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Abstract. A new class of simple and scalable test functions for unconstrained
real-parameter optimization will be proposed. Even though these fusdi@ave
only one minimizer, they yet appear difficult to be optimized using starstatd-
of-the-art EAs such as CMA-ES, PSO, and DE. The test functions giraper-

ties observed when evolving at the edge of feasibility of constraint proble
while the step-sizes (or mutation strength) drops down exponentially fagEAh

is still far way from the minimizer giving rise to premature convergent¢e de-

sign principles for this new function class, called HappyCat, will be expthine
Furthermore, an idea for a new type of evolution strategy, the Ray-Hyev
outlined that might be able to tackle such problems.

1 Introduction

The design of direct search methods for optimization prollaR " is still a vivid area
of research and publications. Reviewing various journats @nferences, one finds a
plethora of proposals for new or improved algorithms. Thaesiority of which is usu-
ally validated by empirical investigations. Such inveatigns compare the performance
of the new algorithm with a collection of other algorithmsatwell-crafted” set of ar-
tificial test functions. An alternative would be — of coursa performance comparison
based on real-world applications (RWAS) or on toy probleesved from such RWAs.
However, such kinds of comparisons are hard to find and/icudlif to perform (e.g.,
problem size scaling investigations are often excludedtdwexpensive goal function
evaluations). This may be the main reason why one resortgificzial test beds. The
currently most-advanced endeavor in this direction is t@CO (COmparing Contin-
uous Optimizers) initiative (URLhttp://coco.gforge.inria.fr/ ) and the
related Black-Box Optimization Benchmarking (BBOB) wdnkgs at GECCO 2009,
2010, and 2012. This workshop series focuses on unconstratimization. However,
in practice one often encounters constraints (not only lmmstraints) that restrict the
feasible solutions in non-trivial manner. While there i9asseries on benchmark com-
petitions in constrained evolutionary optimization (seg. ¢he CEC 2010 workshop
[1]), it is interesting to notice that the most competititeagegies found at BBOB are
not in the winner portfolio of the CEC constrained benchriraglcompetition. There
might be different reasons for that observations and we davaot to speculate too



much as to why this is the case. However, from our own attemngitey CMA-ES [2]
for a constrained optimization problem with linear inedyatonstraints, we have made
the observation that this strategy can exhibit prematuneergence if the optimizer is
located in one of the vertices of the simplex. A similar bebatias been observed and
analyzed theoretically by Arnold [3]. The premature cogegrce behavior is due to a
failure of step-length control. When approaching the edgteasibility the mutation
strength decreases exponentially fast such that the CMAsE®t able to learn the
covariance matrix.

At first sight this premature convergence behavior might €@s a big surprise
given the fact that CMA-ES performs so well on the BBOB tedl.idowever, the
problem lurks already in the BBOB test bed. It is this plaivarp ridgetest function
that carries already parts of the problem. The fact that @es chot observe prema-
ture convergence for this function when usistgndard implementationsf CMA-ES
is simply due to a tiny implementation detail: There is aleaytest built-in that checks
for a minimal step-size in the search space. One can find hilgk already in early
CMA versions, see e.g. [4, p. 180]. While the CMA designerdairpd this implemen-
tation detail as a means to prevent numerical precisioni@mlwe will provide a class
of simple (unconstrained) test functions where CMA-ESsf&il locate the optimizer
with sufficient precision. This failure appears even tho(ghjust because) these test
functions share local similarities with the sharp ridge.

The rest of the paper is organized as follows. First we wilalie the construc-
tion of a simple scalable test function class, calappyCatwith tuneable'CMA-ES
hardness. Then we will provide empirical performance evaluationdiding not only
CMA-ES, but also generic differential evolution (DE) andtpde swarm optimization
(PSO) algorithms to show that the problem is not only reitd¢o CMA-ES. In a next
section we will outline a new ES, the so-callRdy-ESthat can exhibit improved per-
formance on this test function. Finally, we will give an aak providing additionally
a somewhat more complicated test function that should bestuor further research.

