studies
may argue that their focus is limited on the effectiveness of the algo-
rithms and that runtime can be neglected in this context. Yet, regardless
of the primary goals of a benchmark set, the algorithm running time
should be reported [24]. It can be used to indicate algorithm complex-
ity, i.e. running time trade-offs that are related to increased solution
quality and vice versa. Further, it provides a notion of the computa-
tional effort for reproducing the reported results and may provide useful
information for assessing parallelization attempts.

Anyway, plain instructions for computing the algorithm speed have
to be provided. This is achieved by indicating whether the calcula-
tions are performed for only one exemplary algorithm run or whether
it considers all repetitions. Further, the running time may cover all pre-
processing and initialization steps, or it might only focus on the main
loop of the considered algorithm. Ideally, the complete algorithms time
should be measured and reported relative to reproducible performance
benchmarks.

4. The CEC competition on constrained real-parameter
optimization

The test function sets defined in the context of the IEEE Congress
on Evolutionary Computation (CEC) competitions on single objective
constrained real-parameter optimization are arguably the most common
test collections for benchmarking randomized search algorithms. The
CEC competitions have been organized in 2006 [13], 2010 [14], and
2017 [15]. Each of these competitions introduced a specific set of con-
strained test problems in the line with (COP). The test functions sets are
supported with a policy for the computation of comprehensive perfor-
mance indicators and for reporting algorithm results.

The remainder of this section is concerned with reviewing the bench-
marking conventions associated with the mentioned CEC benchmark
environments as well as their characteristic features. To this end, the
benchmark definitions are examined by taking into account three dif-
ferent aspects: the basic benchmarking conventions, the experimental
setup, and the reporting of algorithm results. A summary of important
features of the three constrained benchmark environments is provided
in Table 1.

4.1. Benchmarking conventions

The CEC2006 benchmarks⁠7 build a test environment of 24 distinct
constrained functions with various features. The first 11 constrained
problems (p01 to p11) were originally collected in Ref. [16], problems
p12 and p13 are taken from Refs. [29,36], problems p21 and p22 can be
traced back to heat exchange network applications [20], p23 was sug-
gested in Ref. [19], and p24 can be found in Ref. [18]. For the remain-
ing test problems (p14 to p20) it is referred to [17].

The succeeding benchmark definitions for CEC2010 [14] introduced
18 new constrained benchmark problems. Yet, the origin of the corre-
sponding constrained functions is not easily comprehensible. Only one
constrained function was adopted from the CEC2006 benchmarks. The
benchmark set introduced variations of 8 distinct objective functions
that differ with respect to the application of parameter translations and/
or rotations. Further variations are obtained by introduction of differ-
ent number and types of constraint functions. Some objective and con-
straint functions can be attributed to a collection of unconstrained prob-
lems [37,38], e.g. the Rosenbrock function, the Griewank function, and
the Weierstrass function. Other function definitions were obtained by
use of the test-case generator proposed in Ref. [21]. However, being de-
fined in scalable from with respect to the search space dimension, the
constrained test problems have to be solved in dimension N=10 and
N=30.

Considering even larger search space dimensions (N=10, N=30,
N=50, and N=100), a novel collection of 28 benchmark problems
was created for the CEC2017 competition [15]. The 2017 constrained
function definitions are designed by taking new combinations of the
building blocks provided in Refs. [21,37,38]. However, some overlaps
do exist. It is claimed that the CEC2006 benchmarks and the CEC2010
have been successfully solved [15]. Yet, the older CEC testbeds are still
very popular for benchmarking direct search algorithms and particu-
larly Evolutionary Algorithms, e.g. Ref. [39]. In contrast, the CEC2017
problem definitions are reutilized for the CEC competition on single
objective constrained real-parameter optimization taking place during

7 Note that the present paper refers to the constrained test problem set specified for the
competition in year 2006 as CEC2006 benchmarks. The denotations CEC2010 benchmarks
and CEC2017 benchmarks have to be understood in analogous manner.

7



UN
CO

RR
EC

TE
D

PR
OO

F

M. Hellwig, H-G Beyer Swarm and Evolutionary Computation xxx (2018) xxx-xxx

Table 1
Characteristic features of the CEC benchmark sets for single objective constrained real-pa-
rameter optimization.

Benchmark name CEC2006 CEC2010 CEC2017

Minimal N 2 10 10
Maximal N 24 30 100
Number of constrained functions 24 36 112
Number of distinct obj. functions 23 8 15
Minimal number of constraints 1 1 1
Maximal number of constraints 38 4 6
Avg. number of constraints 7.0 2.1 2.2
Scalable problems included no yes yes
Budget of function evaluations 5 ⋅ 10⁠5 2 ⋅ 10⁠4 ⋅

N
2 ⋅ 10⁠4 ⋅
N

Number of fully separable problems
(objective and constraints)

6 4 20

Avg. size of 11.3% 8.9% 3.4%
Number of problems with ρ>10⁠−3 5 10 12

the IEEE World Congress on Computational Intelligence (WCCI) in
2018.

The constrained function definitions are fully presented in the cor-
responding technical reports. Yet, some constrained problems lack a de-
scription of the translation vectors and rotation matrices. These can only
be understood by taking into account their implementations. The cor-
responding code is maintained on the respective website of the compe-
tition organizers [40]. It is openly available in the programming lan-
guages C and MATLAB.

The consecutive development from CEC2006 towards the CEC2017
benchmarks is not entirely motivated in the corresponding technical
reports. Modifications with respect to performance indicators or algo-
rithm ranking approaches are not entirely transparent. The documenta-
tion sometimes leaves room for interpretations by inexact instructions.

All three technical reports [13–15] of the constrained CEC bench-
mark collections demand to identify the evaluation of the whole con-
strained function as one single function evaluation. That is, each con-
strained function evaluation consumes one function evaluation of the
predefined budget regardless of whether the objective function value or
only some constraint function values associated with a single candidate
solution are of interest. The use of gradient information is only applica-
ble if the gradient is approximated numerically and the consumed func-
tion evaluations are properly taken into account.

The CEC competitions for constraint real-parameter optimization do
not enforce the feasibility of search space parameter vectors. In this
respect, equality and inequality constraints of a constrained function
(COP) are always considered as relaxable, cf. option (S2) in Sec. 2.
That is, the algorithms are allowed to move in the unconstrained search
space. Each candidate solution, either feasible or infeasible, may be
evaluated and used within the search process of a strategy. Using only
relaxable (in-)equality constraints represents a reasonable design deci-
sion common for EA benchmarking (cf. Sec 5). However, it should be
mentioned that the permission to use infeasible solutions during the
search may significantly reduce the problem complexity.

For instance, algorithms might be allowed to solely operate outside
the feasible region until the optimizer is approached sufficiently close.

A specific treatment of box-constraints is not stipulated by the CEC
benchmarks. The technical reports are not clear on whether box-con-
straints have to be regarded relaxable (S2) or unrelaxable (S1). This
ambiguity can potentially result in different approaches, and ultimately
in significant performance differences [33]. Taking into account the
most successful strategies reported in CEC competitions [41–46] and
after inspecting the related openly available source codes, up to our
knowledge, all algorithms were assuming situation (S1) as introduced
in Sec. 2. Albeit reporting the full algorithm can be considered scien-
tific standard, yet some papers miss out on giving such information.

Further, the mechanisms to treat box constraint violations may vary. To
ensure the reproducibility of the benchmark results, the testbeds have
to explicitly demand a statement on the box-constraint handling tech-
niques used by an algorithm.

For the computation of the quality indicators (see Sec. 4.3), the CEC
framework sorts the algorithm realizations of 25 independent runs on
the basis of the lexicographic ordering relation introduced in (8). That
is, feasible solutions are ranked based on their objective function values.
They always dominate infeasible solutions which are distinguished with
respect to the related magnitude of their mean constraint violation (see
Sec. 4.2, Eq. (9)).

4.2. Experimental design

The CEC competitions on constrained real-parameter optimization
do not provide an initially feasible region or candidate solution. Instead
individual box-constraints are specified for each constrained problem
and algorithms are supposed to randomly sample a starting point or an
initial population inside of the set of problem (COP).

Hence, the feasibility of initial candidate solutions is not ensured. In
order to be competitive on the CEC benchmarks, algorithms need to be
able to deal with infeasible solutions. This is affirmed when considering
the size of the feasible region relative to , i.e. the parameter ρ (cf.
Eq. (3)). Looking at Table 1, the average ρ value was reduced over the
years. Whereas the ratio of constrained problems with a feasible region
greater than 0.1% was 7∕24 in 2006, this number dropped to 8∕36 in
2010, and even further to 12∕112 for constrained functions specified in
2017. ⁠8 In consequence, the benchmark sets contain many problems with
very small ρ values. The feasible region of some problems only consists
of few disjoint areas in the parameter space. For these constrained func-
tions it is of course very difficult to generate feasible solutions in the
first place. In this regard, algorithms that initially (or completely) rely
on a feasible solution appear ill-equipped for many constrained func-
tions in these benchmark sets.

Regarding the CEC2006 competition, the detailed benchmark func-
tion specifications can be found in the technical report [13]. The bench-
mark set consists of 24 constrained functions of varying search space
dimensions between N=2 and N=24. The given constrained functions
are fixed in terms of the problem dimension and the number of con-
straints. Each objective function is restricted by in between 1 and 36
linear and non-linear (in-)equality constraints, refer to Table 1. The op-
timal solution, or at least the best-known solution, is provided for each
constrained function.

