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ABSTRACT
An evolution strategy design is presented that allows for an evo-
lution on general quadratic manifolds. That is, it covers elliptic,
parabolic, and hyperbolic equality constraints. The peculiarity of
the presented algorithm design is that it is an interior point method.
It evaluates the objective function only for feasible search parame-
ter vectors and it evolves itself on the nonlinear constraint mani-
fold. This is achieved by a closed form transformation of an indi-
vidual’s parameter vector, which is in contrast to iterative repair
mechanisms. Results of different experiments are presented. A test
problem consisting of a spherical objective function and a single
hyperbolic/parabolic equality constraint is used. It is designed to
be scalable in the dimension and it is used to compare the perfor-
mance of the developed algorithm with other optimization methods
supporting constraints. The experiments show the effectiveness of
the proposed algorithm on the considered problems.

CCS CONCEPTS
•Theory of computation→Bio-inspired optimization; •Com-
puting methodologies→ Randomized search.
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1 INTRODUCTION
Constraint handling in evolutionary optimization methods is an
important aspect in the area of black-box optimization. Many dif-
ferent constraint handling techniques have been proposed (for an
overview, refer for example to [8]). There is a variety of differential
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evolution (DE) approaches for black-box optimization incorporat-
ing constraint handling [6, 7, 9, 12, 15]. An evolution strategy (ES)
has been proposed [5] using similar constraint handling techniques
as some of those DEmethods.Whereas they allow evaluating the ob-
jective function outside of the feasible region, the focus of this work
is the development of an interior point ES. As such, it represents a
further step for a better understanding of constraint handling in
ESs. Interior point methods are especially important in the case
where it is not possible to evaluate infeasible parameter vectors. A
prominent example in this regard is the area of simulation-based op-
timization (SBO), where it can be that there are inputs for which the
simulator does not work1 (e.g., limitations that stem from physics).

An interior point Constraint Matrix Self-Adaptation ES (CMSA-
ES) supporting linear equality and inequality constraints has been
proposed in [11]. The peculiarity of that method is that it evolves
itself on the linear constraint manifold. This is achieved by a special
constraint handling approach based on a repair method.

In [10], an interior point Matrix-Adaptation ES (MA-ES) with
support for an elliptic equality constraint has been developed. It
has been benchmarked on the Thomson problem [14] and one
motivating problem is a real-world application in the area of finan-
cial stress-testing [3]. In that problem the consideration of only
plausible scenarios creates an elliptic constraint.

The contribution of this work is the extension of the MA-ES to
support elliptic equality constraints as well as parabolic or hyper-
bolic equality constraints. This extension, however, is not trivial: An
elliptic constraint can be formulated by a positive definite quadratic
form. This allows the application of the Cholesky decomposition,
which can be used to develop the method described in [10] for
ensuring that individuals are always feasible. A different design is
required to deal with a parabolic or hyperbolic constraint. The goal
is to develop an interior point method that ensures that individuals
are feasible by a closed form transformation. The main motivation
stems from the idea to support a quadratic form equality constraint
with nonpositive eigenvalues.

The remainder of this work is organized as follows. Section 2
explains the form of the constraints that are supported in the algo-
rithm designed in this work. Then, Section 3 describes the details
about the algorithm design. After that, the experimental evaluation
setup and the results are presented in Section 4. Finally, Section 5
provides a conclusion.

1There are also problems for which the simulation must first be run in order to know
whether a constraint is violated. Such problems are not the focus of this work.
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2 PARABOLIC AND HYPERBOLIC
CONSTRAINTS

The optimization problem considered in this work is

min. 𝑓 (x) s.t. x𝑇 Sx = 𝜘, (1)

where x ∈ R𝑁 , S ∈ R𝑁×𝑁 , 𝜘 ∈ R, and no knowledge about 𝑓
is assumed (i.e., 𝑓 can be a black-box function). Additionally, in
contrast to [10], there is no positive definiteness assumption of
the constraint x𝑇 Sx = 𝜘. This has the direct consequence that S
can have eigenvalues that are nonpositive. Hence, not only elliptic
constraints, but also hyperbolic and parabolic constraints can be
represented (revealing in eigenvalues that are negative or zero,
respectively). Visualizations in two dimensions are provided in
Appendix B.

