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Abstract

Scenario-based optimization is a problem class often occurring in finance, planning and control.
While the standard approach is usually based on (linear) stochastic programming, this paper de-
velops an Evolution Strategy (ES) that can be used to treat also nonlinear planning problems
arising from Value at Risk-constraints and not necessarily proportional transaction costs. The
algorithm design is based on the covariance matrix self-adaptation ES (CMSA-ES). The evo-
lution is performed on scenario trees where in each node specific constraints must be fulfilled.
The design methodology is first applied to linear node constraints and compared with solutions
obtained by linear programming (if feasibility of the linear system is ensured) and also with a
commercial solution tool (in the case of non-feasibility of the linear system). In the general case
with nonlinear node constraints we demonstrate both the potential of the ES designed and also its
limitations. The latter are basically determined by the high dimensionality of the search spaces
defined by the scenario trees.

Keywords: Evolution Strategy, Covariance Matrix Adaptation, Self-Adaptation, Portfolio
Optimization

1. Introduction

This paper designs evolution strategies for discrete-time multi-period multi-asset portfolio
optimisation problems with Value at Risk (VaR)-constraints and not necessarily proportional
transaction costs. It is a follow-up of [1], which analysed the design of Evolution Strategies (ES)
for one-period portfolio optimization problems under VaR-constraints without transaction costs,
where it turned out that the algorithm design was challenging due to combination of seemingly
simple constraints.

Here we deal with a stochastic control problem whose information and decision structure is
defined on scenario trees. To our best knowledge, carrying out such optimizations using Evolu-
tionary Algorithms (EAs) has not been considered so far. In the finance and operations research
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literature, problems of this kind are treated by stochastic programming [2, 3]. However, due
to the nonlinearities, the problem must be linearized to allow for the application of LP solvers.
EAs allow for a much greater flexibility, which is required for the non-linearities arising from
VaR-constraints and non-proportional transaction costs. The desired flexibility requires methods
for efficiently handling the set of constraints accompanying such planning problems.

This paper is devoted to the design principles for ESs operating on tree structures encountered
in such optimization problems. Sec. 2 introduces the problem in its general form. Sec. 3 deals
with the problem in the special case of vanishing transaction costs and uses the standard CMSA-
ES as an algorithmic skeleton to design an ES, the multi-period (mp) CMSA-ES, that operates
on the tree structure of the optimization problem. Section 4 presents an experimental evaluation
of the novel mpCMSA-ES. While the development of Sec. 3 is based on linear balance equations
in the tree nodes, Sec. 5 extends the approach to the problem in its general form with non-linear
constraints arising for example from non-proportional transaction costs. Section 6 summarizes
the paper and provides an outlook.

2. The Optimization Problem

In many financial optimization models the uncertainty in asset prices (or other risk factors)
is represented by a number of mass points forming a scenario tree. Such trees are often in-
terpreted as approximating stochastic processes, but the interpretational issues involved in such
approximations are of no concern to us. Consider an ordered directed tree the nodes of which are
indexed by n ∈ {0, . . . , N}. The zero node is the root node. The predecessor node k of a node
n is indexed by k = π(n) (representing an adjacency list). There are NL leaf nodes representing
the terminal nodes having no child nodes. For sake of simplicity the leaf nodes are indexed by
the consecutive numbers in NL = {N −NL + 1, . . . , N}. For each leaf node there is a unique
path leading to it. Denote by pl, l ∈ NL, the probability of arriving a leaf node l.1

With various methods of scenario reduction the size of the scenario tree can be reduced [4, 5].
This is essential for numerical tractability, but in case the tree is too sparse arbitrage cannot be
ruled out [6, 7]. A short selling constraint like (2) below still ensures the existence of a solution
to the portfolio optimisation problem, but this solution will in general be biased.

Before transaction costs the wealth W of a node n is 2

Wn := xT

nξn =
M∑

m=1

(xn)m(ξn)m, (1)

where x = (x1, . . . , xM )T is the M -dimensional vector of the nodal portfolio weights xm

∀m = 1, . . . ,M : xm ≥ 0, (2)

which amounts to a short selling constraint. The vector

ξ = (ξ1, . . . , ξM )T, ∀m = 1, . . . ,M : ξm > 0 (3)

1Equivalently one could specify conditional probabilities for each edge of the tree. The conditional probabilities of
each edge leaving the same node add up to one. In this formulation, pl equals the product of conditional probabilities of
all edges along the path leading from the root node to the leaf node l.

2Note, we use the notation (·)m to refer to the mth component of a vector, i.e., (x)m ≡ xm.
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contains the M asset prices in the respective node. Starting with an initial capital W0 in the root
node and the asset prices ξ0

W0 = xT

0ξ0, (4)

the decision maker has to choose the portfolio weights x0 at time zero (being in the root node).
At the next time step, a number of child scenarios with changed asset prices ξk are to consider.
As a result of asset price changes in the transition from node π(k) to note k, the value of the
portfolio will change to Wk = xT

π(k)ξk in the child node k. Now the decision maker can change
the nodal portfolio weights in the child node constrained by the available wealth Wk

∀k = 1, . . . , N −NL : xT

kξk = xT

π(k)ξk. (5)

Additionally, we take into account transaction costs [8–13]. Let us call this cost function
“B[uy]S[ell]”. A simple option is

BS1(xπ,x, ξ) := c
M∑

m=1

|(xπ)m − (x)m| (ξ)m (6)

which accounts in a symmetric and proportional way for buy and sell transaction costs, assuming
vanishing fixed costs of transactions. A somewhat more elaborated model might consider fixed
costs cf ≥ 0 and different costs for buying cb ≥ 0 and selling cs ≥ 0

BS2(xπ,x, ξ) :=cf

M∑
m=1

δ((xπ)m − (x)m)

+ cb

M∑
m=1

Θ((x)m − (xπ)m)|(xπ)m − (x)m| (ξ)m

+ cs

M∑
m=1

Θ((xπ)m − (x)m)|(xπ)m − (x)m| (ξ)m,

(7)

where δ and Θ are defined in (A.9) and (A.10) in the Appendix.
Now, the decision maker may change the weights in the child nodes such that the wealth after

a transaction equals the wealth before transaction minus the transaction costs. That is, in each
inner node (i.e. those nodes not being root node or terminal nodes) a (linear) equality constraint
must hold

∀k = 1, . . . , N −NL : xT

kξk + BS(xπ(k),xk, ξk) = xT

π(k)ξk (8)

The last portfolio choices are made at the predecessors of the leaf nodes. At the leaf nodes
themselves a final wealth value is realised.