The 2006 benchmarks include 6 fully separable constrained func-
tions. Refraining from the use of parameter vector rotations, the bench-
marks enclose a potential bias towards strategies that search predomi-
nantly along the coordinate axes of the search space [47]. In this regard,
the CEC2006 benchmarks favor algorithms that use coordinate-wise
search or differences of obtained candidate solutions, e.g. Coordinate
Search or Differential Evolution variants.

The benchmark definitions of the CEC2010 competition [14] can
be considered a refinement with respect to this issue. As mentioned
above, the constrained problems of CEC2010 can be affiliated to dif-
ferent sources [37,38] and are partly designed by use of the test-case
generator [21]. The 2010 competition included 36 constrained func-
tions in dimensions N=10, and N=30, respectively. The formulation
of scalable constrained functions allows for conclusions with respect to
an algorithm's ability to deal with growing search space dimensions. The
mentioned bias towards coordinate search and separability was partly

8 Only, the reports on the CEC2006 and CEC2010 reported on the ρ values. To ensure
comparability, the ρ values of the constrained CEC benchmark problems have been
reevaluated by use of the method presented in Ref. [29].

8



UN
CO

RR
EC

TE
D

PR
OO

F

M. Hellwig, H-G Beyer Swarm and Evolutionary Computation xxx (2018) xxx-xxx

resolved by application of predefined search space rotations. Each ob-
jective function is accompanied with from 1 to 4 constraint functions.
Hence, the average number of constraints per constrained function
drops from 7 in 2006 to about 2.1 in 2010. In this respect, the CEC2010
competition problems represent a fresh start instead of being a pro-
gression of the CEC2006 problem definitions. The question to what ex-
tent the small number of constraints can actually cover real-world prob-
lem aspects remains. Moreover, best-known solutions to the benchmark
problems are no longer reported. This impedes gathering information
about the effectiveness of an algorithm.

Still, 4 out of 36 problems are fully separable and do not apply
any rotations to the parameter vectors. While the formal description of
those transformations is not satisfactorily explained in the technical re-
port, it is deposited in the corresponding competition source code [40].
There, the transformations are deterministically specified, and different,
for each individual constrained function.

Having a look at the CEC2017 competition, the constrained func-
tion definitions are quite similar to its predecessor competition. The
corresponding technical report [15] states 28 scalable constrained op-
timization problems essentially attributable to the same sources of the
CEC2010 benchmarks. The latest CEC collection considers not only a
larger number of problems but also larger search space dimensions:
N=10, N=30, N=50, and N=100. In total, the competition com-
prises 112 constrained functions. The number of constraints is between
1 and 6, i.e. the average number of constraints per problem is compara-
ble to the CEC2010 benchmarks (refer to Table 1). Similarly to the 2010
version, information on optimal parameter vectors or function values is
omitted. Among these problem definitions, 16 out of 112 constrained
functions are separable. To this end, a small bias towards strategies that
predominantly search parallel to the Cartesian axis of the search space
cannot be fully excluded.

The CEC benchmark environments do not establish subgroups of
constrained problems. That is, results obtained by an algorithm can
hardly be identified with a certain problem characteristic. Although,
the CEC2017 collection would allow for a rough categorizations. For
example, the constrained problems , , and

respectively, share the same objective function but differ
in the number and type of their constraint functions. Problem classes
that address the number or type of the constraints would also be con-
ceivable. This would be useful for extracting additional information
about the applicability of algorithmic ideas to such problem classes.

All CEC benchmark sets share the definition of a feasible solution in-
troduced in Sec. 2. Due to the issue of enforcing the generation of can-
didate solutions that exactly satisfy the equality constraints, the error
margin of ε=10⁠−4 is used in all three competitions.

Every algorithm has to perform 25 independent runs on a single
instance of each constrained optimization problem. In each run, the
best result so far y⁠bsf is monitored at three distinct points of the search
process, i.e. after 10%, after 50%, and after 100% of the assigned func-
tion evaluation budget have been consumed.⁠9 To this end, an algorithm
is required to report the best so far objective function value f(y⁠bsf), the
corresponding mean constraint violation ν(y⁠bsf), as well as the triplet c
(see Table 2). The mean constraint violation of a candidate solution
y is determined as

(9)

where m is the aggregated number of equality and inequality con-
straints of problem (COP). Note that the constraint violation ν(y) is ob-
tained according to Eq. (5). The term c specifies the number of violated

9 Notice that, for the CEC2006 benchmarks the same measurements had to be collected
after 1%, 10% and 100% of the evaluation budget.

Table 2
Quality indicators computed for the CEC competitions on constrained real-parameter opti-
mization. The + ∕− markers indicate whether the respective quality indicator is used in a
CEC benchmark set.

Notation Description 2006 2010 2017

Best The objective function value f(y⁠best)
corresponding to the best found solution
y⁠best in 25 independent algorithm runs
with respect to Eq. (10).

+ + +

Median The objective function value f(y⁠median)
associated with the median solution y⁠median
of the 25 algorithm realizations according
to Eq. (10).

+ + +

c A vector containing the number of
constraints with violation greater than 10 ⁠0,
10⁠−2, and 10 ⁠−4 associated with the median
solution.

+ + +

The mean constraint violation value
associated with the median

solution y⁠median, refer to Eq. (9).

+ + +

Mean The mean objective function value
according to the 25 independent algorithm
runs.

+ + +

Worst The objective function value f(y⁠worst)
corresponding to the worst found solution
y⁠worst.

+ + +

Std The standard deviation according to the
objective function values obtained in 25
runs.

+ + +

FR The ratio of feasible algorithm realizations
over the number of total runs.

+ + +

SR The ratio of successful algorithm runs,
cf. (11), over the number of total runs was
computed.

+ – –

SP The quotient of the mean number of
function evaluations consumed in
successful runs and the success ratio is
referred to as success performance SP.

+ – –

The mean constraint violation
corresponding to the 25 independent
algorithm runs.

– – +

constraints with violation greater than 10⁠0, 10⁠−2, and 10⁠−4, respectively.
The results of these 25 runs are then used to compute statistics for

algorithm evaluation and comparison. In order to sort the realized can-
didate solutions, the CEC benchmarks introduce a lexicographic order-
ing with respect to f and . That is, two candidate solutions y and z are
sorted according to

(10)

Note that Eq. (10) is defined analogously to the order relation (8), but
makes use of Eq. (9) instead of Eq. (5). A comprehensive list of the uti-
lized quality indicators is provided in Table 2.

The CEC2006 benchmark set provided the globally optimal parame-
ter vectors of each test problem. Using this information the effectiveness
of an algorithm was determined in terms of the deviation
of the best-so-far solution y from the optimum y⁠∗. It was further used to
calculate the success rate (SR) of a specific algorithm. The success rate
was defined as the ratio of successful runs and the number of total runs.
Hence, an algorithm run is considered successful if at least one feasible
solution with

(11)

is realized. Note that, by distinguishing two feasible candidate solu-
tions based on their deviation from the known optimum, the CEC2006

9



UN
CO

RR
EC

TE
D

PR
OO

F

M. Hellwig, H-G Beyer Swarm and Evolutionary Computation xxx (2018) xxx-xxx

benchmarks use a slightly different way of proceeding than presented in
(10).

No longer having information about the global optima, the success
rate was replaced with the calculation of the feasibility rate (FR) in the
succeeding CEC competitions. FR indicates the ratio of those algorithm
runs that realized at least one feasible solution and the total number of
algorithm runs.

Regarding the termination criterion used by the CEC competitions,
each constrained problem comes with a fixed budget of function eval-
uations.⁠10 Termination is required after an algorithm has entirely con-
sumed this budget. The budget of function evaluations allocated to each
constrained function varies among competitions. While being fixed to
5 ⋅ 10⁠5 function evaluations (regardless of the problem dimension) for
CEC2006, the CEC2010 and CEC2017 collections define the budget pro-
portional to the problem dimension N. That is, each algorithm is allo-
cated a budget of 2 ⋅ 10⁠4 ⋅ N function evaluations. Other termination
criteria are not designated.

4.3. Reporting

By primarily representing test problems for the CEC competitions
on constrained real-parameter optimization, the corresponding techni-
cal reports do not make a statement on ensuring newsworthiness of the
algorithm results. In order to participate in the mentioned competitions,
algorithm results have to be published in a conference paper that has to
pass a related review process. Accordingly, the novelty of algorithms is
reviewed in this way. However, those authors that use the constrained
CEC functions as benchmarks in a different context might need to be
reminded of assessing the benefit of their algorithmic ideas. To this
end, benchmark results of comparable algorithms should be supplied,
e.g. results obtained by the winning strategies from earlier competitions
or even by random search. Such information is considered useful for
quickly evaluating the suitability of a novel algorithm and its compet-
itiveness for the CEC competitions. As pointed out by Ref. [48] in the
context of unconstrained benchmarks, the comparison of novel algorith-
mic ideas with diverse state-of-the-art strategies is essential to prevent
the publication of already dominated results and to contribute to real
progress in the respective field of research.

