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Abstract. A new class of simple and scalable test functions for unconstrained
real-parameter optimization will be proposed. Even though these functions have
only one minimizer, they yet appear difficult to be optimized using standardstate-
of-the-art EAs such as CMA-ES, PSO, and DE. The test functions share proper-
ties observed when evolving at the edge of feasibility of constraint problems:
while the step-sizes (or mutation strength) drops down exponentially fast, the EA
is still far way from the minimizer giving rise to premature convergence. The de-
sign principles for this new function class, called HappyCat, will be explained.
Furthermore, an idea for a new type of evolution strategy, the Ray-ES, will be
outlined that might be able to tackle such problems.

1 Introduction

The design of direct search methods for optimization problems inRN is still a vivid area
of research and publications. Reviewing various journals and conferences, one finds a
plethora of proposals for new or improved algorithms. The superiority of which is usu-
ally validated by empirical investigations. Such investigations compare the performance
of the new algorithm with a collection of other algorithms ona “well-crafted” set of ar-
tificial test functions. An alternative would be – of course –a performance comparison
based on real-world applications (RWAs) or on toy problems derived from such RWAs.
However, such kinds of comparisons are hard to find and/or difficult to perform (e.g.,
problem size scaling investigations are often excluded dueto expensive goal function
evaluations). This may be the main reason why one resorts to artificial test beds. The
currently most-advanced endeavor in this direction is the COCO (COmparing Contin-
uous Optimizers) initiative (URL:http://coco.gforge.inria.fr/ ) and the
related Black-Box Optimization Benchmarking (BBOB) workshops at GECCO 2009,
2010, and 2012. This workshop series focuses on unconstrained optimization. However,
in practice one often encounters constraints (not only box constraints) that restrict the
feasible solutions in non-trivial manner. While there is also a series on benchmark com-
petitions in constrained evolutionary optimization (see e.g. the CEC 2010 workshop
[1]), it is interesting to notice that the most competitive strategies found at BBOB are
not in the winner portfolio of the CEC constrained benchmarking competition. There
might be different reasons for that observations and we do not want to speculate too



much as to why this is the case. However, from our own attemptsusing CMA-ES [2]
for a constrained optimization problem with linear inequality constraints, we have made
the observation that this strategy can exhibit premature convergence if the optimizer is
located in one of the vertices of the simplex. A similar behavior has been observed and
analyzed theoretically by Arnold [3]. The premature convergence behavior is due to a
failure of step-length control. When approaching the edge offeasibility the mutation
strength decreases exponentially fast such that the CMA-ESis not able to learn the
covariance matrix.

At first sight this premature convergence behavior might come as a big surprise
given the fact that CMA-ES performs so well on the BBOB test bed. However, the
problem lurks already in the BBOB test bed. It is this plainsharp ridgetest function
that carries already parts of the problem. The fact that one does not observe prema-
ture convergence for this function when usingstandard implementationsof CMA-ES
is simply due to a tiny implementation detail: There is always a test built-in that checks
for a minimal step-size in the search space. One can find this kludge already in early
CMA versions, see e.g. [4, p. 180]. While the CMA designers explained this implemen-
tation detail as a means to prevent numerical precision problem, we will provide a class
of simple (unconstrained) test functions where CMA-ES fails to locate the optimizer
with sufficient precision. This failure appears even though(or just because) these test
functions share local similarities with the sharp ridge.

The rest of the paper is organized as follows. First we will describe the construc-
tion of a simple scalable test function class, calledHappyCatwith tuneable“CMA-ES
hardness.”Then we will provide empirical performance evaluations including not only
CMA-ES, but also generic differential evolution (DE) and particle swarm optimization
(PSO) algorithms to show that the problem is not only restricted to CMA-ES. In a next
section we will outline a new ES, the so-calledRay-ESthat can exhibit improved per-
formance on this test function. Finally, we will give an outlook providing additionally
a somewhat more complicated test function that should be subject for further research.