3 ALGORITHM
3.1 Overview
The pseudo-code of the proposed algorithm is presented as Algo-
rithm 1. It is based on the (𝜇/𝜇𝑤 , 𝜆)-MA-ES [2] and incorporates a
closed-form equality constraint handling. Initialization and prepro-
cessing steps are performed in lines 1 to 7. The details about the
preprocessing are described in Section 3.3. Then, the generational
loop is entered after initializing the generation counter (lines 8
to 9). In every generation, 𝜆 offspring are generated in lines 10
to 24 (the details of the offspring generation are explained in the
following sections). Furthermore, notice that the evolution is per-
formed in an 𝑁 + 1 dimensional space. The reason is also explained
in the following sections. The created offspring are then sorted in
ascending order according to their fitness (because the problem
is stated as a minimization problem) in line 25. Making use of the
best 𝜇 offspring2, the parental individual for the next generation
is then computed (line 26). Notice that the offspring are ensured
to be feasible by the closed form transformation that is derived
in Section 3.2. In an implementation, one would also evaluate the
objective function on the updated parental individual (line 26). For
doing this, the same transformation as for a particular offspring
has to be performed for the updated parental individual before the
objective function evaluation. Finally, the update of the cumulation
path s, the covariance factorM, the mutation strength 𝜎 , and the
generation counter 𝑔 ends one iteration of the generational loop.
The matrixM and the mutation strength 𝜎 are updated according
to [2].

3.2 Constraint Handling Idea
It turned out that the transformation used in [10] to transform the
offspring to the elliptical manifold cannot be directly extended to
general quadratic forms. To see the difference, we first recap the
original transformation approach. Thereafter, the novel decomposi-
tion and projection idea will be presented.

3.2.1 Recap of the Method for Handling an Elliptic Equality Con-
straint. In [10], elliptical constraints have been assumed. That is,
formally the constraint x𝑇 Sx = 𝜘 with S = S𝑇 and 𝜘 > 0 has been

2Note that 𝑚;𝜆 is the order statistic notation and represents the 𝑚-th best (w.r.t.
fitness) out of 𝜆 values.

considered. With this formulation, Cholesky decomposition can for
example be used to get S = A𝑇A. Now, an individual

x̃ = x + 𝜎z (2)

that potentially violates the equality constraint can be ensured to
be feasible by modifying Equation (2) to

x̃ =
√
𝜘

(
x + 𝜎A−1z
| |Ax + 𝜎z| |

)
. (3)

Note that x here denotes the parental individual, 𝜎 the mutation
strength, and z the mutation vector. The update (3) ensures that the
equality constraint is fulfilled for x̃:

x̃𝑇 Sx̃ = 𝜘

(
x + 𝜎A−1z

)𝑇 A𝑇A
(
x + 𝜎A−1z

)
(Ax + 𝜎z)𝑇 (Ax + 𝜎z)

(4)

= 𝜘
(Ax + 𝜎z)𝑇 (Ax + 𝜎z)
(Ax + 𝜎z)𝑇 (Ax + 𝜎z)

(5)

= 𝜘. (6)

3.2.2 How to ensure a Parabolic/Hyperbolic Equality Constraint.
The approach with the decomposition described above works if S
has only positive eigenvalues (elliptic constraint). For supporting
S with nonpositive eigenvalues (parabolic/hyperbolic constraint),
the main insight is to decompose the constraint

x𝑇 Sx = 𝜘 =: −𝜘− + 𝜘+ . (7)

Moreover, S is decomposed and together with projection operators,
a closed form transformation for ensuring feasibility can be derived
as follows. From the eigenvalue problem Su𝑗 = 𝜆 𝑗u𝑗 with 𝑗 ∈
{1, . . . , 𝑁 } and u𝑇