The final quality indicators computed for a specific algorithm have
to be presented for every single constrained problem in a detailed table.
Considering that the CEC benchmarks demand information on three
stages (10%, 50%, and 100%) of the search process, this presentation
style appears rather lengthy. Table 3 illustrates the presentation guide-
lines corresponding to the CEC2017 benchmarks. Making use of one
table per dimension, and per algorithm, leads to increasing space re-
quirements when considering more search space dimensions. Further-
more, drawing conclusions with respect to algorithm performance dif-
ferences is made very difficult. Additionally, not subsuming problems of
similar characteristics impedes interpretations of the results.

The CEC2006 and CEC2010 benchmarks were using convergence
graphs to provide a more tangible notion of algorithm performance. In
2006, the convergence graphs illustrated the deviation of the objective
function value from the optimum as well as the mean con-
straint violation plotted against the number of function evaluations
in full-logarithmic scales. Instead of taking into account the median so-
lution, the technical report of CEC2010 recommends illustrating the best
out of 25 runs. The idea of convergence graphs was dropped with grow-
ing table sizes for the CEC2017 competition.

The benchmark collections demand to report the configuration of
the PC on which the experiments have been executed. To this end, the

10 Keeping in mind, that the CEC benchmark definitions refer to a function evaluation as
one evaluation of the whole constrained function, see Sec. 4.1.

Table 3
Presentation of algorithm results obtained in dimension N according to the guidelines of
the CEC2017 competition on constrained real-parameter optimization [15].

Budget Indicator p01 p02 p03 … p28

10% Best
Median
c

Mean
Worst
Std
FR

50% Best
⋮

100% Best
⋮

operation system, the CPU, the memory, the programming language used,
and the algorithm have to be specified. Acting this way intends to sup-
port algorithm comparability. However, a performance benchmark to
calibrate a tested algorithm's efficiency on the corresponding system is
not recommended. Such a performance baseline would retain compara-
bility of algorithm results obtained on outdated systems.

With respect to algorithm reporting, the CEC related technical re-
ports [13–15] require the complete description of the algorithm para-
meters used as well as their specific ranges. Further, algorithm designers
are demanded to present guidelines for potential parameter adjustments
and estimates of the corresponding costs in terms of function evalua-
tions. The use of hand-tuned parameters for individual constrained func-
tions is interdicted.

In order to give an impression of the algorithm complexity (see Sec.
3.3), three quantities have to be presented. The average T1 of the com-
putation time of 10⁠4 evaluations, as well as T2, the complete compu-
tation time of a specific algorithm over all problems i ∈{1, …, np} of
similar dimensionality

(12)

Here, np denotes the number of constrained optimization problems with
similar dimensionality of a respective benchmark function set. T1 and
T2 are reported together with their relative difference (T2−T1)∕T1.

To represent a meaningful quantity of algorithm complexity
(T2−T1)∕T1, the measurements T1 and T2 need to consider a suffi-
ciently large number of function evaluations. However, such an ap-
proach can be problematic: Imagine a DE algorithm [43] (or an EDA⁠11),
that initializes a rather large archive of about 200N candidate solutions.
Considering dimension N=50, such an algorithm would consume the
whole budget of 10⁠4 function evaluations in its initialization process.
Consequently, T2 cannot provide any information about the actual algo-
rithm running time. This can be resolved by only accounting for func-
tions evaluations consumed in the main loop of the algorithm. However,
a restriction like that is not specified and would disregard preprocessing
as well as initialization efforts.

Considering the ranking of competing algorithms, the presentation
style promotes the need for a well-defined algorithm ranking. Unfortu

11 Please, refer to [49] for a survey about Estimation of Distribution Algorithms (EDA).

10



UN
CO

RR
EC

TE
D

PR
OO

F

M. Hellwig, H-G Beyer Swarm and Evolutionary Computation xxx (2018) xxx-xxx

nately, the technical report of the CEC2006 competition [13] does not
provide any motivation of a suitable ranking procedure at all. The pre-
sentation of the competition results is also of little help. Hence, the qual-
ity indicators used to obtain an algorithm ranking cannot be deduced.

While defined in different ways, the ranking schemes used for the
CEC2010 and CEC2017 benchmarks are fully explained. The CEC2010
ranking method is based on a mean value comparison of two or more al-
gorithms on each individual constrained problem. Algorithms that yield
feasibility rates of FR=100% are ordered based on their mean objec-
tive function values. Those algorithms realizing a feasibility rate in be-
tween 0%<FR < 100% are ranked according to their feasibility rate.
Finally, strategies resulting in FR=0% are ordered based on the mean
constraint violations of all 25 runs. The total rank of an algorithm is ob-
tained by summing up its ranks on all 36 problems (including dimen-
sions N=10 and N=30) and the average rank is deter-
mined by

(13)

This way the best algorithm is defined by the lowest rank value
.

The CEC2017 ranking method is considering the mean objective
function values as well as the median solution at the maximal allowed
number of function evaluations. The first ranking of all competing al-
gorithms is based on the mean values. After having completed all inde-
pendent runs, for each constrained problem i the algorithms are ordered
with respect to their feasibility rate FR. The second ordering criterion is
the magnitude of mean constraint violations. At last, ties are resolved
by considering the realized mean objective function values. Acting this
way, each algorithm obtains a rank on each constrained prob-
lem. The second ranking procedure relies on the median solutions. The
first ordering step is concerned with the feasibility of the median solu-
tion. A feasible solution is better than an infeasible solution. Feasible
solutions are then ordered by means of their objective function values
and infeasible ones according to their mean constraint violations. On
every constrained problem, each algorithm is assigned a rank
. Having ranked all algorithms on every single constrained problem, the
ranks are aggregated. That is, the total rank value of each algorithm is
calculated as

(14)

Again, the best algorithm obtains the lowest rank value Rank⁠total.
Regarding these two ranking methods, it is noticed that the CEC2017

ranking is a progression. It no longer uses a single ranking (average case
quality in the broadest sense), but the consensus of average case and me-
dian case quality. This is in line with [6], where the use of so-called con-
sensus rankings is recommended for algorithm comparison. Consensus
rankings are distinguished into positional and optimization-based meth-
ods.

The definition of a consensus ranking is by no means unique as it
is rather sensitive with respect to the choice of individual rankings and
the number of considered algorithms. A desirable property of a consen-
sus ranking would be the Independence of Irrelevant Alternatives (IIA) cri-
terion [50] stating that changes in the number of algorithms must not
affect the pair-wise preference in the consensus ranks. That is, if the
consensus ranks algorithm A1 first and algorithm A2 second among five
distinct algorithms, then disregarding any other algorithm should not
yield a consensus rank change between A1 and A2. However, this cri-
terion is hardly satisfied by most intuitive consensus methods and, af-
ter all, a “best” consensus ranking does usually not exist. Yet, a good
consensus method is likely to promote insight into advantageous algo

rithmic ideas and might highlight poor performance, respectively. For
a description and a more detailed discussion of sophisticated consensus
methods, it is referred to [6].

The positional consensus ranking of the CEC2017 benchmarks is cre-
ated by simply adding the mean and median ranks. This can result in
potentially undesirable consensus rankings.⁠12 For example, consider the
scenario of comparing three distinct algorithms A1, A2, A3 with mean
ranking A1<A2<A3 and median ranking A3<A2<A1 on a single
constrained function. Consequently, all three algorithms would receive
similar consensus ranks. While this may come as an exceptional case,
the situation can, in fact, be observed regularly when comparing similar
algorithm variants on the CEC benchmarks. Such ties can be resolved by
including a third ranking approach into the consensus method. As the
CEC2017 rankings do not address any measure of algorithm efficiency,
a third ranking might take into account the algorithm speed in terms of
function evaluations. A possible step in this direction could be a rank-
ing that is based on the observed mean and median ranks realized after
having consumed 10%, and 50%, of the evaluation budget.

Moreover, the CEC ranking approaches aggregate algorithm rank-
ings over multiple dimensions. This way, algorithms which are espe-
cially well performing in lower dimensions are potentially overrated
and the overall ranking might be prejudiced. Further, algorithms that
are particularly well performing in larger dimensions cannot be clearly
identified. Aggregation over dimension should be avoided because the
problem dimension is a parameter known in advance that can and
should be used for algorithm design decisions [35].

To conclude this review of the constrained CEC benchmarks, some of
the mentioned aspects could be incorporated in the advancing CEC com-
petitions on constrained real-parameter optimization. In doing so, algo-
rithm developers would benefit from the introduction of well-designed
problem subgroups that support the identification of particularly diffi-
cult problem features. Further, competing algorithms should be ranked
for individual dimensions in order to obtain an intuition of the scala-
bility of an algorithm. A competition winner might then be assigned by
weighting these ranks.

Table 4 recaps the vital benefits of the CEC benchmarks as well as
some room for improvement which has been mentioned in more detail
within this and the previous subsections. However, not all of the men-
tioned improvements can automatically be considered a shortcoming of
the CEC benchmarks. The benchmarks might rather be based on design
decisions with different emphasis.

5. The COCO framework

The Comparing Continuous Optimizer (COCO) suite [9] provides
a platform to benchmark and compare continuous optimizers for nu-
merical (non-linear) optimization. Only recently, the development of a
COCO branch for constrained optimization problems started. The re-
lated code is available on the project website⁠13 within the develop-

ment branch. For convenience, the COCO benchmark test suite for con-
strained functions is synonymously referred to as COCO BBOB-con-
strained, or simply COCO, respectively.