Thus a trading strategy X is described by a matrix made of the N − NL + 1 non-terminal
node decision vectors xk (being column vectors)

X =
(
x0, . . . ,xN−NL

)
, (9)

which satisfy the budget constraints (8). The expected final wealth is
∑N

l=N−NL+1 plWl, where
Wl = xT

π(l)ξl. The objective is to maximise this expected wealth at the end of the planning
horizon,

f(X) :=
N∑

l=N−NL+1

pl x
T

π(l)ξl −→ max
x0,...,xN−NL

. (10)
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In addition to the budget constraints (8) let us impose a risk constraint on the admissible
trading strategies. Regulators [14] require banks to hold at the end of the trading day sufficient
economic capital defined in terms of Value at Risk (VaR).3 These regulatory VaR-constraints
translate into the requirement that at least an α-fraction of final wealth values Wl are greater than
(or equal to) a κ-multiple of the initial capital W0. The function η(X) sums all pl for which this
holds

η(X) :=

{∑
l

pl | l ∈ NL ∧ Wl ≥ κW0

}
, (11)

resulting in the non-linear inequality constraint

η(X) ≥ α. (12)

Let us summarize the optimization problem

N∑
l=N−NL+1

plx
T

π(l)ξl −→ max
X

, (13a)

s. t.
∀m,n : (xn)m ≥ 0, (13b)
∀k = 1, . . . , N −NL :

xT

kξk + BS(xπ(k),xk, ξk) = xT

π(k)ξk (13c)

W0 = xT

0ξ0, (13d)
η(X;κ,W0) ≥ α (13e)

where X is the collection of (nodal) xk-vectors (k = 0, . . . , N −NL) to be optimized.

3. CMSA-ES Design

In this and the next section we specialize to the case where the transaction costs vanish
(cf = cb = cs = 0), i.e., replacing (13c) with (5). This restriction will be lifted in Section 5.

3.1. The mpCMSA-ES Algorithm
The design of the ES is governed by the experiences gained in the development of the con-

straint CMSA-ES for portfolio optimization in [1]:

1. The linear constraints (5) will be fulfilled by the mutation process.
2. The non-linear constraint (13e) will be handled by the selection process which is based on

a two-component vector fitness function as have been used in [1].

The first item concerning the mutation process will be specifically designed for evolution on
trees as they appear in multi-periodic stochastic programs. The details will be presented in the
following subsections. At this point we will discuss the CMSA-ES algorithm for multi-periodic
problems, the mpCMSA-ES, as a whole in Fig. 1.

3Determining capital requirements defined in terms of some coherent or at least convex risk measure would be more
satisfactory, see [15] and [16]. Actually, a constraint in the coherent risk measure CVaR would be easier to handle than a
VaR-constraint, since it leads to a linear problem [17]. Furthermore, it would be more satisfactory to have a full-fledged
capital requirement for processes rather than for the final wealth at the end of the trading period, since new information
and transactions arise during the trading period [3, 18–20]. But we take the current regulatory framework as given.
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(µ/µI , λ)-mpCMSA-ES

Initialize
(
µ, λ,X(0), σ, σ̂, τ, τc, G, gstop, σstop, ϵ,C

)
(L1)

absf ←
(
f(X(0)), ν(X(0)),X(0), σ,0

)
(L2)

g ← 0 (L3)

Repeat
For l← 1 To λ

σ̃l ← σeτNl(0,1) (L4)
zl ← det(C)−

1
2K

√
CN l(0, I) (L5)

Zl ← VectorToMatrix(zl,M − 1) (L6)

X̃l ← Mutate(X(g),Zl, σ̃l; Ξ,W0) (L7)

ν̃l ← ν(X̃l) (L8)

f̃l ← f(X̃l) (L9)

Z̃l ←
1

σ̃l
DropLastRow

(
X̃l −X(g)) (L10)

z̃l ← MatrixToVector(Z̃l) (L11)

ãl ←
(
f̃l, ν̃l, X̃l, σ̃l, z̃l

)
(L12)

absf ←
{

ãl, if ãl ≻ absf
absf, otherwise

(L13)

End
RankOffspringPopulation(ã1, . . . , ãλ) (L14)

g ← g + 1 (L15)

X(g) ← ⟨X̃⟩ (L16)

σ ←
{
⟨σ̃⟩, if ⟨σ̃⟩ ≤ σ̂
σ̂, otherwise

(L17)

C←
(
1− 1

τc

)
C+

1

τc
⟨z̃z̃T⟩ (L18)

Until
(
g ≥ gstop ∨ σ < σstop ∨ ∥X(g) −X(g−G)∥ < ϵ

)
(L19)

Figure 1: Pseudocode of the CMSA-ES for multi-periodic problems (mp) with elite conservation in the “best-so-far”
individual absf.

The basic idea of covariance matrix self-adaptation ES (CMSA-ES) has been introduced in
[21] as an alternative to the standard CMA-ES [22]. In contrast to CMA-ES, the CMSA-ES
uses mutative self-adaptation (SA) to evolve the general mutation strength σ. While showing
somewhat lower performance on standard test beds compared to CMA-ES, the CMSA-ES has
several advantages that makes it interesting for algorithm engineering:

• The cumulative step-size adaptation (CSA) as used in CMA-ES fails on problems in con-
strained search spaces if the optimum is on the boundary of the feasible region [23]. There
are currently no design rules to adapt CSA to such situations.

• The mutative self-adaptation is a general and simple principle that does not rely on pecu-
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liarities of the search space.

• The CMSA-ES does only need two time constants to be chosen.

The CMSA-ES in Fig. 1 uses µ parental individuals and generates λ offspring individuals, λ > µ.
As in each evolutionary algorithm, the parameters X, Eq. (9), to be optimized must be initialized.
The initialization details of the M × (N + 1 − NL) matrix X will be discussed in conjunction
with the mutation operation in the next subsection. The initialization of the mutation strength σ
and the maximally admissible mutation strength σ̂ are discussed below. The covariance matrix
describing the distribution of the mutations is chosen initially as a K ×K identity matrix where

K = (M − 1) · (N + 1−NL). (14)

Further details of the initialization will be discussed in consecutive sections.
Darwinian evolution acts on the individual level. An individual a in mpCMSA-ES comprises

the goal function value f(X), Eq. (10); the so-called violation probability ν(X), Eq. (36) below;
the object parameters X, Eq. (9); the mutation strength σ; and the K-dimensional mutation
direction vector z. The ES developed uses elite conservation. That is, one keeps track of the
best-so-far individual absf which is initialized in Line 2 in Fig. 1. The ES is run over at most
gstop generations where g is the generation counter. Further stopping criteria are given in Line
19 being the minimal mutation strength σstop and the minimal object parameter change ϵ within
G generations.

In the evolutionary loop, λ offspring are generated through the Lines 4–12. In Line 13 an
update of the best-so-far individual takes place if the currently generated offspring is better than
the current best-so-far individual. The order relation “≻” (indicating the “better” one to the left)
used in Line 13 and also in 14 will be discussed in detail in Section 3.3.