𝑗
u𝑘 = 𝛿 𝑗𝑘 , one gets

S =

𝑁∑
𝑗=1

𝜆 𝑗u𝑗u𝑇𝑗 =
∑

𝑖:𝜆𝑖<0
𝜆𝑖u𝑖u𝑇𝑖︸         ︷︷         ︸

=:S−

+
∑
𝑗 :𝜆 𝑗=0

𝜆 𝑗u𝑗u𝑇𝑗︸          ︷︷          ︸
=:S0=0

+
∑

𝑘 :𝜆𝑘>0
𝜆𝑘u𝑘u

𝑇
𝑘︸            ︷︷            ︸

=:S+

.

(8)
In addition, one defines the projection operators

P− :=
∑

𝑖:𝜆𝑖<0
u𝑖u𝑇𝑖 , P0 :=

∑
𝑗 :𝜆 𝑗=0

u𝑗u𝑇𝑗 , and P+ :=
∑

𝑘 :𝜆𝑘>0
u𝑘u

𝑇
𝑘
. (9)

Using Equation (8) and the definitions in (9), one can derive

x̃ :=

[ √
𝜘−√

−x𝑇 S−x
P− + P0 +

√
𝜘+√

x𝑇 S+x
P+

]
x, (10)

which is a nonlinear transformation of x to x̃ ensuring that x̃ is
feasible (a proof is given in Appendix A). Notice that with this
approach, there is one more free variable: Either 𝜘− or 𝜘+ must
be chosen. Making this choice a hyperparameter is problematic
since different choices define different constraint manifolds. The
approach followed here is to incorporate this variable into the
evolution. For the details, it is referred to Section 3.4.

Equation (10) simplifies for the case of an elliptic constraint (only
positive eigenvalues) and the case of a parabolic constraint (zero
and positive but no negative eigenvalues). For the latter case, the

simplification results in x̃ ←
( √

𝜘√
x𝑇 S+x

P+ + P0
)
x. For the former
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case, one gets x̃←
√
𝜘√

x𝑇 Sx
x. Note, this transformation is different

to (3) used in [10].

3.3 Algorithmic Preprocessing for the
Constraint Handling

In order to deal with the constraints as described in Section 3.2.2, a
preprocessing consisting of three steps is performed (lines 1 to 7 in
Algorithm 1) before entering the generational loop.

The first step of the preprocessing is to ensure that the matrix S
is symmetric. For this, S is written as the sum

S =
S + S𝑇

2︸ ︷︷ ︸
=:S1

+ S − S
𝑇

2︸  ︷︷  ︸
=:S2

. (11)

By taking a close look at the elements of
(
S + S𝑇

)
/2 and

(
S − S𝑇

)
/2,

one notes that S1 is symmetric and S2 is antisymmetric, i.e., S𝑇1 = S1
and S𝑇2 = −S2, respectively. With these observations,

x𝑇 S2x =

(
x𝑇 S2x

)𝑇
= x𝑇 S𝑇2 x = −x𝑇 S2x (12)

follows. The first step is justified because x𝑇 S2x is a scalar. The
second step makes use of the properties of the transpose calculation.
The last step uses the antisymmetry of S2. Using the result of the
derivation, one gets x𝑇 S2x = 0. With this,

x𝑇 S1x = 𝜘 =⇒ x𝑇 Sx︸︷︷︸
=𝜘

+x𝑇 S𝑇 x = 2𝜘 =⇒ x𝑇 S𝑇 x = 𝜘 (13)

can be derived. Hence, the transformation is justified for ensuring S
to be symmetric and still x𝑇 Sx = 𝜘 does hold (notice that with those
observations and derivations, Ssym corresponds to Equation (11)).

The second step is to perform the eigendecomposition Ssym =

UDU𝑇 (line 4). The eigenvalues are denoted as 𝜆1, 𝜆2, . . . , 𝜆𝑁 .
Third, the S− and S+ matrices for the decomposition and P−, P0,

and P+ as the projection operators are computed.