While the COCO BBOB-constrained testbed is not yet operational,
being short before completion, the corresponding benchmarking princi-
ples and the associated test problem structure are not expected to sub-
stantially change anymore. As the COCO framework represents the cur-
rently most elaborated benchmarking environment for EAs, not men

12 Note that the IAA criterion does not hold in this case.
13 https://github.com/numbbo/coco The corresponding documentation is provided in

Ref. [51] under docs/bbob-constrained/functions/build after building it according to the
instructions.

11



UN
CO

RR
EC

TE
D

PR
OO

F

M. Hellwig, H-G Beyer Swarm and Evolutionary Computation xxx (2018) xxx-xxx

Table 4
Shorthand overview of the benefits of the CEC benchmarks for single objective constrained
real-parameter optimization and related areas for improvement. More detailed statements
can be found in Sec. 4. Note that this table focuses on CEC2017 definitions that are con-
sidered representative of the predecessor versions.

The constrained CEC benchmarks

Benefits Areas for improvement

+function definitions are openly
available in C and Matlab, and
supported by a detailed techni-
cal report

- the technical report needs to be more
precise w.r.t. reporting duties, and box-
constrained handling in particular

+benchmarks are frequently used in
a large number of publications

- reference data should be made available
to prevent the publication of dominated
results

+great number of constrained test
functions in moderate and high
dimensions

- benchmark set lacks an allocation into
problem subgroups

+scalable constrained functions
w.r.t. the dimensionality

- fixed number of constraints for each
constrained function

+inclusion of non-linear equality
and inequality constraints

- few problems suited for interior point
strategies

+feasible regions of complex struc-
ture (small ratio, disconnected,
etc.)

- final ranking depends on the number of
algorithms and aggregates over dimen-
sions

+clearly defined performance indi-
cators

- ranking omits algorithm speed (effi-
ciency)

+detailed result presentation in tab-
ular form

- a supporting graphical preparation of
the results is omitted

tioning the constrained COCO principles would render the present re-
view incomplete.

However, caution is advised with respect to small changes in indi-
vidual test function aspects, e.g. the distances of the constrained opti-
mal solution from the unconstrained optimal solution⁠14 or regarding the
post-processing practice.

The rest of this section is concerned with pointing out the COCO
BBOB-constrained benchmarking conventions, the related test problem
definitions, the evaluation criteria as well as the presentation style.

5.1. Benchmarking principles

The COCO BBOB-constrained suite is distinctly built on the uncon-
strained COCO framework. The COCO platform assists algorithm engi-
neers in setting up proper experiments for algorithm comparison. It pro-
vides simple interfaces to multiple programming languages (C/C++,
Python, MATLAB/Octave, and Java) which makes the benchmarks eas-
ily accessible. Users are not involved in the evaluation of constrained
functions or the logging process of algorithm results. A corresponding
post-processing module facilitates the illustration and the meaningful
interpretation of the collected algorithm data. In this respect, COCO re-
duces the benchmarking effort for algorithm developers with respect to
implementation time.

The benchmark functions are considered to represent black-box
functions for the tested algorithms. Still, the objective functions are
explicitly stated in mathematical form in the documentation. This al-
lows for a deeper understanding of the individual problem difficulties
and thus of an algorithm's (in)capabilities. In a first step, the COCO
BBOB-constrained test bed confines itself to eight well-known objective
functions from the context of the unconstrained COCO suite. These ob-
jective functions are provided with varying number of (almost) linear
inequality constraints. However, the actual test instances are randomly
generated for each algorithm runs, see Sec 5.2. A very comprehensive

14 Note, the unconstrained optimal solution of a constrained function (COP) is associated
with the optimum of the related objective function, i.e. disregarding all constraints.

explanation of the COCO framework and the associated constrained
problems can be found on the COCO documentation website.⁠15

The COCO guideline for counting function evaluations in the con-
strained setting involves distinguishing objective function evaluations
and constraint evaluations. Still, one constraint evaluation is identified
with the evaluation of all individual constraint functions at a time. Ac-
cordingly, a specified budget of function evaluations needs to be split.

On the one hand, the formal constrained function definitions are
not specifying any box-constraints, refer to (15). In this regard, guide-
lines for the treatment of box-constraints are not needed. Yet, the
BBOB-constrained suite provides the user with the subroutines coco-

ProblemGetSmallestValuesOfInterest, and cocoProblemGetLargestVal-

uesOfInterest, to determine the lower bound and the upper bound ŷ
for each constrained problem. While the optimal solution is located in-
side the box according to Eq. (1), evaluations of candidate solutions
outside the box are not interdicted.

Whether the box-constraints need to be enforced in every step or not
is of course a design question. Anyway, the benchmark designers need
to provide plain instructions with respect to treatment of box-constraints
during the search process. The use of the box-constraint handling may
be beneficial on some constrained problems. Therefore, such instruc-
tions are necessary to obtain comparable algorithm results. Moreover,
algorithm developers need to be urged to report the specific box-con-
strained handling techniques used.

5.2. Experimental design

The standard BBOB-constrained optimization problem reads

(15)

A summary of the associated problem features is provided in Table 5.
The considered constrained functions are separated into eight subgroups
associated with the selected objective functions. These objective func-
tions are

∙ the Sphere function,
∙ the Ellipsoid function,
∙ the Linear slope function,
∙ the rotated Ellipsoid function,
∙ the rotated Discuss function,
∙ the rotated Bent Cigar,
∙ the rotated Different Powers, and
∙ the rotated Rastrigin function.

By systematically equipping each objective function with 6 differ-
ent numbers of inequality constraint functions, namely 1, 2, 6, ,
6 + N, and 6 + 3N constraints, the BBOB-constrained benchmark prob-
lems are built. The number of the constraints depends on the consid-
ered search space dimension N. Note that the BBOB-constrained suite
renounces the incorporation of equality constraints.

For now, the COCO BBOB-constrained testbed concentrates on al-
most linear inequality constraints. To this end, the linear structure
of the feasible region is distorted by application of bijective non-lin-
ear transformations on a number of constrained functions. The subse-
quent application of a randomly generated translation of the whole con-
strained problem prevents the optimal solution from being the zero vec-
tor, i.e. y⁠∗≠0. The problems are further created in a way that main-
tains a known optimal solution of the constrained function. This opti

15 https://numbbo.github.io/coco-doc/.

12



UN
CO

RR
EC

TE
D

PR
OO

F

M. Hellwig, H-G Beyer Swarm and Evolutionary Computation xxx (2018) xxx-xxx

Table 5
Characteristic features of the COCO BBOB-constrained benchmark suite.

Benchmark name COCO BBOB-constrained

Search space dimensions N ∈{2, 3, 5, 10, 20, 40}
Number of constrained functions 288 (incl. varying

dimensions)
Number of distinct obj. functions 8
Minimal number of constraints 1
Maximal number of constraints 126
Scalable problems yes
Budget of function evaluations user-dependent
Number of fully separable problems (objective and

constraints)
144

Avg. size of 21.1%
Number of problems with ρ>10⁠−3 200

mal solution is always located on the boundary of the feasible region.
However, considering the black-box setting the optimal solution is not
accessible by a user, nor by the algorithm. It is used for evaluation of
algorithm performance.

The procedure to create a constrained function consists of five
steps⁠16:

I. Select a pseudo-convex objective function f(y) and a corresponding
number of constraints g⁠i(y), i=1,
…, l.

II. Define the first linear constraint g⁠1(y)≔ −∇ f(0)⁠⊤y.
III. Construct the remaining linear constraints i=2, …, l by sampling

their gradients from a multivariate normal distribution and incre-
mentally demanding that the origin remains a Karush-Kuhn-Tucker
(KKT) point of problem [53].

IV. If applicable, apply non-linear transformations to the constrained
function.

V. Randomly sample a translation vector to change the location of the
optimal solution.

According to the COCO BBOB-constrained documentation [51], the
domain of almost linear constrained functions represents the most inter-
esting starting configuration for benchmarking.⁠17 Such constraint func-
tions are composed of small variations of linear constraints which are
considered to represent most simple restrictions to an unconstrained op-
timization problem. Algorithms suitable for constrained optimization, in
general, should first be able to solve such (almost) linearly constrained
functions. The inequality constraints are considered to be relaxable, i.e.
candidate solutions outside of the feasible region can be evaluated and
may contribute to the search process of an algorithm.

The transformations are essentially applied to ensure constrained
functions that are reasonably difficult to solve, i.e. potential regulari-
ties that might favor the exploitation abilities of certain algorithms are
excluded. The transformations are designed in such a way that the au-
tomatic generation of similarly hard test problem instances is realized.
Problem instances share the objective function, the number of inequal-
ity constraints, as well as the search space dimension. By randomly
defining and distorting the linear constraints, the size of the feasible re-
gion may vary. The extent to which the complexity of two instances

16 The construction of the constrained Rastrigin function group is slightly different. It is
referred to [51,52] for the detailed definition.

17 While this can be disputed, it is likely the most simple and logical step for gradually
extending the COCO BBOB framework to the constrained problem domain.

with differently sized feasible regions is maintained remains unan-
swered.