The generation of a single offspring starts with the mutation of the parental mutation strength
σ by a log-normally distributed random number. For the learning parameter τ the standard choice
[21]

τ =
1√
2K

(15)

is used.
In Line 5 the unrestricted mutation direction z is generated using an ellipsoid-volume con-

serving transformation of a sample from a (0, I) normally distributed, K-dimensional random
vector (i.e., all K components of N are N (0, 1) iid). In Line 6 the z-vector is partitioned into a
Z matrix consisting of column vectors of dimension M −1 (there are N +1−NL such vectors).
Each of these column vectors is transformed into an x vector of dimension M by the mutation
operation in Line 7. The mutation operation is applied to the parental X. The details of this
transformation that has to respect the constraints (13b) and (5) will be given in Section 3.2. As a
result one obtains a set of x vectors collected in the X̃ matrix being the offspring’s object param-
eters. The fitness (goal function f and violation count ν) of the offspring is calculated in Lines 8
and 9.

Due to the inequality constraints (13b), there are cases where the mutational change X̃−X
is not in direction of the originally generated Z. This must be taken into account when updating
the covariance matrix C. To this end, a “corrected” mutation direction Z̃l is calculated from the
difference X̃l−X by taking the first M −1 components of the difference vectors into account in
Line 10. The division by σ̃l ensures the scale-invariance. Stacking the columns of the resulting
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matrix on top of each other yields the covariance matrix update vector z̃ in Line 11. Line 12
completes the offspring.

Having generated λ offspring, the population is ranked according to a lexicographic order
(Line 14, for details, see Section 3.3) and the µ best offspring individuals are used to generate
the new parental state in Line 16 and 17. The calculation of the new parental state is done in
accordance with the standard CMSA-ES [21]: The object parameters are obtained by mean value
calculation for each single x component of the selected (i.e. parental) µ individuals. The same
is performed for the individual mutation strengths in Line 17. However, the resulting mutation
strength is checked against a maximal value σ̂ to avoid uncontrolled σ divergence. A reasonable
choice for σ̂ is given by

σ̂ =
W0

∥ξ0∥
. (16)

This value can also be used as initial σ value.
The admissibility of the recombination operation in Line 16 will be discussed briefly. First

note, that X̃ is made of the N − NL + 1 M -dimensional column vectors x̃k. Recombination
is done for each node k individually by centroid calculation over the best µ of the λ offspring
individuals, denote by x̃l;λ

k :

⟨xk⟩ =
1

µ

µ∑
l=1

x̃l;λ
k . (17)

The resulting centroid ⟨xk⟩ must fulfill (13b) for each of its M components. This is guaranteed
because each of the offspring individuals is generated such that its components (x̃l;λ

k )m ≥ 0 (for
the algorithmic realization, see below). Therefore, the sum of the components must be ≥ 0 as
well, i.e., each of the components in (17) is ≥ 0. Additionally, the equality constraint (5) must
be ensured. First note that ξT

k x̃
l;λ
k = Wk does hold for each offspring due to the design of the

mutation operator (for details see Section 3.2). Take the sum over the equality constraints of the
µ best offspring individuals

1

µ

µ∑
l=1

ξT

k x̃
l;λ
k =

1

µ

µ∑
l=1

Wk = Wk. (18)

Exchanging order of summation and scalar product in the lhs of (18) yields

ξT

k

1

µ

µ∑
l=1

x̃l;λ
k = ξT

k ⟨xk⟩ = Wk. (19)

As one can see, (8) is also fulfilled for the recombinant ⟨xk⟩.
Finally, Line 18 performs the covariance matrix update as developed in [21]. The time con-

stant is given by

τc = 1 +
(K + 1)K

2µ
. (20)

3.2. Initialization of X and Mutation Operation

Initialization and mutation have to respect the equation constraints (5) and the positivity
condition (13b). Random initialization ensuring xm ≥ 0 can be easily obtained by sampling
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from the uniform (0, 1] distribution. However, this does not ensure the validity of (5) and (13d).
The latter can be ensured by rescaling an M -dimensional random vector u

u := (u(0, 1], . . . , u(0, 1])T, (21)

where 0 < u(0, 1] ≤ 1 holds for each uniformly distributed random component in (21). Intro-
ducing the rescaling factor β0 such that x0 = β0u0, Eq. (13d) becomes β0u

T
0ξ0

!
= W0. Solving

for β0 yields β0 = W0/u
T
0ξ0 and therefore

x0 =
W0

uT
0ξ0

u0. (22)

Now one can perform a pre-order walk through the tree to calculate xk vectors fulfilling (5)
at node k. Since the predecessor node vector xπ(k) is already known, we have to demand

βku
T

kξk
!
= xT

π(k)ξk. Resolving for βk and reinserting in xk = βkuk yields

xk =
xT

π(k)ξk

uT

kξk
uk. (23)

This calculation is to be done for all inner nodes to complete the initialization of X.
The idea of performing the initialization by pre-order walk through the tree can also be trans-

ferred to the mutation process. That is, the mutation is performed stepwise starting at the root
node. For sake of simplicity, we consider the generation of a single offspring dropping the indi-
vidual index l in Fig. 1. Each column in the Z matrix in Line 6 contains the (M−1)-dimensional
mutation direction for the respective node (e.g., the first column z0 may correspond to the root
node, etc.). The reason why these column vectors zk are only (M − 1)-dimensional is due to
the fact that the constraints (13b) and (5) reduce the effective degree of freedom in each of these
nodes by one. That is, (M − 1) z-components are already sufficient to fulfill the respective
constraint (see below).

First, consider the root node. The mutation direction is z0 and the parental state is x0.
Mutation is generally done by adding a length-scaled mutation vector σ̃s to the parental state.
The factor σ̃ is also referred to as the mutation strength. Demanding (13d) one gets

(x0 + σ̃s0)
Tξ0

!
= W0 ⇒ sT

0ξ0
!
= 0, (24)

since xT
0ξ0 = W0 due to initialization. Writing the rhs of (24) component-wise

0
!
=

M−1∑
m=1

(s0)m(ξ0)m + (s0)M (ξ0)M , (25)

one sees that this equation can already be fulfilled by fixing the first (M − 1) components of s.
The M th component follows by resolving for (s0)M

(s0)M = − 1

(ξ0)M

M−1∑
m=1

(s0)m(ξ0)m. (26)

Identifying the first (M − 1) s-components with the components of the z0-vector, one obtains a
mutation vector that fulfills (13d)

s0 =

(
(z0)1, . . . , (z0)M−1,−

1

(ξ0)M

M−1∑
m=1

(z0)m(ξ0)m

)T

. (27)
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Now the mutation in the root node can be performed resulting in a vector v0

v0 = x0 + σ̃s0. (28)

This vector, however, can violate the positivity condition (13b). In such cases a repair must
be made. Similar to the approach taken in [1], this repair should only minimally change the
original v0 and must also fulfill the equality constraints. This leads to the following constraint
optimization problem

x̃ = argminx ||x− v||,

s.t. xTξ = W,

(x)m ≥ 0, ∀m = 1, . . . ,M.

 (29)

Note, since the considerations do hold for all inner nodes, the “0” index has been dropped in
(29). This optimization problem can also be interpreted as a projection of v onto the positive
orthant. The resulting x̃ fulfills both constraints (13b) and (5). The optimization problem (29)
can be solved efficiently. An algorithm for solving (29) will be presented in the Appendix.