2 Bending the Ridge — HappyCat

The motivation for developing a new test function class wiagiéred by the behavior
of ES on the ridge function class. Ridge functions can beesgad in terms of

F@) =21 +d (2522 ;cg)“ . @

If « = 1/2 we get a V-shaped ridge, the sharp ridge. A first systematisigation

of ES performance on ridge functions has been done in the Régistof Oyman [5]
during the late 1990s. He was the first to interpret the eimiary minimization on
ridge functions as a process of both approaching the ridigeraan N — 1-dimensional
sub-space and decreasing the lineacomponent in (1). Ifl is sufficiently large f (x)

is dominated by arlV — 1-dimensional sphere model and the linearpart is rather

a (noisy) perturbation. While for > 1/2 the sphere model influence reduces when
approaching the ridge axis, the opposite holdsdfor 1/2, anda = 1/2 is the limit
case. Evolution on the = 1/2 case is a race between sphere model minimization



and linearr; decrease (minimization!). If the sphere model is domimgtihe mutation
adaptation process decreases the mutation strencghtinuously (exponentially fast).
As a result one observes premature convergence. This dde foo CMA-ES. In that
case, the flow of covariance information obtained from thecessful mutations into
the covariance matrix is continuously reduced. Learnirggdbvariance matrix has a
complexity ofO(N?) (measured in function evaluations), however, the shripkiithe
(N — 1)-dimensional sphere proceeds with{ V). As a result, CMA-ES must neces-
sarily fail for sufficiently larged. A way to circumvent this shrinking is by keeping the
mutation strengtle at a reasonable level. Thus, the CMA can learn the ridgetibirec
And this approach (or similar ones) has been implementethimdard CMA-ES.
Learning the ridge direction solves the adaptation problemCMA-ES on the
sharp ridge. After having adapted the covariance matrig, BB has only to follow
a straight path. However, what happens if the path is notaagstr line? To get an
answer to this question, we first have to construct a simeftection with such a
property. In order to keep things simple, a spherical pathbei constructed. To this
end, note thafz||> — N = 0 describes a sphere with radiysV. That is, the function
(|lz|> = N)? measures the deviation of an arbitragyvector from the radius/N
sphere. Thus, one obtains a function with a degeneratednzi@icmum the optimizer
x* of which are all points on that sphere. Now we break the ratati symmetry by
adding a simple unimodal quadratic functify{z). Demanding the minimizer of, ()

atz* = (—1,...,—1)" and for sake of simplicity,(z*) = 0, one obtains
1 (1 2 N 1
fol@) =% (32 + T, ) + 5. @
This can be easily checked by calculus. Putting things beyebne obtains the Happy-
Cat function the minimizer of which is* = (—1,...,—1)" and fgc(xz*) =0
2 2« 1 (1 2 N 1
fro@) = (21 = N)2)° + & (32l + 2L, =) + 3. 3)

The caseV = 2 is displayed in Fig. 1. As one can see, th@art in Eq. (3) produces an
attracting groove for path-oriented search strategies=+f1/2 the groove is V-shaped.
Fora < 1/2 the groove shape resembles the geometry of a black holealycititurns
out that getting closer to the groove results in an increpdescent gradient towards
the bottom of the groove. Its absolute value goes to infiffibat is why, it is difficult
to escape from this “black groove”. Since the shape of thexgrds tuneable by the
exponent, one can continuously control the problem hasines

In Fig. 2 the performance of DE, PSO, and CMA on HappyCat with= 10
anda = 1/8 is shown. All strategies were used in a form close to theiadléfver-
sion. DE is aRand 3type strategy [6], which is almost identical to the (common)
DE/rand/1/bin strategy. It uses a population sizeNaP = 20, crossover parameter
CR = 0.5, and mutation parametét = 0.9. PSO is a local best variant with a swarm
of 20 particles, parametep = 2.07 (see [7]), and informants per particle. The in-
formation links between the particles are randomly chosehestart of each itera-
tion and a particle will always inform itself. For CMA-ES tipopulation parameters
are\ = 10 (offspring) andu = 5 (parents). The remaining learning and cumulation



Fig. 1. HappyCat in two dimensions withh = 1/8 as 3D-plot (left) and contour plot (right). The
latter gave rise to the funny naming of this function.

parameters are identical to the default ones used in CMAdtSlan3.55.beta  ob-
tained from URL:http://www.Iri.fr/ ~hansen/cmaes_inmatlab.html
Additionally, the minimal coordinate axis deviation is $&¥j : o/C;; > 1077 with
C;; being an entry of the diagonal of the covariance matrix.