The constrained problems (15) are scalable with respect to search
space dimension N and number of constrained functions l. Taking into
account dimensionality, objective function and the number of con-
straints, the BBOB-constrained testbed consists of 288 distinct con-
strained functions. By composing problem subgroups by means of ob-
jective functions, as well as dimensionality, supports the identification
of algorithmic strengths and weaknesses for specific problem character-
istics. The constrained COCO framework considers only inequality con-
straints g⁠i(y)≤0. Consequently, a candidate solution is regarded feasible
solution if all inequality constraints are satisfied, i.e. g⁠i(y)≤0 ∀i=1, …,
l. By construction, the feasible sets of the benchmark suite is non-empty
and connected. For initialization purposes a feasible candidate solution
is provided by the COCO subroutine cocoProblemGetInitialSolution. It
may serve as a starting point for the search process. This represents a
beneficial feature for benchmarking algorithms that search exclusively
inside the feasible region , see (2). As already mentioned in Section
5.1, the box constraints of each problem are accessible. Hence, they may
also be used to initialize a starting population inside the box .

When estimating the size of the feasible region relative to the box
defined by the lower and upper bounds, the associated ρ values indi-
cate the dependence of the dimension N. Yet, the aggregated ρ value
presented in Table 5 only has limited significance. On the one hand, it
was generated according to [29] by considering only a single instance
of each constrained function. As the randomly generated boundary of
the feasible region may vary among constrained problem instances, the
ρ value is supposed to exhibit fluctuations of some degree. On the other
hand, the ρ was averaged over all possible problem dimensions and thus
only represents a rough sketch. However, compared to the CEC bench-
marks in Section 4, the average feasible region of a BBOB-constrained
function can be considered larger.

The benchmark suite does not determine a fixed budget of function
evaluations. The specification of appropriate termination conditions for
an individual algorithm is left to the user [54]. In this context, the COCO
built-in function cocoProblemFinalTargetHit delivers an indicator of the
realized algorithm precision. It returns true after the algorithm has ap-
proached the optimal objective function value with accuracy 10⁠−8 and
can be utilized to terminate the algorithm run. Accordingly, the value
of 10⁠−8 represents the final target precision that is used to specify a suc-
cessful algorithm run, see Section 5.3.

By default, each algorithm is executed on 15 randomly generated in-
stances of each constrained function. The corresponding results are in-
terpreted as 15 independent repetitions on the same constrained prob-
lem. Acting this way prevents unintentional exploitation of potentially
biasing function features [9].

Remember that the optimal solution is by construction located on
the boundary of the feasible region. This property might potentially
prejudice search algorithms to largely operate outside of the feasible re-
gion of the search space. Depending on the fitness environment, this al-
lows for faster progress until the algorithm reaches a certain neighbor-
hood of the optimal solution.

5.3. Reporting

The COCO framework comes with a post-processing module for au-
tomated data preparation and visualization in terms of html or LaTeX

templates. The user-independent standardization of the data processing
reduces the susceptibility to errors and supports the comparability of al-
gorithm performance.

13



UN
CO

RR
EC

TE
D

PR
OO

F

M. Hellwig, H-G Beyer Swarm and Evolutionary Computation xxx (2018) xxx-xxx

The COCO BBOB-constrained suite takes into account a single per-
formance measure: the algorithm runtime.⁠18 Runtime is defined in terms
of the number of function evaluations⁠19 consumed on a specific con-
strained problem until a predefined target is reached. In total, 51 targets
uniformly distributed on the log-scale are specified in the range [10⁠2,
10⁠−8] individually for each constrained function. More specifically, for
each of these target values, the runtime of an algorithm is identified
with the number of objective function and constraint evaluations con-
sumed until a target was reached for the first time. In the case that not
all targets are reached by an algorithm, the COCO framework makes use
of a bootstrapping method [55]. This method permits to compare algo-
rithms with different success rates. A detailed description is available in
Ref. [35].

Whether a target was reached after evaluation of a candidate solu-
tion is automatically checked by the COCO suite. To this end, a trigger
value is compared with the next unmatched target. The corresponding
number of function evaluations as well as the trigger value are logged.
For now, the trigger value is identified with the objective function value
of a feasible candidate solution. Infeasible candidate solutions, or their
constraint violations, are not considered in the definition of the cur-
rently used triggers. The objective function value of the initially pro-
vided solution cocoProblemGetInitialSolution is considered as initial
trigger value. The initial trigger value does usually not satisfy any of
the targets. It is updated as soon as the benchmarked algorithm is able
to find a feasible candidate solution with improved objective function
value.

Making use of this runtime definition results in a performance mea-
sure that is essentially independent of the computational platform and
the programming language used. Further, the algorithm results can eas-
ily be condensed and presented in multiple ways, e.g. by measuring the
average runtime (aRT) of an algorithm [35], by use of data profiles or
empirical cumulative distribution function (ECDF) plots [32], or run-
time tables for specific target values. An illustration of an aRT plot is
displayed in Fig. 1(a). It provides an estimate of the expected runtime.
The aRT is computed by summing up all evaluations in unsuccessful al-
gorithm runs as well as the number of evaluations consumed in the suc-
cessful algorithm runs, both divided by the number of successful runs.
The ECDF plot provided in Fig. 1(b) displays the proportion of success-
fully reached targets on function f01 plotted against the number of func-
tion evaluations. It is usually independent of any reference algorithms
and thus unconditionally comparable across different publications. This
supports drawing meaningful conclusions with respect to algorithm per-
formance on the whole benchmark set, or on the individual problem
subgroups, respectively. Note, that algorithm results are not aggregated
over dimensions in order to disclose the impact of the problem dimen-
sionality on the algorithm performance.

Algorithms can be directly compared by illustrating their ECDFs
per function evaluations in log-scales. This way, the area above and in
between the graphs becomes a meaningful conception. An exemplary
ECDF is illustrated in Fig. 1. It can be interpreted in two ways: By con-
sidering the number of function evaluations on the x-axis as indepen-
dent variable, the y-axis represents the ratio of targets reached for any
budget x. On the other hand, associating the y-axis with the independent
variable, the x-values present the maximal runtime observed to reach
any fraction y of the predefined target values.

Consequently, better performing algorithms realize smaller areas
above a curve. Further, the difference between those areas can be inter

18 By concentrating on runtime, the BBOB-constrained benchmarks may refrain from
defining an order relation for candidate solutions.

19 Keep in mind, that the number of function evaluations comprises the sum of all
objective function evaluations and the number of constraint evaluations.

preted as a measure of the performance advantage of one algorithm
over another. With the caveat of loosing the connection to a single con-
strained problem, the ECDF plots allow for aggregation over multiple
constrained problems [35]. That is, the presentation of algorithm per-
formance on problem subgroups is straight forward. Hence, in contrast
to extensive and hardly interpretable tables, the ECDFs provide a rele-
vant notion of algorithm suitability for single constrained functions, and
subgroups of constrained problems, respectively.⁠20

Only considering feasible candidate solutions in the trigger/target
definition may inflate the relevance of late phases in the search process.
Depending on the constrained problem, algorithms that sample an ini-
tial population within the box-constraints might consume a considerable
number of function evaluations until they reach the feasible region. The
number of function evaluations needed to hit a first target provides a
notion of the runtime needed to find a first feasible solution. Accord-
ingly, the area to the left of a ECDF curve can still be identified with the
runtime of the respective algorithm. However, the resulting ECDF plots
will thus likely display a steeply ascending curve that is shifted to the
right boundary (determined by the limit of function evaluations). This
complicates the comparison of multiple algorithms because the relevant
information might be largely accumulated in one spot. Also from a prac-
tical point of view, the late search phase may have minor impact on the
assessment of an algorithm if the main focus is on finding a feasible so-
lution of reasonable precision.

Other trigger definitions are conceivable, i.e. the trigger may be de-
fined by the sum of the objective function value and the constraint vio-
lation of a candidate solution. This way of proceeding takes into account
infeasible steps, but it would introduce the issue of unwanted cancella-
tion effects. Another idea to give an impression of the algorithm perfor-
mance within the infeasible region is the definition of separate targets
for the constraint violation. These targets would need to be displayed in
a second plot that addresses the runtime during the search in the infea-
sible region of the search space.

The COCO experiments include the approximate measurement of the
algorithm time complexity [54]. To this end, it is recommended to mon-
itor either the wall-clock or the CPU time while running the algorithm
on the benchmark suite. The time normalized by the number of function
evaluations is demanded to be reported for each dimension. Addition-
ally, information on the experimental setup, the programming language,
the chosen compiler and the system architecture are required. Yet, the
instructions do not fully exclude diverse interpretations and may thus
impede the comparability and reproducibility of the results.

As the development of the BBOB-constrained benchmark suite is still
ongoing, the definitive presentation style of the algorithm results cannot
be provided at this point. The presentation of additional information on
the ratio of the feasible region relative to the box is con-
ceivable. Further, the ultimate choice of the trigger value for deciding
whether a predefined target was reached is still being discussed. ⁠21

To wrap up the deliberations of Sec. 5, Table 6 provides a shorthand
overview of the benefits, as well as potential areas for improvement,
of the BBOB-constrained testbed. It has to be noted that the mentioned
improvements can not necessarily be regarded as a shortcoming of the
respective benchmarking environment, as they might represent reason-
able design decisions in the process of advancing towards a well-elabo-
rated benchmarking environment.