Having calculated the mutation in the root node, the pre-order walk through the tree can be
done. As for the remaining inner nodes, condition (13d) changes to (5). As a result, (24) changes
to

(xk + σ̃sk)
Tξk

!
= x̃T

π(k)ξk. (30)

Rearranging terms, one gets

(x̃π(k) − xk)
Tξk

σ̃

!
=

M−1∑
m=1

(sk)m(ξk)m + (sk)M (ξk)M . (31)

Solving for (sk)M yields

(sk)M =
1

(ξk)M

(
(x̃π(k) − xk)

Tξk

σ̃
−

M−1∑
m=1

(sk)m(ξk)m

)
. (32)

Choosing the first M − 1 components (sk)m = (zk)m and the M th according to (32), one
obtains the sk vector

sk =

(
(zk)1, . . . , (zk)M−1,

1

(ξk)M

(
(x̃π(k) − xk)

Tξk

σ̃
−

M−1∑
m=1

(zk)m(ξk)m

))T

. (33)

The raw offspring vector in the kth node is given by vk

vk = xk + σ̃sk. (34)

Using (33) this yields

vk = xk +

(
(σ̃zk)1, . . . , (σ̃zk)M−1,

1

(ξk)M

(
(x̃π(k) − xk)

Tξk −
M−1∑
m=1

(σ̃zk)m(ξk)m

))T

.

(35)
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Again, the resulting vk may violate the positivity constraint (13b). In such a case, the optimiza-
tion problem (29) must be solved in order to find a feasible offspring x̃k.

Let us summarize the mutation process described by the Eqs. (24)–(35) in the pseudocode in
Fig. 2. Line M1 implements (26) and (27). If there is a negative component in v0 (belonging to

Mutate(X,Z, σ̃; Ξ,W0)

v0 ← x0 + σ̃

(
zT
0 , −

1

(ξ0)M

M−1∑
m=1

(z0)m(ξ0)m

)T

(M1)

If ∃ m = 1, . . . ,M : (v0)m < 0 (M2)

Then x̃0 ← Π(v0, ξ0,W0) (M3)

Else x̃0 ← v0 (M4)

For k ← 1 To N −NL

vk ← xk + σ̃

(
zT
k ,

1

(ξk)M

(
(x̃π(k) − xk)

Tξk

σ̃
−

M−1∑
m=1

(zk)m(ξk)m

))T

(M5)

If ∃ m = 1, . . . ,M : (vk)m < 0 (M6)

Then x̃k ← Π(vk, ξk, x̃
T
π(k)ξk) (M7)

Else x̃k ← vk (M8)
End

Figure 2: Pseudocode of the mutation operator used in Line 7 of the mpCMSA-ES in Fig. 1. Note, Z =
(z0, . . . , zN−NL

), X = (x0, . . . ,xN−NL
), and Ξ = (ξ0, . . . , ξN−NL

).

the root node) the mutation must be repaired. This is done in M3. The function PositiveOrthant-
Projector Π(v, ξ,W ) returns the optimal solution to the constraint optimization problem (29):
An admissible mutation must lie in the hyperplane ξT

0x = W0 and must not have any negative
component. The PositiveOrthantProjector returns the minimal distance solution to this problem
(therefore, it may be regarded as a projection). Having the mutation for the root node, one can
now perform a pre-order walk through the remaining inner N −NL nodes. Line M5 implements
(33) and (34). Again, if a mutation vector has a negative component it must be repaired in M7.
The hyperplane parameter Wk is given by the wealth value dictated by the mutation vector of the
predecessor node π(k) and the asset prices at node k. The details of the PositiveOrthantProjector
Π will be described in the Appendix.

3.3. Selection
As in each Evolution Strategy, selection is based on truncation of the ranked offspring pop-

ulation. The ranking has to respect the optimization goal (13a) and the VaR-constraint (13e).
Therefore, the approach developed in [1] will be used: Due to the optimization problem setting,
(13e) takes precedence over the f improvement (13a) as long as (13e) is violated. This suggest a
lexicographic ordering to be applied to a fitness vector comprising f(X) and ν(X). The latter is
the violation probability function ν(X) ∈ {0, . . . , 1} adapted from [1]:

ν(X) :=

{
1− η(X), if η(X) < α,
0, otherwise. (36)
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This function returns the sum of probabilities pl for which Wl < κW0, l ∈ {N − NL +
1, . . . , NL}, provided that this sum exceeds (1−α). Otherwise, it returns zero. The primary goal
is to reach states X with zero violation probability ν(X). Therefore, an offspring ãl is regarded
to be better than another offspring ãm, i.e., ãl ≻ ãm, if for ν(X̃m) > 0 ν(X̃l) < ν(X̃m). In the
case of equality of the violation probabilities, the goal function values f(X̃) are used in second
place. Thus, the ordering relation reads

ãl ≻ ãm ⇔
(
ν(X̃l) < ν(X̃m)

)
∨
[(

ν(X̃l) = ν(X̃m)
)
∧
(
f(X̃l) > f(X̃m)

)]
. (37)

4. Experiments: Proof of Concept

In the experiments a (30/30, 100)-ES is used. Unlike the pseudocode, Fig. 1, the calculation
of the transformation matrix M := det(C)−

1
2K

√
C in (L5) is stalled for a number of generations

tstall
4 given by tstall = min (⌊τc⌋,K/2). That is, tstall does not exceed K/2 (at least every now

and then there should be a update of M to allow for C-matrix adaptation). In order to increase
the probability of locating the optimizer, a restart version of the (30/30, 100)-ES (with random
initialization) and r = 10 restarts has been used. The values for the termination criteria have been
set to σstop = 1, gstop = 5000, G = 10, and ϵ = 10−8. The seed capital is set to W0 = 106.

In order to evaluate the performance of the mpCMSA-ES, reasonable scenario trees are
needed. Such trees are generated from real time series data, e.g. data taken from the Dow
Jones Index (DJI). In order to keep the problem computationally tractable, only a small number
of assets M = 5 and small (aggregated) trees are considered in the investigations presented. Fig-
ure 3, left, shows the scenario tree used in the first investigations. It comprises four time periods
obtained from a larger tree comprising nine periods and 190 inner nodes. Since the number of
assets is M = 5, there are still 5× 15 = 75 unknowns (located in the root node and the 14 inner
nodes) to be determined. Note, the aim of the paper is concerned with algorithm design. Hence
a rather small and computationally less demanding tree is sufficient for the proof of concept.