The left plot of Fig. 2 shows the dynamics of the function eahur.t. the number of
function evaluations in a log-log format. In case of DE an@HSrepresents the best
function value in the current population, while for CMA ittise function value of the
parent individual. The dynamics of the 3 strategies difBvA achieves fast progress
before stagnating. PSO initially is comparable to CMA bueenthe stagnation phase
earlier. In contrast to CMA, the particles are able to findgiae of improved fitness in
later iterations (without restarting). On the other han#,$hows a step-like character-
istic where phases of stagnation are followed by small “oepment jumps”. Overall,
DE is slower compared with CMA and PSO. Inspecting the firetesdf the population
in DE and PSO reveals that they are not convergedfor 10). For PSO, the mean
distance between the particles is slightly reduced conatarthe initial mean distance
and a similar observation is made for the particles’ veiesitThis indicates that there
is “kinetic energy” left in the swarm, however, it is difficub find improved solutions.
Considering the positions of the personal best solutions,fmds that PSO tracks the
groove very quickly. From that point on, progress can be nigdeither reducing the
distance to the groove bottom or by moving toward the op#mi3ince reducing the
distance to the groove bottom is much more rewarding, theopeit best positions will
not converge toward a single point but rather be distribatiedg the groove bottom.
This in turn prevents a reduction in the velocities (exceptthe global best point)
and impairs the local search behavior. For DE the situasosomewhat different. In
small dimensiongV < 5 convergence in the experiments perform@d{ = 20) is
observed. There the expected population variance [8] sstlemn10~'4, however, DE
converges to non-optimal points. For larger search spawerdiionalities, the diversity
in the population remains large and similar to PSO, the pan¢ distributed along the
groove. Since DE employs a greedy selection scheme, newlgimpumembers are



Function Value

%X CMA

DE

X CMA

DE

Q pPso QO pPso
107 O Ray-ES iy O Ray-ES
10° 10° 10 10° 10° 100 107 10°
Function Evaluations Function Value

Fig. 2. Dynamic behavior of different strategies on the HappyCat function with= 10 and

a = 1/8. In the left figure single run dynamics are shown, while in the right onetinees are
based or80 samples for each strategy. The teffRT refers to expected running time, expressed
in number of function evaluations. The horizontal line in the right plot ingisdhe budget of
function evaluations for each sample. Note, the vertical axis is normabyedde search space
dimensionalityN and the horizontal axis is reversed in direction. As for the fourth stratbgy
Ray-ES, see Section 3.

only accepted if the distance to the groove bottom and/odi$tance to the optimizer
is reduced. However, the newly created individuals depenthe distances between
the population members, hence only slow progress is made.

In CMA, the mutation step generated byv'(0, C), with C as covariance matrix,
decreases quickly. Once the mutation step is too small,rigr@ss of CMA stops. The
performance of CMA can be improved by using larger poputesiaes than the default
one. While being slower in the early iterations a larger papoh size comes closer
to the optimizer and has a better performance at some p@nDE and PSO no such
improvement with regard to the population size is observed.

Considering more than just a single run, yields the rightehplot in Fig. 2. For all
experimental runs, the necessary individual(s) for eactiegly are initialized by uni-
formly drawing a vector from the rande-2,2]". The budget is set td0° N function
evaluations an@0 samples are performed for each strategy. Restarts of thiegies
are allowed as long as the budget is not exhausted. In theh@atxpected running
time (ERT) [9] is shown as function of the best-so-far function valdielbevaluated
points.ERT represents the expected behavior in terms of solutiontguaid necessary
budget. The horizontal dashed line indicates the availtaletion evaluation budget.
Points above this line indicate function values which weseathieved in all samples.

In such a case the success probability is less thamd its inverse becomes a factor in
the calculation oftRT. Therefore these data points are based on an extrapoldtion o
the available experimental data. To achieve these perforesa(to a certain extent) one
must increase the function evaluation budget and provittetestart criteria. Consid-
ering the trend of thERT-curves, one observes for PSO and DE that each curves could
be approximated by a straight line. This indicates a powerddation between function
value and function evaluation budget. For CMA there existawp in the curve indi-



cating (probably) the phase where the covariance matridapted. Before and after
this jump a power law relation approximates the relatiowieen function value and
number of function evaluation.

However, the best curve is the one for Ray-ES. This stratagyachieve an order
of magnitude better solution quality (see also the leftehgliot) and is competitive with
CMA and PSO in terms of function evaluations for< 10~!. In the next section we
will describe Ray-ES.