20 The ECDF aggregation over different dimensions is omitted to prevent loss of
information related to the impact of the search space dimension on the algorithm
performance.

21 For the ongoing discussion on BBOB-constrained features, it is referred to https://
github.com/numbbo/coco/issues.

14



UN
CO

RR
EC

TE
D

PR
OO

F

M. Hellwig, H-G Beyer Swarm and Evolutionary Computation xxx (2018) xxx-xxx

Fig. 1. An excerpt of the presentation style of benchmarking results obtained on the first problem of the BBOB-constrained suite. (a): Scaling of runtime with dimension to reach certain
target values on the BBOB-constrained benchmarks. Lines: average runtime (aRT); All values are divided by dimension and plotted as log⁠10 values versus dimension. Shown is the aRT
for fixed values of Δf=10⁠k with k given in the legend. (b): Bootstrapped empirical cumulative distribution of the number of objective function and constraint evaluations divided by
dimension for 51 targets with target precision in 10⁠[−8 … 2] for dimensions 2, 3, 5, 10, 20, and 40. The horizontal axis shows the log⁠10 of the sum of objective function and constraint
evaluations. The vertical axis shows the proportion of target objective function values reached with the given number of evaluations. Note, this caption has been adapted from the COCO
BBOB post-processing LaTeX template.

6. Conclusion

The present review intends to collect principles for comparing con-
strained test environments for Evolutionary Algorithms. To this end, it
takes into account recommendations on the basic principles, the exper-
imental design, and the presentation of algorithm results. Based on the
gathered criteria, the most prominent constrained benchmarking envi-
ronments for EAs are reviewed. Significant differences with respect to
the basic assumptions and the experimental approaches became evi-
dent. The survey of the current constrained benchmarking sets suitable

for randomized search algorithms supports the algorithms developers
with information about the strength of the available frameworks.

Both considered benchmark suites focus on different constrained
problem domains. They differ in terms of counting function evaluations,
defining termination criteria as well as performance evaluations com-
parison. The COCO BBOB-constrained benchmark is very much based
on the unconstrained COCO framework. By including exclusively al-
most linear inequality constraints, it represents a first systematic at-
tempt towards general constrained problems. The BBOB-constrained
test function definitions are rather tangible. This is due to the com-
position of well-known unconstrained optimization problems and con

15



UN
CO

RR
EC

TE
D

PR
OO

F

M. Hellwig, H-G Beyer Swarm and Evolutionary Computation xxx (2018) xxx-xxx

Table 6
Summary of the features of the COCO BBOB-constrained benchmarking definitions men-
tioned in Sec. 5.

The COCO BBOB-constrained benchmarks

Benefits Areas for improvement

+function definitions openly avail-
able in C, Java, Python and Mat-

lab

- technical report needs to be more pre-
cise w.r.t. reporting duties

+detailed motivation and construc-
tion of the experiments

- no statement on the treatment of box-
constraints

+scalable constrained functions w.r.t.
the dimensionality and number
of constraints

- limitation to 8 objective function def-
initions and (almost) linear inequality
constraints

+initial feasible solution available
(suited for interior point strate-
gies)

- only constrained functions with con-
nected feasible regions included

+clearly defined performance mea-
sure (objective function targets)

- optimal solution always located on the
boundary of the feasible region

+algorithm efficiency measured
based on consumed function
evaluations per target

- only feasible targets defined (perfor-
mance within infeasible region ig-
nored)

+standardized post-processing and
data visualization by use of ECDF
plots

- supportive tabular presentations are
omitted

nected feasible sets. By construction, the BBOB-constrained benchmarks
(internally) maintain an optimal solution for measuring algorithm per-
formance. In comparison, the structure of the constrained CEC test prob-
lems is somehow harder to perceive. Being also based on proven un-
constrained objective functions, the structure of the corresponding fea-
sible sets is comparably complex. A reason is varying numbers of usu-
ally non-linear equality and inequality constraints that potentially de-
fine disjoint feasible regions in the search space. Further, the most re-
cent constrained function definitions do not provide information about
optimal solutions.

These distinct benchmarking approaches directly induce different
ways of presentation. On the one hand, the COCO framework measures
runtime in terms of function evaluations per predefined target and vi-
sualizes algorithmic performance in terms of ECDF graphs. Algorithm
performance can thus be rather easily aggregated over similar prob-
lems and compared to different algorithms. On the other hand, the CEC
benchmarks compute a number of best quality, median quality, or mean
quality indicators and illustrate the algorithm performances by use of
tables. The assessment of algorithmic ideas is rather cumbersome. Fur-
ther, the comparison of algorithm results thus relies on ranking schemes
that may come with a sense of arbitrariness.

Both, the CEC competitions for constraint real-parameter optimiza-
tion, and the COCO BBOB-constrained framework do only consider re-
laxable equality and inequality constraints. That is, the algorithms are
allowed to move in the whole unconstrained search space. Each candi-
date solution, either feasible or infeasible, may be evaluated and used
within the variation or selection steps of the strategy. It should be re-
minded that the possibility to use infeasible solutions during the search
may significantly reduce the problem complexity. An algorithm might
completely operate outside the feasible region until it finds the opti-
mal solution. Taking into account the size of the feasible regions, and
looking at the problem definitions of the CEC 2006, 2010, and 2017
benchmarks, it should be made clear that many problems have disjoint
feasible regions. Hence, enforcing the feasibility of candidate solutions
prior to their evaluation appears useless on the CEC benchmarks. How-
ever, the prior demand for feasibility is often required in real-world
problems, e.g. when considering simulations which require feasible in-
puts. In this regard, the CEC benchmarks do not represent a suitable
test function class. Similar concerns can be raised for the BBOB-con-
strained benchmark suite. However, its feasible set is always non-empty
and connected. Providing an initially feasible solution, the BBOB-con

strained framework could potentially take into account unrelaxable con-
straints.

Furthermore, both benchmark sets omit to demand a specific
box-constraint treatment. Yet, they refrain from mentioning the need of
the precise reporting of such approaches. Considering the source codes
of the most successful strategies reported in CEC competitions, all al-
gorithms were assuming situation (S1). Even if not explicitly specified
in the benchmark definitions, today the enforcement of the bound con-
straints seems to be ‘common sense’ within the Evolutionary Computa-
tion community. However, the mechanisms to treat box constraint viola-
tions may vary and are usually not well reported. As pointed out in Sec.
3.1, plain instruction with respect to the treatment of box-constraints
can prevent inconsistencies [33].

Considering the CEC benchmark environments, the problem defini-
tions were subject to considerable changes in recent years. The introduc-
tion of scalable constrained functions was accompanied by a reduction
of the average number of constraints per problem (from 7 to about 2).
While the CEC2006 benchmarks were (partly) inspired by real-world ap-
plications, the comparably small fixed number of 2 constraints appears
underrepresented when taking into account the structure of real-world
problems. Further, parameter space transformations were introduced in
order to remove potential problem biases in direction of the coordinate
axes. Still, a small number of fully separable constrained functions re-
mained in the CEC2017 benchmark set.

The constrained CEC benchmarks provide the currently most elabo-
rated benchmarking environment for EA. They mainly present non-lin-
early constrained problems with a fixed number of not necessarily lin-
ear inequality and equality constraints. Also due to unconnected feasi-
ble sets, the CEC constrained test functions are considered to represent
hard challenges in some cases. Yet, further improvements are still con-
ceivable (refer to Table 4). On that note, a comprehensive documenta-
tion that motivates the advancement of the constrained CEC benchmark
environments is missing. Future CEC benchmarking competitions also
might consider providing a repository of baseline algorithm results in
order to assess the competitiveness of algorithmic ideas and to highlight
actual advancements in this field of research.

Looking at the recent CEC2017 benchmarking functions, the dis-
tinct problem features introduce a rather high level of problem com-
plexity. The benchmarks are suited to demonstrate the use of algorith-
mic ideas. According to its intention in the context of the CEC competi-
tion, the CEC benchmarking environment is well designed to assess al-
gorithmic performance and compare algorithms over a broad range of
different constrained test problems. Yet, the lack of problem subgroups
complicates the identification of correlations between successful algo-
rithmic working principles and specific problem features. In this respect,
the benchmark set does only weakly support the iterative development
process of specialized algorithms for particular constrained problems.

Regardless of minor software bugs and unfinished post-processing
methodology, the COCO BBOB-constrained suite could have the poten-
tial to become another standard constrained benchmarking platform. It
is equipped with a detailed documentation of its benchmarking prin-
ciples as well as an elaborated post-processing strategy. The experi-
mental design of the COCO BBOB-constrained benchmarks advances
well-known unconstrained test functions to the constrained problem do-
main. To this end, each objective function is accompanied with a scal-
able number of almost linear inequality constraints. The potential of
BBOB-constrained is supported by the COCO framework representing
a widely accepted benchmarking suite for the unconstrained case. The
recent collection of well-structured test functions must be regarded as
a reasonable first step towards an elaborate constrained benchmarking
testbed. Its structure supports the development of EA variants suitable
for selected problem groups. Due to its scalability, the impact of the

16



UN
CO

RR
EC

TE
D

PR
OO

F

M. Hellwig, H-G Beyer Swarm and Evolutionary Computation xxx (2018) xxx-xxx

number of constraints on the performance of algorithmic ideas can be
assessed.