Demanding α = 1 in (12) and (13), respectively, the system (13) becomes a linear stochastic
program (see e.g. [2]). Feasible solutions will exist if κ is chosen sufficiently small in (11). In
that case, the solutions produced with the mpCMSA-ES can be compared with the solution using
linear programming (LP). Let κ̂ be the value of κ above which no feasible solutions to the linear
optimization problem do exist. Thus, one can easily check the solution quality of the mpCMSA-
ES for κ ≤ κ̂ using an LP solver. For the data provided, binary search yields κ̂ ≈ 1.01603
(f∗ ≈ 1, 016, 380). Concerning the data given, there is only a small κ range below κ̂ where
better optimal LP solutions can be found κ̂ ≥ κ ≥ κ̌ ≈ 0.975.5 Figure 4 compares the optimum
values f∗(κ) and X∗(κ) obtained by mpCMSA-ES with those of the LP solutions. As for the
ES, the vicinity of κ̂ is the hardest region since the ES has to find a solution in a very small
domain of the search space where all inequalities must be fulfilled.

Comparing the differences in parameter space shows that for κ ≥ 0.99 large differences
in the solutions from mpCMSA-ES and LP exist. On the other hand, the differences in the
objective are rather small. For example, for κ = 1 the difference in the objective value is about

4Self-evidently, there is also no need to recalculate these matrices for every single offspring anew.
5That is, choosing κ < κ̌ does not further increase the maximum value f∗(κ). This is so because the domain defined

by (13b)–(13d) is a proper subset of the solution domain of the inequality system Wl ≥ κW0. Thus the LP solution is
on the boundary of (13b)–(13d).
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Figure 3: Left tree: Scenario tree having 16 leafs and 14 inner nodes. The asset weight vectors x in the root node and
in the 14 inner nodes are to be optimized. Each of the 31 nodes has its own price vector ξ. This scenario tree has been
obtained by considering only the first 4 time steps from the tree on the rhs. Right tree: Scenario tree comprising 9 time
steps. The latter has been provided by R. Kovacevic, University of Vienna. It comprises 100 leaf nodes and 190 inner
nodes.

24.7 and the distance between the solutions is about ∥XLP −XmpCMSA−ES∥ = 11518. Closer
examination of the solutions reveals that they differ by more than 1 in 20 of the 75 non-terminal
portfolio weights, with 4 weights where either the LP solver or the mpCMSA uses non-zero
weights. Comparing the time effort spend by the LP solver and the mpCMSA-ES, the former
can solve the problem much faster. This was expected since the mpCMSA-ES is not tailored for
LP problems.

The (30/30, 100)-mpCMSA-ES does not obtain feasible solutions up to κ̂. One possibility
to improve the solution quality is to increase the population size. However, experiments showed
that mpCMSA-ES with smaller population sizes outperform versions with larger population sizes
for some values of κ. Thus, for the remaining experiments in this section the restart version from
[1] is used. In this restart scheme the overall budget of function evaluations is the same for each
population size considered. The population sizes used range from λ = 30, where 64 independent
runs are performed, up to λ = 960 with 2 independent runs.

Leaving the realm of linear feasibility κ > κ̂, one enters the field of non-convex optimization
where only α targets < 1 can be reached. As an example, we choose κ = 1.02 and α =
0.75 since there exists a solution with a violation probability (36) of ν = 0. Thus, one can
compare with the solution calculated by the commercial optimization software LINGO ([24]

12



Figure 4: Comparison of the optimal solutions obtained by a (30/30, 100)-mpCMSA-ES with those of an LP solver
in objective space (top plot) and parameter space (bottom plot) in the feasible κ ≤ κ̂ region. Note, as κ decreases, a
saturation occurs at a certain κ < κ̌ below which κ does not influence the optimum solution any longer. The numbers
next to the markers in the left plot indicate the number of feasible solutions obtained in 10 independent restarts if not all
solutions returned were feasible.

Version 12.0). LINGO returns only results if these represent feasible solutions. In contrast, the
mpCMSA-ES returns also the best η, Eq. (11), reached so far even when (12) is not fulfilled.
Thus, one gets the information as to what can be reached at least even if there is no feasible
solution. Figure 5 shows the dynamics of the evolution process. The maximal f value is about
1.0202 · 106 and the number of inequalities not fulfilled is 3. This is in agreement with the result
of LINGO’s global optimization solver. The deviation in the maximal objective value is about
0.05%. In the top right graph of Fig. 5 the VaR violation

ρ := 1− η(X) (38)

is displayed. It reaches a value of ρ = 0.23 for the best solution while the target is α = 0.75.
Due to the 15 equality constraints in the 14 inner node and the root node, the actual dimen-

sionality of the covariance matrix C in the mpCMSA-ES is K × K with K = 60 (M = 5)
obtained by (14). The lower left picture in Fig. 5 displays the evolution of selected eigenvalues
of the stalled C matrix including the largest (top curve) and the smallest (bottom curve) eigen-
value. As one can infer from these dynamics and the corresponding f and ρ dynamics, using
non-isotropic Gaussians is needed to efficiently reach the vicinity of the optimum.

Comparing mpCMSA-ES runs with and without covariance adaptation showed that the latter
setup is always inferior. As example, using the same problem and algorithmic setup as used for
Fig. 5 the mpCMSA-ES without covariance matrix adaptation did not yield a feasible solution.

In order to compare the solution quality of the mpCMSA-ES with LINGO in more detail,
the dependency of the VaR violation ρ on κ has been investigated (to this end, α = 1 has been
used). The mpCMSA-ES applying restarts with increasing population size has been used. The
results are displayed in the left graph of Fig 6. Being based on these results a confidence level of
α = 0.85 has been chosen to investigate the dependence of the f maximum on the choice of κ.
The graph on the right in Fig 6 displays the result.

Comparing the performance of LINGO and mpCMSA-ES one observes that both achieve
more or less the same solution quality except for κ ≥ 1.015. For κ > 1.1015 only LINGO finds
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Figure 5: Dynamics of the (30/30, 100)-mpCMSA-ES on a problem instance of the left tree displayed in Fig. 3. The
mpCMSA-ES terminated after reaching the stop criterion σstop = 1 at about 4276 generations. It reaches a VaR
violation of ρ = 0.23 (top right graph), thus, fulfilling the α = 0.75 condition in (12). The bottom left graph shows the
dynamics of some of the 60 eigenvalues ek of the (stalled) C matrix being the k = 1st (largest), k = 2nd, k = 3rd, 15.,
30., 45., 60. (smallest) eigenvalue (from top to bottom).

a feasible solution for the considered κ-values. If both find a feasible solution, the VaR violation
ρ of these solutions is identical in 9 out of 11 considered κ-values. The use of mpCMSA-
ES with different population sizes is validated, since different population sizes provide the best
solutions over the κ range considered. However, for the κ values considered the worst feasible
solution is at least 0.9947fmax. A drawback of the mpCMSA-ES is the high cost to obtain a
good solution. Whether different restart schemes with simultaneous population size adaptation
improve the overall behavior could be an area for future research.

In this section we have shown that the mpCMSA-ES is able to find solutions to the multi-
periodic optimization problem (13). However, this problem is dominated by linear equality and
linear inequality constraints. Therefore, nonlinear approximation algorithms that linearly ap-
proximate the only nonlinearity (13e) piecewise are expected to perform well on such problems
resulting in a sequence of linear programs. This is probably the reason why LINGO performs
well on this problem class. In order to make the problem more nonlinear and - of course - more
realistic, one has to consider (13) with transaction costs.
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Figure 6: Left plot: VaR violation ρ depending on the choice of κ for α = 1. Right plot: Comparison of the fmax

distributions for LINGO (curve) and mpCMSA-ES (+) as function of κ for α = 0.85. All solutions shown are feasible.