2 Bending the Ridge – HappyCat

The motivation for developing a new test function class was triggered by the behavior
of ES on the ridge function class. Ridge functions can be expressed in terms of

f(x) := x1 + d
(

∑N

i=2 x
2
i

)α

. (1)

If α = 1/2 we get a V-shaped ridge, the sharp ridge. A first systematic investigation
of ES performance on ridge functions has been done in the PhD thesis of Oyman [5]
during the late 1990s. He was the first to interpret the evolutionary minimization on
ridge functions as a process of both approaching the ridge axis in anN−1-dimensional
sub-space and decreasing the linearx1 component in (1). Ifd is sufficiently large,f(x)
is dominated by anN − 1-dimensional sphere model and the linearx1 part is rather
a (noisy) perturbation. While forα > 1/2 the sphere model influence reduces when
approaching the ridge axis, the opposite holds forα < 1/2, andα = 1/2 is the limit
case. Evolution on theα = 1/2 case is a race between sphere model minimization



and linearx1 decrease (minimization!). If the sphere model is dominating, the mutation
adaptation process decreases the mutation strengthσ continuously (exponentially fast).
As a result one observes premature convergence. This also holds for CMA-ES. In that
case, the flow of covariance information obtained from the successful mutations into
the covariance matrix is continuously reduced. Learning the covariance matrix has a
complexity ofO(N2) (measured in function evaluations), however, the shrinking of the
(N − 1)-dimensional sphere proceeds withO(N). As a result, CMA-ES must neces-
sarily fail for sufficiently larged. A way to circumvent this shrinking is by keeping the
mutation strengthσ at a reasonable level. Thus, the CMA can learn the ridge direction.
And this approach (or similar ones) has been implemented in standard CMA-ES.

Learning the ridge direction solves the adaptation problemfor CMA-ES on the
sharp ridge. After having adapted the covariance matrix, the ES has only to follow
a straight path. However, what happens if the path is not a straight line? To get an
answer to this question, we first have to construct a simple test function with such a
property. In order to keep things simple, a spherical path will be constructed. To this
end, note that‖x‖2 −N = 0 describes a sphere with radius

√
N . That is, the function

(‖x‖2 − N)2 measures the deviation of an arbitraryx vector from the radius
√
N

sphere. Thus, one obtains a function with a degenerated zerominimum the optimizer
x∗ of which are all points on that sphere. Now we break the rotational symmetry by
adding a simple unimodal quadratic functionfq(x). Demanding the minimizer offq(x)
atx∗ = (−1, . . . ,−1)T and for sake of simplicityfq(x∗) = 0, one obtains

fq(x) :=
1
N

(

1
2
‖x‖2 +∑N

i=1 xi

)

+ 1
2
. (2)

This can be easily checked by calculus. Putting things together, one obtains the Happy-
Cat function the minimizer of which isx∗ = (−1, . . . ,−1)T andfHC(x

∗) = 0

fHC(x) := [(‖x‖2 −N)2]α + 1
N

(

1
2
‖x‖2 +∑N

i=1 xi

)

+ 1
2
. (3)

The caseN = 2 is displayed in Fig. 1. As one can see, theα-part in Eq. (3) produces an
attracting groove for path-oriented search strategies. Ifα = 1/2 the groove is V-shaped.
Forα < 1/2 the groove shape resembles the geometry of a black hole. Actually, it turns
out that getting closer to the groove results in an increasing descent gradient towards
the bottom of the groove. Its absolute value goes to infinity.That is why, it is difficult
to escape from this “black groove”. Since the shape of the groove is tuneable by theα
exponent, one can continuously control the problem hardness.

In Fig. 2 the performance of DE, PSO, and CMA on HappyCat withN = 10
andα = 1/8 is shown. All strategies were used in a form close to their default ver-
sion. DE is aRand 3type strategy [6], which is almost identical to the (common)
DE/rand/1/bin strategy. It uses a population size ofNP = 20, crossover parameter
CR = 0.5, and mutation parameterF = 0.9. PSO is a local best variant with a swarm
of 20 particles, parameterϕ = 2.07 (see [7]), and3 informants per particle. The in-
formation links between the particles are randomly chosen at the start of each itera-
tion and a particle will always inform itself. For CMA-ES thepopulation parameters
areλ = 10 (offspring) andµ = 5 (parents). The remaining learning and cumulation
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Fig. 1.HappyCat in two dimensions withα = 1/8 as 3D-plot (left) and contour plot (right). The
latter gave rise to the funny naming of this function.

parameters are identical to the default ones used in CMA-ES version3.55.beta ob-
tained from URL:http://www.lri.fr/ ˜ hansen/cmaes_inmatlab.html .
Additionally, the minimal coordinate axis deviation is setto ∀j : σ

√

Cjj ≥ 10−7 with
Cjj being an entry of the diagonal of the covariance matrix.