However, comprising only a somehow limited number of distinct
constrained problem types, algorithms that perform well on the COCO
BBOB-constrained suite are not guaranteed to be successful on other
constrained problems. In this respect, BBOB-constrained needs to pro-
ceed towards more complex constraint definitions of different types, e.g.
non-linear inequality and equality constraints. Hence, the COCO con-
strained benchmarks should be advanced once the first version of the
testbed is released (also refer to Table 6).

The COCO BBOB-constrained problem definitions might further per-
mit (limited) user customizations. For instance, it should be possible
to optionally move the optimal solution from the boundary into the
feasible region. This could potentially increase the problem complexity
for some constrained functions. Another option that could be thought
of is manually turning off the non-linear perturbations for all con-
strained functions. This would result in linearly constrained problems
(with non-linear objective functions) and might be useful for examining
specific algorithmic ideas suited for constrained problems that lack ap-
propriate benchmarking environments.

Taking into account the vast number of constrained problem charac-
teristics, the current benchmarking environments under review do only
cover a small ratio of the constrained problem domain. Both bench-
marking environments might be extended with additional constrained
test functions. However, a drawback of extending the number of scal-
able problem subgroups within a benchmarking testbed is the increasing
computational effort. Moreover, the tangibility of the chosen presenta-
tion style may be significantly reduced when considering too many dif-
ferent problem representations. This might be circumvented by embrac-
ing multiple coexisting benchmarking environments that are specialized
in well-defined constrained problem classes.

Aiming at the establishment of profound benchmarks for real-valued
constrained optimization, the two approaches should not be regarded as
opposing but rather as complementing benchmarking suites. Both envi-
ronments are based on reasonable design decisions that might need an
upgrade but cannot be fully negated. Ultimately, an algorithm developer
has to choose the benchmarking environment that best suits the appli-
cation area of interest. That is, highly specialized algorithms may only
be practical on constrained problem subgroups which are only available
in one benchmarking environment. Contrary, algorithms designed to be
successful on a preferably broad range of problems should be assessed
and compared on both (all) available constrained benchmarking envi-
ronments. Accordingly, the current benchmarks for constrained single
objective real-parameter optimization do support each other.

In the end, benchmarking environments have to demand diligent sci-
entific investigations. In particular, algorithm developers must be urged
to maintain reproducible and comparable algorithm results. Collecting
principles for elaborate constrained benchmarking, Section 3 can be re-
garded as a guideline for design conventions and reporting obligations.

Advancing the CEC benchmark definitions, and finishing the COCO
BBOB-constrained benchmark suite, are anticipated tasks for future re-
search. Further the design of additional EA benchmarking tools for
different constrained problem sub-domains needs to be challenged. A
possible step in this direction might be the consideration of linear
constrained optimization problems suited for EA. In this regard, the
Klee-Minty problem is able to serve for demonstrating and examining
the capabilities of EA in the context of linear optimization. It is based
on the Klee-Minty polytope [56], a unit hypercube of variable dimen-
sion with perturbed vertices, which represents the feasible region of the
linear problem. The linear objective function is constructed in such a
way that the Simplex algorithm yields an exponential worst-case run-
ning time. Considering the number of sophisticated deterministic ap

proaches available, taking into account linear optimization problems for
EA benchmarking may appear questionable in the first place. However,
many purpose-built algorithms for linear optimization [57,58] show
poor performance in this environment. The Klee-Minty problem was al-
ready used to compare a specially designed CMSA-ES variant for linear
optimization with open source interior point LP solvers in Ref. [59].

In case that this review fosters the impression of an unbalanced crit-
icism, this conjecture is probably due to the fact that the constrained
CEC benchmarks have existed for many years providing a multitude
of benchmarking papers and working points, respectively. In contrast,
there are hardly any algorithm comparisons that were carried out on the
basis of the BBOB-constrained environment. In this respect, the COCO
BBOB-constrained framework will have to prove itself in practice.

Acknowledgements

This work was supported by the Austrian Science Fund FWF under
grant P29651-N32.

References

[1] Z. Michalewicz, D. Dasgupta, R.G. Le Riche, M. Schoenauer, Evolutionary algo-
rithms for constrained engineering problems, Comput. Ind. Eng. 30 (4) (1996)
851–870.

[2] V. Oduguwa, A. Tiwari, R. Roy, Evolutionary computing in manufacturing indus-
try: an overview of recent applications, Appl. Soft Comput. 5 (3) (2005) 281–299,
https://doi.org/10.1016/j.asoc.2004.08.003.

[3] J. Zhang, Z. h. Zhan, Y. Lin, N. Chen, Y.J. Gong, J. h. Zhong, H.S.H. Chung, Y. Li,
Y. h. Shi, Evolutionary computation meets machine learning: a survey, IEEE Com-
put. Intell. Mag. 6 (4) (2011) 68–75, https://doi.org/10.1109/MCI.2011.942584.

[4] G. Collange, N. Delattre, N. Hansen, I. Quinquis, M. Schoenauer, Multidisciplinary
Optimization in the Design of Future Space Launchers, Multidisciplinary Design
Optimization in Computational Mechanics, 2010459–468.

[5] A.M. Mora, G. Squillero, Applications of Evolutionary Computation: 18th European
Conference, EvoApplications 2015, Proceedings, vol. 9028, Springer, Copenhagen,
Denmark, 2015, April 8-10, 2015.

[6] O. Mersmann, M. Preuss, H. Trautmann, B. Bischl, C. Weihs, Analyzing the BBOB
results by means of benchmarking concepts, Evol. Comput. 23 (1) (2015) 161–185,
https://doi.org/10.1162/EVCO_a_00134 https://doi.org/10.1162/EVCO_a_00134.

[7] D. Whitley, S. Rana, J. Dzubera, K.E. Mathias, Evaluating evolutionary algorithms,
Artif. Intell. 85 (1) (1996) 245–276, https://doi.org/10.1016/
0004-3702(95)00124-7.

[8] R.L. Rardin, R. Uzsoy, Experimental evaluation of heuristic optimization algo-
rithms: a tutorial, J. Heuristics 7 (3) (2001) 261–304.

[9] N. Hansen, A. Auger, O. Mersmann, T. Tusar, D. Brockhoff, COCO: a platform for
comparing continuous optimizers in a black-box setting, arXiv preprint. URL https:
//arxiv.org/abs/1603.08785.

[10] N. Hansen, A. Auger, S. Finck, R. Ros, Real-parameter Black-box Optimization
Benchmarking 2009: Experimental Setup, Tech. rep. INRIA, 2009.

[11] N. Hansen, S. Finck, R. Ros, A. Auger, Real-parameter Black-box Optimization
Benchmarking 2009: Noiseless Functions Definitions, INRIA, 2009, Research Re-
port RR-6829 https://hal.inria.fr/inria-00362633.

[12] E. Mezura-Montes, C.A. Coello Coello, Constraint-handling in nature inspired nu-
merical optimization: Past, present and future, Swarm and Evolutionary Computa-
tion 1 (4) (2011) 173–194, https://doi.org/10.1016/j.swevo.2011.10.001.

[13] J.J. Liang, T.P. Runarsson, E. Mezura-Montes, M. Clerc, P.N. Suganthan, C.A.
Coello Coello, K. Deb, Problem Definitions and Evaluation Criteria for the CEC
2006 Special Session on Constrained Real-parameter Optimization, 2006, online
access.

[14] R. Mallipeddi, P.N. Suganthan, Problem Definitions and Evaluation Criteria for the
CEC 2010 Competition on Constrained Real-parameter Optimization, 2010, online
access.

[15] G. H. Wu, R. Mallipeddi, P. N. Suganthan, Problem Definitions and Evaluation Cri-
teria for the CEC 2017 Competition on Constrained Real-parameter Optimization,
online access (September 2016).

[16] Z. Michalewicz, M. Schoenauer, Evolutionary algorithms for constrained parameter
optimization problems, Evol. Comput. 4 (1) (1996) 1–32, https://doi.org/10.1162/
evco.1996.4.1.1.

[17] D. Himmelblau, Applied Nonlinear Programming, McGraw-Hill, 1972 https://
books.google.at/books?id=KMpEAAAAIAAJ.

[18] C. Floudas, P. Pardalos, Handbook of Test Problems in Local and Global Optimiza-
tion, Nonconvex Optimization and its Applications, Kluwer Academic Publishers,
1999 https://books.google.at/books?id=jQEoAQAAMAAJ.

[19] Q. Xia, Global Optimization Test Problems: a Constrained Problem Difficult for Ge-
netic Algorithms, September 1996 http://www.mat.univie.ac.at/neum/glopt/xia.
txt.

[20] T. Epperly, R.E. Swaney, et al., Global Optimization Test Problems with Solutions,
1996.

17



UN
CO

RR
EC

TE
D

PR
OO

F

M. Hellwig, H-G Beyer Swarm and Evolutionary Computation xxx (2018) xxx-xxx

[21] Z. Michalewicz, K. Deb, M. Schmidt, T. Stidsen, Test-case generator for nonlinear
continuous parameter optimization techniques, IEEE Trans. Evol. Comput. 4 (3)
(2000) 197–215, https://doi.org/10.1109/4235.873232.