5. Including transaction costs

5.1. How to Ensure the Nonlinear Equality Constraints
The transaction costs described by the BS functions in (6) and (7) are nonlinear functions of

the decision vectors. While it is still possible to perform the mutations by traversing the tree,
one has to ensure nonlinear equality constraints in each inner node. Depending on BS, this can
be a very demanding problem. This holds especially if in model (7) the fixed costs Mcf already
exceed the wealth Wπ(k) = xT

π(k)ξk in node k. In such cases, buy or sell actions are only allowed
for a subset of the assets in node k. Leaving aside this rather hard case and assuming BS small
compared to Wπ(k) = xT

π(k)ξk, fixed point iteration may be used to solve (13c). That is, given
Wπ = xT

πξ, BS is considered as a (small) perturbation of Wπ leading from (13c) to the equation
(dropping the node index k)

xTξ = xT

πξ − BS(xπ,x, ξ) =: ∆W. (39)

Equation (39) would be linear w.r.t. x if its rhs would not depend on x. This can be accomplished
by interpreting (39) as an iterative scheme where x is x = x(t) on the rhs being the x at iteration
t and x = x(t+1) remains to be determined according to

ξTx(t+1) = xT

πξ − BS(xπ,x
(t), ξ) = ∆W (t). (40)

Provided that ∆W (t) > 0, (40) can be solved by applying the PositiveOrthantProjector Π yield-
ing

x(t+1) = Π(x(t), ξ,∆W (t)). (41)

Using a start vector x(0) the projection (41) should be a contractive mapping, thus approaching
the fixed point of the mapping for t → ∞. However, to this end, ∆W (t) > 0 must be ensured.
Provided that the fixed costs Mcf are less than the wealth of the node Wπ this can be ensured
by an additional linear scaling of the x(t) vector. Such scalings are admissible since the x finally
realized in a specific node is just an offspring in the evolutionary process. That is, the result of
this scaling and the iterative mapping (41) can be regarded as just another (repaired) mutation
applied to the parental state in (L7) in Fig. 1.
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If the ∆W > 0 condition is not fulfilled in (41), x(t) must be scaled accordingly

x̌ = xπ + r(x− xπ). (42)

Here we have dropped the iteration counter for brevity. By choosing r ∈ [0, 1] one can tune x̌ in
such a manner that ∆W > 0 is fulfilled for x(t) = x̌. In order to prove this assertion, consider
BS2 and the rhs of (40). One has to choose x̌ in such a way that Wπ > BS2(xπ, x̌, ξ). Using (7)
together with (42) yields

Wπ > cf

M∑
m=1

δ(r((xπ)m − (x)m)) + cb

M∑
m=1

Θ(r((x)m − (xπ)m))r∗m

+ cs

M∑
m=1

Θ(r((xπ)m − (x)m))r∗m

(43)

where r∗m := |r((xπ)m − (x)m)|(ξ)m. Since for r ̸= 0 : δ(rz) = δ(z) and for r ≥ 0 :
Θ(rz) = Θ(z) one obtains

Wπ − cf

M∑
m=1

δ((xπ)m − (x)m) > cbr
M∑

m=1

Θ((x)m − (xπ)m)|(xπ)m − (x)m| (ξ)m

+ csr
M∑

m=1

Θ((xπ)m − (x)m)|(xπ)m − (x)m| (ξ)m.

(44)
Resolving for r yields

r <
Wπ − cf

∑M
m=1 δ((xπ)m − (x)m)

D
, (45)

where

D :=

M∑
m=1

[
cbΘ((x)m − (xπ)m) + csΘ((xπ)m − (x)m)

]
|(xπ)m − (x)m| (ξ)m. (46)

Therefore, choosing

r = β
Wπ − cf

∑M
m=1 δ((xπ)m − (x)m)

D
, (47)

where β ∈ (0, 1) ensures ∆W > 0. Using BS2 (7), r can be expressed as

r = β
Wπ − BS2(xπ,x, ξ)|cb=cs=0

BS2(xπ,x, ξ)|cf=0
(48)

and the rescaled x becomes using (47)

x̌ = xπ + β
Wπ − BS2(xπ,x, ξ)|cb=cs=0

BS2(xπ,x, ξ)|cf=0
(x− xπ). (49)
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It remains to calculate the resulting new ∆W . Substituting (49) in (39) using BS2, one gets

∆W = Wπ − BS2(xπ, x̌, ξ)

= Wπ − BS2(xπ,xπ + r(x− xπ), ξ)

= Wπ − BS2(xπ,x, ξ)|cb=cs=0 − rBS2(xπ,x, ξ)|cf=0

= Wπ − BS2(xπ,x, ξ)|cb=cs=0

− β
Wπ − BS2(xπ,x, ξ)|cb=cs=0

BS2(xπ,x, ξ)|cf=0
BS2(xπ,x, ξ)|cf=0

= (1− β) [Wπ − BS2(xπ,x, ξ)|cb=cs=0] .

(50)

As one can see, β reduces linearly the amount of wealth ∆W that can be redistributed by x. As
a reasonable choice, β = 1/2 may be considered as a value to start with. Also note that the BS1

function (6) is included in the formulae (49) and (50) as a special case of BS2 for cf ≡ 0 and
cb = cs = c. Putting things together, Fig. 7 displays the resulting algorithm to obtain an offspring
x fulfilling the nonlinear equality constraint (13c) in each inner node k. This algorithm has two

EnsureBS2Constraints(xπ,v, ξ)

Wπ ← xT
πξ (E1)

If Wπ ≤ cf Return xπ (E2)
t← 0 (E3)
x(t) ← v (E4)
Do

If t ≥ tmax Return xπ (E5)
∆W ←Wπ − BS2(xπ,x

(t), ξ) (E6)

If ∆W ≤ 0 (E7)

x(t) ← xπ + β
Wπ−BS2(xπ,x(t),ξ)|cb=cs=0

BS2(xπ,x(t),ξ)|cf=0
(x(t) − xπ) (E8)

∆W ← (1− β)
[
Wπ − BS2(xπ,x

(t), ξ)|cb=cs=0

]
(E9)

End
x(t+1) ← Π(x(t), ξ,∆W ) (E10)

If
∣∣∣ ξTx(t+1) + BS2(xπ,x

(t+1), ξ)−Wπ

∣∣∣ < ϵ Return x(t+1) (E11)

x(t) ← x(t+1) (E12)
t← t+ 1 (E13)

End

Figure 7: Pseudocode for fulfilling the nonlinear equality constraint in a node parameterized by the pre-node x, the raw
offspring value v proposed by the mutation process, and the assets price vector ξ in that node. This algorithm returns
always an x vector fulfilling (13c). However, it simply returns the pre-node x value xπ if the fixed price for a transaction
already exceeds the wealth of the node or if the algorithm does not converge in a predefined number of iteration steps
tmax. A reasonable choice for β is β = 1/2. The precision by which the equality constraint (13c) is to be fulfilled may
be chosen as ϵ = 10−8.

abnormally terminations in (E2) and (E5). In both cases it is not able to find an xk ̸= xπ(k)

fulfilling the constraint (13c). This is a fallback solution that is not really desirable, a more
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refined algorithm should also deal with such situations. However, this is beyond the scope of this
paper.