3.4 Constraint Handling Implementation
With the preprocessing steps described in Section 3.3, the constraint
handling can be performed as depicted in lines 14 to 21 for an
offspring.

A single offspring is created by the standard MA-ES method
(lines 11 to 13). However, due to the additional choice that stems
from the decomposition in Equation (7), the evolution is performed
in an 𝑁 + 1 dimensional space. This allows handling the additional
variable as part of the evolution. In the proposed algorithm, 𝜘− is
evolved as the 𝑁 + 1st component of an individual. It is denoted as
𝜘̃−𝑙 . With this, one gets 𝜘+ = 𝜘̃−𝑙 + 𝜘 directly from Equation (7).

For the actual constraint handling in lines 14 to 21, three cases
are considered: The first case of only positive eigenvalues corre-
sponds to an elliptic constraint. The second case with zero and
positive eigenvalues corresponds to a parabolic constraint. And the
third case corresponds to a hyperbolic constraint. Notice that the
decomposition in Equation (7) is only relevant for the third case.

Algorithm 1 The (𝜇/𝜇𝑤 , 𝜆)-MA-ES for optimization on elliptical,
parabolic, and hyperbolic manifolds in R𝑁 , i.e., the supported con-
straint writes x𝑇 Sx = 𝜘 with 𝜘 ∈ R, 𝜘 ≥ 0, S ∈ R𝑁×𝑁 , and S ≠ 0,
where the last condition excludes the case of all eigenvalues of S
being 0. It is assumed that the feasible region is not empty. There is
no assumption about the definiteness of S.
1: Initialize parameters 𝜇, 𝜆, 𝜇eff, 𝑐𝑠 , 𝑐1, 𝑐𝑤 , and weights 𝑤𝑚 for

1 ≤ 𝑚 ≤ 𝜇 (for dim. 𝑁 + 1)
2: Initialize x (dim. 𝑁 + 1) and 𝜎
3: M← I(𝑁+1)×(𝑁+1) , s← 0(𝑁+1)×1, Ssym ← (S + S𝑇 )/2
4: Perform eigendecomposition Ssym = UDU𝑇 and let 𝜆1, . . . , 𝜆𝑁

denote the eigenvalues of Ssym (diagonal entries
of the matrix D).

5: S− ← 0 +∑𝑗 :𝜆 𝑗<0 𝜆 𝑗u𝑗u
𝑇
𝑗
, P− ← 0 +∑𝑗 :𝜆 𝑗<0 u𝑗u

𝑇
𝑗

6: S+ ← 0 +∑𝑗 :𝜆 𝑗>0 𝜆 𝑗u𝑗u
𝑇
𝑗
, P+ ← 0 +∑𝑗 :𝜆 𝑗>0 u𝑗u

𝑇
𝑗

7: P0 ← 0 +∑𝑗 :𝜆 𝑗=0 u𝑗u
𝑇
𝑗

8: 𝑔← 0
9: repeat
10: for 𝑙 ← 1 to 𝜆 do
11: z̃𝑙 ← N𝑙 (0, I)
12: d̃𝑙 ← Mz̃𝑙
13: ỹ← (x + 𝜎 d̃𝑙 )1..𝑁
14: if ∀𝑗 ∈ {1, . . . , 𝑁 } : 𝜆 𝑗 > 0 then