The left plot of Fig. 2 shows the dynamics of the function value w.r.t. the number of
function evaluations in a log-log format. In case of DE and PSO it represents the best
function value in the current population, while for CMA it isthe function value of the
parent individual. The dynamics of the 3 strategies differ.CMA achieves fast progress
before stagnating. PSO initially is comparable to CMA but enters the stagnation phase
earlier. In contrast to CMA, the particles are able to find a region of improved fitness in
later iterations (without restarting). On the other hand, DE shows a step-like character-
istic where phases of stagnation are followed by small “improvement jumps”. Overall,
DE is slower compared with CMA and PSO. Inspecting the final state of the population
in DE and PSO reveals that they are not converged (forN = 10). For PSO, the mean
distance between the particles is slightly reduced compared to the initial mean distance
and a similar observation is made for the particles’ velocities. This indicates that there
is “kinetic energy” left in the swarm, however, it is difficult to find improved solutions.
Considering the positions of the personal best solutions, one finds that PSO tracks the
groove very quickly. From that point on, progress can be madeby either reducing the
distance to the groove bottom or by moving toward the optimizer. Since reducing the
distance to the groove bottom is much more rewarding, the personal best positions will
not converge toward a single point but rather be distributedalong the groove bottom.
This in turn prevents a reduction in the velocities (except for the global best point)
and impairs the local search behavior. For DE the situation is somewhat different. In
small dimensionsN ≤ 5 convergence in the experiments performed (NP = 20) is
observed. There the expected population variance [8] is less than10−14, however, DE
converges to non-optimal points. For larger search space dimensionalities, the diversity
in the population remains large and similar to PSO, the points are distributed along the
groove. Since DE employs a greedy selection scheme, new population members are
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Fig. 2. Dynamic behavior of different strategies on the HappyCat function withN = 10 and
α = 1/8. In the left figure single run dynamics are shown, while in the right one thecurves are
based on30 samples for each strategy. The termERT refers to expected running time, expressed
in number of function evaluations. The horizontal line in the right plot indicates the budget of
function evaluations for each sample. Note, the vertical axis is normalizedby the search space
dimensionalityN and the horizontal axis is reversed in direction. As for the fourth strategy, the
Ray-ES, see Section 3.

only accepted if the distance to the groove bottom and/or thedistance to the optimizer
is reduced. However, the newly created individuals depend on the distances between
the population members, hence only slow progress is made.

In CMA, the mutation step generated byσN (0,C), with C as covariance matrix,
decreases quickly. Once the mutation step is too small, the progress of CMA stops. The
performance of CMA can be improved by using larger population sizes than the default
one. While being slower in the early iterations a larger population size comes closer
to the optimizer and has a better performance at some point. For DE and PSO no such
improvement with regard to the population size is observed.

Considering more than just a single run, yields the right-hand plot in Fig. 2. For all
experimental runs, the necessary individual(s) for each strategy are initialized by uni-
formly drawing a vector from the range[−2, 2]N . The budget is set to105N function
evaluations and30 samples are performed for each strategy. Restarts of the strategies
are allowed as long as the budget is not exhausted. In the plotthe expected running
time (ERT) [9] is shown as function of the best-so-far function value of all evaluated
points.ERT represents the expected behavior in terms of solution quality and necessary
budget. The horizontal dashed line indicates the availablefunction evaluation budget.
Points above this line indicate function values which were not achieved in all samples.
In such a case the success probability is less than1 and its inverse becomes a factor in
the calculation ofERT. Therefore these data points are based on an extrapolation of
the available experimental data. To achieve these performances (to a certain extent) one
must increase the function evaluation budget and provide better restart criteria. Consid-
ering the trend of theERT-curves, one observes for PSO and DE that each curves could
be approximated by a straight line. This indicates a power law relation between function
value and function evaluation budget. For CMA there exists ajump in the curve indi-



cating (probably) the phase where the covariance matrix is adapted. Before and after
this jump a power law relation approximates the relation between function value and
number of function evaluation.

However, the best curve is the one for Ray-ES. This strategy can achieve an order
of magnitude better solution quality (see also the left-hand plot) and is competitive with
CMA and PSO in terms of function evaluations forf ≤ 10−1. In the next section we
will describe Ray-ES.

3 Ray-ES

In the following we propose a concept for treating the HappyCat function. Note, this is
a conceptual algorithm and not a fully developed strategy. Starting from a fixed point
in the domain the idea is to find the ray direction which contains the optimizer. To this
end, the strategy evolves ray directions and performs (simple) line searches along these
rays to evaluate their quality. The ray evolution itself is based on the blueprint of a
(µ/µl, λ)-σSA-ES [10], hence the name Ray-ES.