[22] N. Hansen, A. Auger, O. Mersmann, T. Tusar, D. Brockhoff, COCO code repository.,
http://github.com/numbbo/coco.

[23] A. Neumaier, Global optimization test problems, Vienna University. URL http://
www.mat.univie.ac.at/neum/glopt.html.

[24] D.S. Johnson, A theoretician's guide to the experimental analysis of algorithms, In:
Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DI-
MACS Implementation Challenges, vol. 59, 2002, pp. 215–250.

[25] E. Mezura-Montes, C.A.C. Coello, What Makes a Constrained Problem Difficult to
Solve by an Evolutionary Algorithm, CINVESTAV-IPN, México, 2004, Tech. rep.,
Technical Report EVOCINV-01-2004.

[26] D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization, IEEE
Trans. Evol. Comput. 1 (1) (1997) 67–82, https://doi.org/10.1109/4235.585893.

[27] N.I. Gould, D. Orban, P.L. Toint, A Constrained and Unconstrained Testing Envi-
ronment with Safe Threads (Cutest), 2018 https://github.com/ralna/CUTEst.

[28] S. Le Digabel, S. Wild, A Taxonomy of Constraints in Simulation-based Optimiza-
tion, Les cahiers du GERAD, 2015, Tech. Rep. G-2015-57.

[29] S. Koziel, Z. Michalewicz, Evolutionary algorithms, homomorphous mappings, and
constrained parameter optimization, Evol. Comput. 7 (1) (1999) 19–44, https://
doi.org/10.1162/evco.1999.7.1.19.

[30] K. Deb, An efficient constraint handling method for genetic algorithms, Comput.
Methods Appl. Mech. Eng. 186 (2) (2000) 311–338, https://doi.org/10.1016/
S0045-7825(99)00389-8.

[31] L.S. Matott, B.A. Tolson, M. Asadzadeh, A benchmarking framework for simula-
tion-based optimization of environmental models, Environ. Model. Software
35 (2012) 19–30, https://doi.org/10.1016/j.envsoft.2012.02.002.

[32] J.J. Moré, S.M. Wild, Benchmarking derivative-free optimization algorithms, SIAM
J. Optim. 20 (1) (2009) 172–191.

[33] T. Liao, D. Molina, M.A.M. de Oca, T. Stützle, A note on bound constraints han-
dling for the IEEE CEC’05 benchmark function suite, Evol. Comput. 22 (2) (2014)
351–359, https://doi.org/10.1162/EVCO_a_00120.

[34] J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the use of non-
parametric statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms, Swarm Evol. Comput. 1 (1) (2011) 3–18, https://
doi.org/10.1016/j.swevo.2011.02.002.

[35] N. Hansen, A. Auger, D. Brockhoff, D. Tusar, T. Tusar, COCO: Performance Assess-
ment, CoRR abs/1605.03560. URL http://arxiv.org/abs/1605.03560.

[36] Z. Michalewicz, Genetic algorithms, numerical optimization, and constraints, In:
Proceedings of the 6th International Conference on Genetic Algorithms, Pittsburgh,
July 15-19, Morgan Kaufmann, 1995, pp. 151–158.

[37] P. Suganthan, N. Hansen, J. Liang, K. Deb, Y.-P. Chen, A. Auger, S. Tiwari, Prob-
lem Definitions and Evaluation Criteria for the CEC 2005 Special Session on
Real-parameter Optimization, 01 2005.

[38] H. Schwefel, Evolution and Optimum Seeking, Sixth Generation Computer Tech-
nologies, Wiley, 1995 https://books.google.at/books?id=dfNQAAAAMAAJ.

[39] W. Gong, Z. Cai, D. Liang, Engineering optimization by means of an improved con-
strained differential evolution, Comput. Methods Appl. Mech. Eng. 268 (2014)
884–904, https://doi.org/10.1016/j.cma.2013.10.019.

[40] R. Mallipeddi, P.N. Suganthan, CEC Competitions on Constrained Real-parameter
Optimization, Source Code, 2017 http://www.ntu.edu.sg/home/epnsugan/.

[41] V.L. Huang, A.K. Qin, P.N. Suganthan, Self-adaptive differential evolution algo-
rithm for constrained real-parameter optimization, In: IEEE International Confer-
ence on Evolutionary Computation, CEC 2006, Part of WCCI 2006, Vancouver, BC,
Canada, 16-21 July 2006, 2006, pp. 17–24, https://doi.org/10.1109/CEC.2006.
1688285.

[42] T. Takahama, S. Sakai, Constrained optimization by the ε constrained differential
evolution with gradient-based mutation and feasible elites, In: IEEE International
Conference on Evolutionary Computation, CEC 2006, Part of WCCI 2006, Vancou-
ver, BC, Canada, 16-21 July 2006, 2006, pp. 1–8, https://doi.org/10.1109/CEC.
2006.1688283.

[43] T. Takahama, S. Sakai, Constrained optimization by the epsilon constrained differ-
ential evolution with an archive and gradient-based mutation, In: Proceedings of
the IEEE Congress on Evolutionary Computation, CEC 2010, Barcelona, Spain,
18-23 July 2010, 2010, pp. 1–9, https://doi.org/10.1109/CEC.2010.5586484.

[44] R. Mallipeddi, P.N. Suganthan, Differential evolution with ensemble of constraint
handling techniques for solving CEC 2010 benchmark problems, In: Proceedings of
the IEEE Congress on Evolutionary Computation, CEC 2010, Barcelona, Spain,
18-23 July, 2010, pp. 1–8, https://doi.org/10.1109/CEC.2010.5586330.

[45] R. Polakova, J. Tvrdík, L-SHADE with competing strategies applied to constrained
optimization, In: 2017 IEEE Congress on Evolutionary Computation, CEC 2017,
Donostia, San Sebastián, Spain, June 5-8, 2017, 2017, pp. 1683–1689, https://doi.
org/10.1109/CEC.2017.7969504.

[46] J. Tvrdík, R. Polakova, A simple framework for constrained problems with applica-
tion of L-SHADE44 and IDE, In: 2017 IEEE Congress on Evolutionary Computation,
CEC 2017, Donostia, San Sebastián, Spain, June 5-8, 2017, 2017, pp. 1436–1443,
https://doi.org/10.1109/CEC.2017.7969472.

[47] A.M. Sutton, M. Lunacek, L.D. Whitley, Differential evolution and non-separability:
using selective pressure to focus search, In: Proceedings of the 9th Annual Confer-
ence on Genetic and Evolutionary Computation, ACM, 2007, pp. 1428–1435.

[48] C. García-Martínez, P.D. Gutiérrez, D. Molina, M. Lozano, F. Herrera, Since CEC
2005 competition on real-parameter optimisation: a decade of research, progress
and comparative analysis's weakness, Soft Comput. 21 (19) (2017) 5573–5583,
https://doi.org/10.1007/s00500-016-2471-9.

[49] M. Hauschild, M. Pelikan, An introduction and survey of estimation of distribution
algorithms, Swarm Evol. Comput. 1 (3) (2011) 111–128.

[50] K.J. Arrow, A difficulty in the concept of social welfare, J. Polit. Econ. 58 (4)
(1950) 328–346, https://doi.org/10.1086/256963.

[51] D. Brockhoff, N. Hansen, T. Tušar, O. Mersmann, P. R. Sampaio, A. Auger, A.
Atamna et al., COCO Documentation Repository. URL http://github.com/numbbo/
coco-doc.

[52] P.R. Sampaio, N. Hansen, D. Brockhoff, A. Auger, A. Atamna, A Methodology for
Building Scalable Test Problems for Continuous Constrained Optimization, Gaspard
Monge Program for Optimisation (PGMO), 2017, Paris-Saclay.

[53] S. Boyd, L. Vandenberghe, Convex Optimization, Berichte über verteilte Messys-
teme, Cambridge University Press, 2004 https://books.google.at/
books?id=mYm0bLd3fcoC.

[54] N. Hansen, T. Tusar, O. Mersmann, A. Auger, D. Brockhoff, COCO: the Experimen-
tal Procedure, CoRR Abs/1603.08776. arXiv:1603.08776. URL http://arxiv.org/
abs/1603.08776.

[55] B. Efron, R. Tibshirani, An Introduction to the Bootstrap, Chapman & Hall/CRC
Monographs on Statistics & Applied Probability Taylor & Francis, 1994.

[56] V. Klee, G. Minty, How Good Is the Simplex Algorithm?, Defense Technical Infor-
mation Center, 1970 https://books.google.at/books?id=R843OAAACAAJ.

[57] N. Megiddo, M. Shub, Boundary behavior of interior point algorithms in linear pro-
gramming, Math. Oper. Res. 14 (1) (1989) 97–146.

[58] A. Deza, E. Nematollahi, T. Terlaky, How good are interior point methods?
Klee-Minty cubes tighten iteration-complexity bounds, Math. Program. 113 (1)
(2008) 1–14.

[59] P. Spettel, H.-G. Beyer, M. Hellwig, A Covariance Matrix Self-Adaptation Evolution
Strategy for Linear Constrained Optimization, arXiv preprint. URL https://arxiv.
org/abs/1806.05845.

18


	
	
	