The formal parameter vector v is the nodal raw individual vector provided by the raw parent
initialization step (L1, Fig. 1) or the raw mutation process performed in the mutation pseudocode,
Fig. 2, in Lines (M1) and (M5), respectively (see also Pseudocode, Fig. 8, below). Fixed point
iteration is performed in the Do-loop. In order to use the PositiveOrthantProjector, the BuySell
cost must not exceed the wealth Wπ = xT

πξ determined by the pre-node x. If this is not fulfilled,
the current iterate x(t) must be changed towards xπ by means of Eqs. (42), (48), (49). This is
performed in (E8). The respective ∆W change is performed in (E9) implementing (50). If the
condition ∆W > 0 is fulfilled, the projection of x(t) fulfilling (A.1) takes place in (E10). If the
resulting x = x(t+1) does fulfill the equality constraint (13c) sufficiently well, it can be assumed
that x is close to the fixed point and the fixed point iteration is stopped returning x(t+1) in (E11)
as a solution to (13c). Note, if BS2 ≡ 0 then (E7) is never fulfilled (thus, there is no danger of
zero division) and the iteration stops after the first projection (E10) since the condition in (E11)
is immediately fulfilled. That is, the special case of zero costs considered in Section 3 is covered
as well.

5.2. Adapting Initialization, Mutation, and Recombination
The initialization of the root node can be done according to Eq. (22). Changes are necessary

for Eq. (23) concerning the successor nodes. The resulting xk using (23) will usually not fulfill
(13c). Therefore, the algorithm in Fig. 7 must be used in conjunction with (23) to get a feasible
parent individual

xk = EnsureBS2Constraints

(
xπ(k),

xT

π(k)ξk

uT

kξk
uk, ξk

)
. (51)

The mutation of the parental state is rather similar to the algorithm in Fig. 2 with the excep-
tion that (M6)–(M8) must be replaced to ensure the nonlinear constraints (13c). The resulting
algorithm is given in Fig. 8. It deviates from the original one only in Line (M6∗).

Due to the nonlinearity of the equality constraint (13c), the recombination operation in (L16)
of the mpCMSA-ES does not guarantee the production of feasible parent individuals. There
is no generic way to ensure feasibility after recombination. This holds also for other types of
recombination. There are three options to replace (L16) in Fig 1:

(a) Abandoning recombination using X̃ of the ã1;λ individual as parent of the next generation,
i.e.,

X(g) ← X̃1;λ. (52)

(b) Repairing the recombinant produced in (L16) similar to the repair done for the offspring
in Eq. (51), i.e.,

∀k = 1, . . . , N −NL : x
(g)
k ← EnsureBS2Constraints

(
xπ(k), ⟨x̃k⟩, ξk

)
. (53)

(c) Ignoring the violation of (13c) in the parental state. In that case, only offspring are guaran-
teed to be feasible and only the best offspring should be returned after termination of the
mpCMSA-ES.

Running experiments with the different setups did not reveal any significant differences in the
results. Therefore, option (b) was chosen, however, the recombinant is replaced if the best off-
spring is superior.
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Mutate∗(X,Z, σ̃; Ξ,W0)

v0 ← x0 + σ̃

(
zT
0 , −

1

(ξ0)M

M−1∑
m=1

(z0)m(ξ0)m

)T

(M1)

If ∃ m = 1, . . . ,M : (v0)m < 0 (M2)

Then x̃0 ← Π(v0, ξ0,W0) (M3)

Else x̃0 ← v0 (M4)

For k ← 1 To N −NL

vk ← xk + σ̃

(
zT
k ,

1

(ξk)M

(
(x̃π(k) − xk)

Tξk

σ̃
−

M−1∑
m=1

(zk)m(ξk)m

))T

(M5)

x̃k ← EnsureBS2Constraints
(
xπ(k),vk, ξk

)
(M6∗)

End

Figure 8: Pseudocode of the mutation operator that respects the non-linear equilibrium condition (13c). This algorithm
is to be used in Line 7 of the mpCMSA-ES in Fig. 1. Note, Z = (z0, . . . , zN−NL

), X = (x0, . . . ,xN−NL
), and

Ξ = (ξ0, . . . , ξN−NL
).

5.3. Experiments with non-proportional Transaction Costs
In the first experiments we use again a (30/30, 100)-mpCMSA-ES, i.e., recombination of

the selected parents is performed. This implies the application of option (c) or (b) discussed
at the end of the last Section 5.2. For the experiments we decided to repair the recombinant
according to Eq. (53). The cost model (7) uses cf = 50 for the fixed cost for each asset and
cb = 0.002 and cs = 0.003 for buy and sell actions6, respectively. Figure 9 shows the dynamics
of a typical run. As one can see, given the parameters κ = 1 and α = 0.85, the ES reaches
a better VaR violation as demanded (ρ = 0.15 would suffice). The f value obtained by the
ES is f = 1.0119 · 106. Applying LINGO to the same problem yields slightly worse results
f = 1.010 · 106 with ρ = 0.12.

In order to compare the solution quality of the mpCMSA-ES with LINGO in more detail, the
dependency of the relative violation count ρ on κ has been investigated (to this end, α = 1 has
been used). The results are displayed in the left graph of Fig 10. Being based on these results a
confidence level of α = 0.8 has been chosen to investigate the dependence of the f maximum
on the choice of κ. The right graph in Fig 10 displays the result. For the graphs in Fig. 10 the
restart version of the mpCMSA-ES has been used. The runs with LINGO were terminated after
at most 24 hours. In the rhs of Fig. 10 one observes that the mpCMSA-ES outperforms LINGO
for several values of κ. For κ ≥ 1 not all LINGO instances performed yielded a feasible solution.
For some values of κ, the mpCMSA-ES required smaller initial mutation strengths to converge,
especially for λ = 960. This shows that the achievable solution quality for (some) κ values does
depends on the initial mutation strength. As before, the best solutions from mpCMSA-ES occur
at different population sizes, however, for the majority of these the maximal allowable number
of constraint violations is exploited.

6Our initial values were 10 times higher, however, this resulted in solutions were no transactions were executed.
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Figure 9: Dynamics of the (30/30, 100)-mpCMSA-ES on a problem instance of the left tree displayed in Fig. 3 with
nonlinear cost constraints parameterized as cf = 50, cb = 0.002, and cs = 0.003. The mpCMSA-ES terminated after
reaching the stop criterion of 5000 generations. It reaches a VaR violation of ρ = 0.11 for the best solution (top right
graph), thus, fulfilling the α = 0.85 condition in (12). The bottom left graph shows the dynamics of some of the 60
eigenvalues ek of the (stalled) C matrix being the k = 1st (largest), 15., 30., 45., 60. (smallest) eigenvalue (from top to
bottom).