⊲ only positive eigenvalues
15: x̃𝑙 ←

√
𝜘√

ỹ𝑇 Sỹ
ỹ

16: else if � 𝑗 ∈ {1, . . . , 𝑁 } : 𝜆 𝑗 < 0 then
⊲ zero and positive eigenvalues

17: x̃𝑙 ←
( √

𝜘√
ỹ𝑇 S+ỹ

P+ + P0
)
ỹ

18: else
⊲ negative, positive, and (possibly) zero eigenvalues

19: 𝜘̃−𝑙 ← |(x + 𝜎 d̃𝑙 )𝑁+1 |

20: x̃𝑙 ←
[ √

𝜘̃−𝑙√
−ỹ𝑇 S−ỹ

P− + P0 +
√
𝜘̃−𝑙+𝜘√
ỹ𝑇 S+ỹ

P+

]
ỹ

21: end if
22: 𝑓𝑙 ← 𝑓 (x̃𝑙 )
23: x̃𝑙 ← (x̃𝑙1, x̃𝑙2, . . . , x̃𝑙𝑁 , (x + 𝜎 d̃𝑙 )𝑁+1)𝑇
24: end for
25: Sort offspring according to fitness in ascending order
26: x← x + 𝜎 ∑𝜇

𝑚=1𝑤𝑚 d̃𝑚;𝜆
27: s← (1 − 𝑐𝑠 ) s +

√
𝜇eff𝑐𝑠 (2 − 𝑐𝑠 )

∑𝜇

𝑚=1𝑤𝑚 z̃𝑚;𝜆

28: M← M
[
I + 𝑐1

2

(
ss𝑇 − I

)
+ 𝑐𝑤

2

((∑𝜇

𝑚=1𝑤𝑚 z̃𝑚;𝜆 z̃𝑇𝑚;𝜆

)
− I

)]
29: 𝜎 ← 𝜎 exp

[
𝑐𝑠
2

(
| |s | |2
𝑁+1 − 1

)]
30: 𝑔← 𝑔 + 1
31: until termination criteria fulfilled

4 EXPERIMENTAL EVALUATION
In [10], the Thomson Problem has been used for the experimental
evaluation of the designed ES with support for an elliptic equality
constraint. In this work, an artificially designed benchmark problem
is used for a qualitative evaluation including a comparison with
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other approaches. Section 4.1 explains the problem for the qualita-
tive analysis, Section 4.2 provides an overview of the algorithms
that are used for comparison, Section 4.3 describes the experimental
setup, and Section 4.4 presents and discusses the results.

4.1 The Problem Under Consideration
The idea is to have a benchmark problem that is scalable with
respect to the dimensionality. Let 𝑁 be the dimension. The pro-
posed problem is the minimization of 𝑓 (x) = ∑𝑁 /2

𝑖=1 ((x)𝑖 − 1)
2 +∑𝑁

𝑗=𝑁 /2+1 (x)
2
𝑗 subject to

x𝑇
(
I𝑁 /2×𝑁 /2 X
𝑁X𝑇 −I𝑁 /2×𝑁 /2

)
x = 𝑁 /2, (14)

where
(
X𝑁 /2×𝑁 /2

)
𝑖 𝑗
∼ N(0, 1). The objective function is a shifted

sphere function such that the optimal parameter is

x∗ = (1, 1, . . . , 1︸     ︷︷     ︸
𝑁 /2 ones

, 0, 0, . . . , 0︸     ︷︷     ︸
𝑁 /2 zeros

)𝑇

with optimal objective function value 𝑓 (x∗) = 0. The constraint
can intuitively be interpreted as the combination of two spherical
constraints with added randomness.

Results of the proposed approach on further (randomized) prob-
lems are provided in the supplementary material (Appendix D).

4.2 Algorithms for the Comparison
The designed algorithm has been compared to the algorithms de-
scribed in the following paragraphs.

ConSaDE (denoted “conSaDE o” in the plots): ConSaDE [6]
is the so-called Self-adaptive Differential Evolution Algorithm for
Constrained Real-Parameter Optimization. It is based on the variant
called Self-adaptive Differential Evolution (SaDE), which it extends
by constraint handling using lexicographic ordering. It uses Mat-
lab’s fmincon as a local searcher.

ECHT-DE (denoted “ECHT-DE o” in the plots): Differential
Evolutionwith Ensemble of Constraint Handling Techniques (ECHT-
DE) [7] combines different constraint handling techniques into a DE
algorithm (superiority of feasibility, self-adaptive penalty, 𝜖-level
constraint handling, and stochastic ranking).