Algorithm 1 Ray - ES
1: repeat
2: for l← 1 to λ do
3: σ̃l ← σeτN (0,1)

4: ỹl ← y + σ̃lN (0, I)

5: rl ←
ỹl

‖ỹl‖

6: [x̃l f̃l]← LineSearch (rl)
7: end for
8: y ← 〈ỹ〉 ⊲ new ray direction
9: σ ← 〈σ̃〉 ⊲ new mutation strength

10: until termination criterion satisfied

In Alg. 1 the pseudocode for the basic version of Ray-ES is shown. Due to the
underlying design principles, one must specify values for the population sizesλ and
µ, and the learning parameterτ . The parental mutation strengthσ and the parental ray
y ∈ R

N must be initialized. From line 2 to line 7 in Alg. 1λ new rays are created
by mutation (line 4) and evaluated (line 6). The mutation operator follows the self-
adaptation scheme [10], i.e. each ray has its own mutation strengthσ̃l which itself is
a mutant of the parentalσ (line 3). Since one is only interested in the direction of the
ray, it is normalized (line 5) before being evaluated. The evaluation is performed by the
functionLineSearch which is given in Alg. 2. It returns the best point foundx̃l and its
corresponding function valuẽfl which serves as measures for the ray quality. In lines
8 and 9 the variables for the parental mutation strength and parental ray are updated by
means of intermediate recombination where theµ best of theλ offspring are used. The
rule is

〈x〉 = 1

µ

∑µ

m=1 xm;λ, (4)



wherexm;λ is themth best of theλ values. The ranking is done for all parameters
w.r.t. the function value. If no termination criterion is satisfied the evolutionary process
continues. Typical termination criteria are based on solution quality, budget of function
evaluations, and/or measures for the stagnation of the evolutionary process.

Algorithm 2 LineSearch
1: function L INESEARCH(r)
2: setL, k,o, ǫ
3: x0 ← o

4: ∆r ← L

k

5: while ∆r > ǫ do
6: for p← 1 to 2k + 1 do
7: xp ← x0 +∆r(p− k − 1)r
8: fp ← F (xp)
9: end for

10: ∆r ←

{

2∆r, if (x1;2k+1 = x1) ∨ (x1;2k+1 = x2k+1)

∆r/k, otherwise
11: x0 ← x1;2k+1

12: end while
13: return x1;2k+1, f1;2k+1

14: end function

The evaluation of a ray is a line search for the minimizer on the ray. The procedure
is stated in Alg. 2. It requires the ray directionr, an initial search lengthL ∈ R

+, the
number of subdivisionsk ∈ Z

+, the ray origino ∈ R
N , and the minimal division length

ǫ ∈ R acting as precision measure. Except for the ray direction all these parameters are
held globally constant. In line 4, the length∆r of the k sections is initialized. The
line search (lines 5–12) is then performed as long as∆r is greater thanǫ. At first,
k equidistant points in positive and negative ray direction from the start pointx0 are
created (line 7) and evaluated (line 8). The start point itself is also evaluated, resulting
in 2k+1 function evaluations. The best of these points,x1;2k+1, is set as new start point
(line 11). To find a better approximation of the minimizer, the length∆r is reduced by
factor k iff x1;2k+1 is not at the ends of the ray considered. However, if the current
minimum is at the ends of the ray, the section length is doubled (line 10). It can be
shown that the number of function evaluations for each line search can be estimated as
(provided that the strategy does not leave the initial search interval[−L,L])

FEsLS ≃ 2k

ln k
ln

L

ǫ
. (5)

In the actual implementation of Ray-ES we also memorized thebest-so-far solution
and evaluated the center of gravity of the points returned byLineSearch. In some sit-
uations this recombinant achieved an improved solution quality. Throughout this text
the following parameter setting is used for Ray-ES:λ = 10, µ = 3, τ = 1/

√
N, k =

3, L = 2,o = (0, . . . , 0)N , andǫ = 10−8.