6. Summary and Outlook

Multi-periodic portfolio optimization poses non-convex optimization problems the solutions
of which are computationally demanding tasks. In this paper an approach using CMSA Evolu-
tion Strategies has been presented that offers a solution approach. Up to now, the optimization
problem class was not a typical application domain for Evolutionary Algorithms. This is under-
standable because the overwhelming number of constraints in such optimization problems are of
linear type. Therefore, solution approaches based on linear programming (LP) are the appropri-
ate means that promise success even if there are some additional nonlinear constraints. The latter
can be linearized and thus be incorporated in the LP framework. This raises the question why we
consider evolutionary approaches at all in this field. There are at least three aspects that should
be taken into account:

• The design of ESs for constraint optimization is rather underdeveloped. Using the standard
techniques usually proposed for evolutionary algorithms (for an overview, see e.g. [25,
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Figure 10: Left plot: Relative violation counts depending on the choice of κ for α = 1. Right plot: Comparison of
the fmax distributions for LINGO (×) and mpCMSA-ES (+) as function of κ for α = 0.8. All solutions shown are
feasible.

26]) do not work well if the optimum is located on the boundary of feasibility. One often
observes premature convergence due to premature step-size convergence [1]. Therefore,
there is a certain demand for constraint handling techniques for ES which allow for a robust
evolution on such boundaries.

• Constraints organized w.r.t. a tree structure as it appears in stochastic programming have
not been treated with EAs so far (see, however, [27]).

• Evolution on trees does not only appear in financial optimization problems, it also appears
in other fields where constraints can be represented by dependency trees. The method
developed allows for the treatment of nonlinear balance equations in plant and process
engineering.

The results reported in this paper are promising. However, one has to clearly state that the appli-
cation domain is on strong nonlinear constraints and moderate search space dimensionalities. We
would not recommend using the technique developed for simple linear stochastic programming
problems.

While we have provided a proof of concept for the new-developed mpCMSA-ES, additional
research is needed to compare the solutions obtained by evolutionary search with those obtained
by LP and other techniques. Especially the question of the solution robustness should be inves-
tigated. Since the optimization problems considered are derived from scenario trees, the model
to be optimized bears considerable model uncertainties. As a result, the optimizer obtained are
also not very reliable. Therefore, it does not make sense to put too much effort in finding the
global optimum, instead we are searching for solutions that are rather insensitive, i.e. robust,
w.r.t. model uncertainties. Evolutionary search methods [28] might be a means to find such
robust solutions.

Another aspect for future investigations are methods for decreasing the complexity, and there-
fore the runtime, of the mpCMSA-ES. One possibility is to learn only a set of the eigenvalues
for the covariance matrix. This will speed up the learning of the covariance matrix, albeit with
an inherent approximation error. Such methods will also be useful for “standard” applications of
CMSA-ES, and possibly CMA-ES, in large search space dimensionalities.
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Appendix A. How to Project onto the Positive Orthant

In order to repair infeasible solutions v, the optimization problem (29)

x̃ = argminx ||x− v||2,

s.t. x̃Tξ = W,

(x̃)m ≥ 0, ∀m = 1, . . . ,M.

 (A.1)

must be solved. Note, for sake of simplicity, the squared length is used in the first line of (A.1).
While there is already an algorithm for projecting onto the probabilistic simplex under the con-
straint

∑M
m=1 xm = 1 [29], no algorithm has been found for (A.1) in literature. Therefore, we

will provide a derivation for an efficient algorithm that performs the optimization in (at most)
O(M2).

Let us first assume that (A.1) is without the inequality constraint xm > 0. In that case one
can immediately calculate the optimal x vector using Lagrange’s approach. Starting from

L(x, η) :=
1

2
∥x− v∥2 + η(ξTx−W ), (A.2)

calculating the derivatives w.r.t. xm and η and equating to zero yields

xm − vm + ηξm = 0 (A.3)

and
ξTx−W = 0. (A.4)

Solving for xm in (A.3) yields
xm = vm − ηξm. (A.5)

Inserting this result in (A.4), one obtains

M∑
m=1

ξmvm − η

M∑
m=1

ξ2m −W = 0 (A.6)

and after resolving for η

η =

∑M
m=1 ξmvm −W∑M

m=1 ξ
2
m

=
ξTv −W

∥ξ∥2
(A.7)

Substituting (A.7) in (A.5) one obtains

xm = vm −
ξTv −W

∥ξ∥2
ξm. (A.8)
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PositiveOrthantProjector Π(v, ξ,W )

x← v (P1)
ξ ← ξ (P2)

Repeat

η ← ξ
T
x−W

ξ
T
ξ

(P3)

h← x− ηξ (P4)

For m← 1 To M

xm ← Θ(hm)hm (P5)
ξm ← δ(xm)ξm (P6)

End
Until

(
∀m = 1, . . . ,M : xm ≥ 0

)
(P7)

Figure A.11: Pseudocode for the optimal projection of an exterior point v onto the positive orthant fulfilling additionally
the equality constraint ξTx = W . After termination the final x represents the solution x̃ to the optimization problem
(A.1).

Considering arbitrary v vectors, the resulting xm can be negative, thus violating the last line in
(A.1). Therefore, the solution (A.8) must be successively changed to ensure xm ≥ 0. To this
end, those xm for which xm < 0 holds are to be changed to zero, i.e., xm < 0 ⇒ xm = 0.
While this change ensures the xm ≥ 0 condition, the equality constraint for the new x vector
ξTx = W will be violated. Therefore, one has to repeat the optimization problem (A.1) for that
subspace that does not contain those components of x that have been set to zero (the latter do not
contribute to the xTξ scalar product). In order to formalize this iterative process that stops after
at most M steps, let us introduce the anti-delta function δ

δ(x) :=

{
1, if x ̸= 0,
0, if x = 0

(A.9)

and the step function Θ

Θ(x) :=

{
1, if x ≥ 0,
0, if x < 0.

(A.10)

The algorithm is given in Fig. A.11. In the first Repeat-Until-cycle, projection is done according
to (A.7) and (A.8) in Lines (P3) and (P4). However, this might have produced h components
less than zero. Therefore, those components are set to zero in (P5). These components are no
longer regarded in the optimization process. That is, the optimization is further performed in the
complement subspace. This means that η and xm update in (P3) and (P4) must take into account
only the nonzero components. This can be accomplished by zeroing the respective components
in ξ in Line (P6). This yields the new ξ vector to be used instead of ξ in (A.7), (A.8) and (P3),
(P4), respectively. This process of zeroing negative h components and projecting again in the
remaining subspace is performed until there is no negative xm left. The final x vector is then the
constrained minimizer of (A.1).
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