3 Ray-ES

In the following we propose a concept for treating the Hapgyi@nction. Note, this is
a conceptual algorithm and not a fully developed stratetprtifig from a fixed point
in the domain the idea is to find the ray direction which cargahe optimizer. To this
end, the strategy evolves ray directions and performs (sintipe searches along these
rays to evaluate their quality. The ray evolution itself esed on the blueprint of a
(1/, N)-0SA-ES [10], hence the name Ray-ES.

Algorithm 1 Ray - ES
1: repeat
2: for il <~ 1to A do
. o] +— UGTN(O’l)
Y yjréz./\/'(O,I)

3

4

5 o 2L
Ml

6: [Z: fi] + LineSearch (7;)

7 end for

8 y <+ (g) > new ray direction
9 o« (7) > new mutation strength
10:

until termination criterion satisfied

In Alg. 1 the pseudocode for the basic version of Ray-ES isvehd®ue to the
underlying design principles, one must specify values lier population sizes and
1, and the learning parameter The parental mutation strengthand the parental ray
y € RY must be initialized. From line 2 to line 7 in Alg. A new rays are created
by mutation (line 4) and evaluated (line 6). The mutationrapm@ follows the self-
adaptation scheme [10], i.e. each ray has its own mutatremgtha; which itself is
a mutant of the parental (line 3). Since one is only interested in the direction of the
ray, it is normalized (line 5) before being evaluated. Thelwation is performed by the
function LineSearch which is given in Alg. 2. It returns the best point fousgdand its
corresponding function valug which serves as measures for the ray quality. In lines
8 and 9 the variables for the parental mutation strength aneipal ray are updated by
means of intermediate recombination whereghwest of the\ offspring are used. The
rule is

<:E> = i Zr‘:nzl Tm; X, 4)



wherex,,.» is the mth best of the\ values. The ranking is done for all parameters
w.r.t. the function value. If no termination criterion igisfied the evolutionary process
continues. Typical termination criteria are based on smhujuality, budget of function
evaluations, and/or measures for the stagnation of theigeoary process.

Algorithm 2 LineSearch

1: function LINESEARCH(7)
2: setl, k, o, ¢

3: o < O

4: Ar +— %

5: while Ar > e do

6: for p < 1to2k + 1 do

7: Tp —xo+ Ar(p—k—1)r

8 fo < F(xp)

9: end for
2A if ) = . =

10: Ar < T, ($1,2{c+1 1) V (T1;2641 = T2k+1)
Ar/k, otherwise

11: Lo < T1,2k+1

12: end while

13: return @1,26+1, f1,26+1

14: end function

The evaluation of a ray is a line search for the minimizer @nrtly. The procedure
is stated in Alg. 2. It requires the ray directienan initial search lengtli, € R, the
number of subdivisions € Z*, the ray origino € RY, and the minimal division length
¢ € R acting as precision measure. Except for the ray directicth@se parameters are
held globally constant. In line 4, the lengthr of the k sections is initialized. The
line search (lines 5-12) is then performed as longAasis greater thare. At first,

k equidistant points in positive and negative ray directiamnf the start pointcy are
created (line 7) and evaluated (line 8). The start poinffitsalso evaluated, resulting
in 2k+1 function evaluations. The best of these pointsgy+1, is set as new start point
(line 11). To find a better approximation of the minimizee tengthAr is reduced by
factor k iff x1,2141 is not at the ends of the ray considered. However, if the atirre
minimum is at the ends of the ray, the section length is dalfliee 10). It can be
shown that the number of function evaluations for each lesrch can be estimated as
(provided that the strategy does not leave the initial $eaterval[—L, L])

FEspg ~ %lné. (5)
Ink €
In the actual implementation of Ray-ES we also memorizedést-so-far solution
and evaluated the center of gravity of the points returneflibygSearch. In some sit-
uations this recombinant achieved an improved solutionityu@hroughout this text
the following parameter setting is used for Ray-BS= 10, = 3,7 = 1/V/N,k =
3,L=2,0=(0,...,00Y, ande = 10~5.