𝜖DEga (denoted “epsDEga o” in the plots): Constrained Op-
timization by the 𝜖 Constrained Differential Evolution with an
Archive and Gradient-Based Mutation (𝜖DEga) [12] uses the 𝜖-level
constraint handling method and constructs an archive for diversity
handling. In addition, a gradient-based mutation method is applied.

Active-Set ES (denoted “Active-Se” in the plots):TheActive-
Set ES [1] incorporates the idea of using an active set in the opti-
mization process into an ES. It is a (1 + 1)-ES creating one feasible
offspring in every generation. This is then repaired by projection,
which considers the active set. The mutation strength is adapted
using the 1/5th rule.

𝜖MAg-ES (denoted “epsMAg-ES” in the plots): The 𝜖MAg-
ES [5] is based on the MA-ES and makes use of three constraint
handling techniques (reflection for the bounds, 𝜖-level constraint
handling, gradient-based repair).

MA-ES for General Nonlinear Equality Constraints (de-
noted “maes nonl” in the plots): The MA-ES for General Non-
linear Equality Constraints (refer to [10, Sec. 3]) is based on the
MA-ES and uses an iterative repair mechanism for handling the
constraints.

LSHADE44 (denoted “LSHADE44” in the plots): The algor-
tihm “L-SHADE with Competing Strategies Applied to Constrained
Optimization” (LSHADE44) [9] was the winner of the CEC 2017
competition on real-valued constrained optimization. It is based
on the Success History Based DE (L-SHADE) [13]. Four variants
of mutation and crossover operators are used and for constraint
handling the lexicographic ordering approach is incorporated.

iUDE (denoted “iUDE on c” in the plots): The improved
Unified Differential Evolution (iUDE) is based on the UDE [15]
algorithm. It was the winner of the CEC 2018 competition on con-
strained optimization in the continuous domain3. A dual population
approach and three different trial vector generation methods are
incorporated. For the constraint handling, lexicographic and 𝜖-level
constraint handling are used.

fmincon (denoted “fmincon o” in the plots): The optimiza-
tion function fmincon (interior-point) of Matlab has been used. This
provides results of a further interior point algorithm in addition to
the designed algorithm and the Active-Set ES.

4.3 Experimental Setup
For conducting the experiments, the problem described in Sec-
tion 4.1 has been implemented in the COCO framework [4]. The cor-
responding source code is available in a GitHub fork of the COCO
framework, https://github.com/patsp/coco. The adaptations and ex-
tensions can be found in the branch development-sppa-manifold,
which is based on the branch development of https://github.com/
numbbo/coco. The code for the problem described in Section 4.1
is part of the test suite called custom (code-experiments/src/
suite_custom.c, code-experiments/src/coco_suite.c).

To be in line with the bbob-constrained COCO suite that only
uses inequality constraints, the equality constraint x𝑇 Sx = 𝜘 is
represented as two inequality constraints using an error tolerance
of 10−8. I.e., the two inequalities

−
(
x𝑇 Sx − 𝜘

)
− 10−8 ≤ 0 (15)

and (
x𝑇 Sx − 𝜘

)
− 10−8 ≤ 0 (16)

are used.
The default parameters stated in [2] have been used, i.e.:

𝜆 = 4 + ⌊3 ln𝑁 ⌋,

𝜇 =

⌊
𝜆

2

⌋
,

𝑤𝑚 =

ln
(
𝜆+1
2

)
− ln𝑚∑𝜇

𝑘=1

(
ln

(
𝜆+1
2

)
− ln𝑘

) for 1 ≤ 𝑚 ≤ 𝜇,

𝜇eff =
1∑𝜇

𝑚=1𝑤
2
𝑚

,

3TheMatlab source code and a report of iUDE are available in the CEC 2018 competition
materials.

https://github.com/patsp/coco
https://github.com/numbbo/coco
https://github.com/numbbo/coco
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𝑐𝑠 =
𝜇eff + 2

𝜇eff + 𝑁 + 5
,

𝑐1 =
2

(𝑁 + 1.3)2 + 𝜇eff
,

and

𝑐𝑤 = min
(
1 − 𝑐1,

2(𝜇eff + 1/𝜇eff − 2)
(𝑁 + 2)2 + 𝜇eff

)
.