The single run dynamics and the expected performance for Ray-ES are shown in
Fig. 2. The single run curve is based on the best value returned by LineSearch and
aforementioned recombinant. Ray-ES is initially slower than the other strategies con-
sidered and needs more function evaluations per iteration.This is due to the nearly
constant line search effort given by (5).1 However, at some point it is competitive with
the other strategies and later achieves a solution quality not realized by the other strate-
gies (for the parameters considered). The steep rise of the slope at the end is due to the
decrease in the success probability for the function valuesconsidered.
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Fig. 3. The left-hand plot shows the distribution of the best solutions found in30 samples in
terms of distance to the optimizer(−1, . . . ,−1) and the deviation from the groove forN = 10.
The right-hand plot shows the scaling of the expected running time (ERT(f ≤ 10−1)) for the
strategies as function of the search space dimensionalityN . The dashed lines represent linear
and quadratic scaling, the small markers indicate the best and worst observed number of function
evaluations.

In Fig. 3 additional performance plots are shown for all strategies. In the left-hand
plot the distribution of the best point found in each of the30 samples (N = 10) is
shown. While PSO and CMA-ES are located at the groove bottom (horizontal axis in
Fig. 3 left)2, Ray-ES is able to achieve a much smaller distance to the optimizer (see
vertical axis, there is a factor of about10−4) while still being considerably close to the
groove bottom. That is, the final solutions obtained by CMA, DE, and PSO are rather
poor when evaluated in the search space (i.e., w.r.t. distance to the optimizer).

In the right-hand plot of Fig. 3 the scaling ofERT w.r.t. the search space dimen-
sionality is presented. The curves represent the expected running time to find a point
with f ≤ 10−1 for the first time. Ray-ES shows a scaling behavior between linear and
quadratic, while the other strategies have a greater than quadratic scaling behavior.

In Fig. 4 the performance of Ray-ES (left) and CMA-ES (right)for various problem
hardnesses is shown. In case of Ray-ES, the curve withα = 0.1 is an outlier which is

1 One may think of an adaptive line search to reduceFEsLS in the initial phase, however, this
is beyond the scope of this paper.

2 For visualization reasons10−99 was added to the distance from the groove bottom.
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Fig. 4. Scaling ofERT with respect to the problem hardnessα for N = 10 and the default
parameter settings.

due the choice of the minimal division lengthǫ. Decreasingǫ improves the performance.
For CMA-ES the performances are not in order withα, i.e. α = 0.1 is easier than
α = 0.2. Investigations into this behavior showed that it might be due to the frequency
of restarts triggered. For smallα values much more restarts occurred than for larger
values. Note, we did not use stagnation as a possible restartcriterion. For DE and PSO
the performance improves with increasing values ofα (decreasing problem hardness).

4 Conclusions and Outlook

In this paper, we have proposed a new scalable test function for EAs in real-coded search
spaces that allows for a continuous tuning of the problem hardness viaα in Eq. (3). We
have shown empirically that standard state-of-the-art EAssuch as CMA-ES, DE, and
PSO do fail on such topologies even in the case of small searchspace dimensionalities
if α is chosen below a certain critical value. We also provided a proof of concept for a
new class of evolution strategies, the Ray-ES, that might cope with this kind of function
topologies. However, the investigations concerning this new strategy type are still in the
beginning and the performance of the strategy depends on thechoice of the ray origin.
Yet it is a new strategy that might be worth further investigations in the future.

The main purpose of this paper is test function design. From this aspect, the de-
sign principle behind HappyCat can also be used to constructmore complex functions.
“Complex” is meant here in the sense that the path defined by the groove can assume
more complex forms than the spherical one. As an example, HGBat shall be mentioned
here

fHGB(x) :=

[

(

‖x‖4 − (
∑N

i=1 xi)
2
)2

]α

+ 1
N

(

1
2
‖x‖2 +∑N

i=1 xi

)

+ 1
2
. (6)

Comparing with HappyCat (3), one sees that the quadratic symmetry-breaking part de-
fined in (2) remains the same. The only difference is due to thefirst term where the
expression in the bracket is a degree 8 polynomial instead ofa degree 4 polynomial in
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Fig. 5. HGBat in two dimensions withα = 1/4 as 3D-plot (left) and contour plot (right). The
latter gave rise to the funny naming of this function resembling the silhouette ofBatman’s head.

Eq. (3). The 2D shape of (6) is shown in Fig. 5. Investigationsconcerning this func-
tion and even more complex forms remain to be done in the future. Furthermore, it is
our hope that this kind of test functions, modeling certain aspects of search and (co-)
variance adaptation in constrained optimization problems, will be incorporated in the
commonly used testbeds of black box optimization [9].
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