The single run dynamics and the expected performance forBSagre shown in
Fig. 2. The single run curve is based on the best value redubyd.ineSearch and
aforementioned recombinant. Ray-ES is initially slowearttthe other strategies con-
sidered and needs more function evaluations per iteralibis is due to the nearly
constant line search effort given by (5SHowever, at some point it is competitive with
the other strategies and later achieves a solution qualttyealized by the other strate-
gies (for the parameters considered). The steep rise ofdpe at the end is due to the
decrease in the success probability for the function vatoesidered.
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Fig. 3. The left-hand plot shows the distribution of the best solutions foungDisamples in
terms of distance to the optimizér1, ..., —1) and the deviation from the groove fof = 10.
The right-hand plot shows the scaling of the expected running tRRI(f < 10~1)) for the
strategies as function of the search space dimensiondlitfhe dashed lines represent linear
and quadratic scaling, the small markers indicate the best and woestedsiumber of function
evaluations.

In Fig. 3 additional performance plots are shown for alltefgées. In the left-hand
plot the distribution of the best point found in each of tiitesamples = 10) is
shown. While PSO and CMA-ES are located at the groove bottarizgntal axis in
Fig. 3 leftf, Ray-ES is able to achieve a much smaller distance to thenizeti (see
vertical axis, there is a factor of abala—*) while still being considerably close to the
groove bottom. That is, the final solutions obtained by CMA, Bnd PSO are rather
poor when evaluated in the search space (i.e., w.r.t. distemthe optimizer).

In the right-hand plot of Fig. 3 the scaling 8RT w.r.t. the search space dimen-
sionality is presented. The curves represent the expeatetdng time to find a point
with f < 10~! for the first time. Ray-ES shows a scaling behavior betweweali and
quadratic, while the other strategies have a greater thadrgtic scaling behavior.

In Fig. 4 the performance of Ray-ES (left) and CMA-ES (right)various problem
hardnesses is shown. In case of Ray-ES, the curveawith0.1 is an outlier which is

1 One may think of an adaptive line search to redB&s; s in the initial phase, however, this
is beyond the scope of this paper.
2 For visualization reasori®)~*° was added to the distance from the groove bottom.



Ray-ES CMA-ES

) =-a=0.§

10° 10" 107 10° 10
Function Value Function Value

Fig. 4. Scaling of ERT with respect to the problem hardnessfor N = 10 and the default
parameter settings.

due the choice of the minimal division lengtiDecreasing improves the performance.
For CMA-ES the performances are not in order withi.e. o = 0.1 is easier than

«a = 0.2. Investigations into this behavior showed that it might be tb the frequency

of restarts triggered. For small values much more restarts occurred than for larger
values. Note, we did not use stagnation as a possible restarion. For DE and PSO
the performance improves with increasing valuea dflecreasing problem hardness).

4 Conclusions and Outlook

In this paper, we have proposed a new scalable test funcidXs in real-coded search
spaces that allows for a continuous tuning of the problerdiess viax in Eq. (3). We
have shown empirically that standard state-of-the-art Bdch as CMA-ES, DE, and
PSO do fail on such topologies even in the case of small sepate dimensionalities
if « is chosen below a certain critical value. We also providedoafpof concept for a
new class of evolution strategies, the Ray-ES, that migh¢ eath this kind of function
topologies. However, the investigations concerning tkis strategy type are still in the
beginning and the performance of the strategy depends arhtfiee of the ray origin.
Yet it is a new strategy that might be worth further invediigas in the future.

The main purpose of this paper is test function design. Ftamaspect, the de-
sign principle behind HappyCat can also be used to constmaot complex functions.
“Complex” is meant here in the sense that the path defined dgthove can assume
more complex forms than the spherical one. As an example,ai&iiall be mentioned
here

2 [e3
fran(x) = [(n:cn‘* — (2, @) ] + % (Sl + 2y w) + 4. ©
Comparing with HappyCat (3), one sees that the quadraticrstny-breaking part de-

fined in (2) remains the same. The only difference is due tditeeterm where the
expression in the bracket is a degree 8 polynomial insteaddeigree 4 polynomial in
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Fig. 5. HGBat in two dimensions witlx = 1/4 as 3D-plot (left) and contour plot (right). The
latter gave rise to the funny naming of this function resembling the silhoueBataian’s head.

Eq. (3). The 2D shape of (6) is shown in Fig. 5. Investigatioascerning this func-
tion and even more complex forms remain to be done in theduteurthermore, it is
our hope that this kind of test functions, modeling certaipexts of search and (co-)
variance adaptation in constrained optimization problemi be incorporated in the
commonly used testbeds of black box optimization [9].
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