For the budget of the sum of function and constraint evaluations
105𝑁 has been used.

4.4 Results
The results are presented by visualizing bootstrapped Empirical
Cumulative Distribution Functions (ECDF). They show the percent-
ages of function target values reached given a budget of function
and constraint evaluations (shown on the 𝑥-axis normalized by
the search space dimension and in logarithmic scale). The targets
are defined as particular distances from the optimal value. In this
work, the default COCO targets are used: 𝑓target = 𝑓opt + 10𝑘 for 51
different values of 𝑘 between −8 and 2. Notice that COCO does not
define any targets in the infeasible region. The crosses in the plots
denote the medians of the sum of objective function and constraint
evaluations (log10 of the medians is shown on the corresponding
position on the 𝑥-axis) of the instances that were not able to reach
all the targets. The crosses’ values on the 𝑦-axis have no meaning,
they are plotted on the particular line they belong to for better vi-
sualization purposes. Information about the experiments is shown
(top left) as well as a legend (right).

Figure 1 shows the results as ECDF plots. The algorithm proposed
in this work is denoted as “maes on c” in the plots. It is able to
reach the most difficult target for all the dimensions shown.

Surprisingly, the iUDE, the LSHADE44, the ECHT-DE, and the
𝜖DEga are only able to reach the most difficult target for the smaller
dimensions. One reason for this can stem from the way the equal-
ity constraint is turned into two inequality constraints using a
tolerance of 10−8 (refer to inequalities (15) and (16)). To this end,
further experiments have been performed (the results are provided
in Appendix C) for those variants using a tolerance of 10−4 and
keeping all other experimental setup considerations. It turns out
from the corresponding ECDF plots that all variants except iUDE
are still only able to reach the most difficult target for the smaller
dimensions. The iUDE reached the most difficult target for all the
dimensions considered. The performance of the other methods is
better compared to the respective experiments with the tolerance
of 10−8.

The best performing variants are fmincon, the Active-Set ES, the
MA-ES for general nonlinear equality constraints, the proposed
MA-ES variant, the 𝜖MAg-ES, and the ConSaDE4. The performance
of fmincon is not surprising, since the test problem is one where
the underlying algorithms should perform well. A significant differ-
ence from the Active-Set ES and the MA-ES for general nonlinear
equality constraints to the ES proposed in this work is that the
former methods use repair for dealing with infeasible offspring.
This is in contrast to the proposed closed form transformation in
the developed method. The 𝜖MAg-ES is of different nature in that

4It is worth noting that ConSaDE uses fmincon internally after a predefined number
of generations to speed up the convergence.

it also evaluates individuals in the infeasible region. As the results
show, it is also effective on the test problem used.

It was also experimented with a back-calculation of the mutation
vector of an individual after the nonlinear transformation that
ensures the feasibility (results not shown here). It turned out that
the back-calculation is disadvantageous in this case of a nonlinear
transformation. The variant with back-calculation has only been
able to reach the most difficult target for the smaller dimensions.
The reason for this unexpected observation remains unclear and
should deserve further investigations.

5 CONCLUSION
An algorithm based on the MA-ES has been designed with support
for a parabolic/hyperbolic equality constraint. It is an interior point
method and evaluates itself on the nonlinear constraint manifold.

The developed ES has been experimentally evaluated on a scal-
able test function and compared to other (black-box) optimization
methods. The results show that it is an effective method for han-
dling such constraints. In particular the comparison to fmincon,
which is a method that is predestined for such problems, highlights
the proposed method’s competitiveness.

In future work, more experimental evaluation is of interest. Es-
pecially evaluating the proposed algorithm on real-world black-box
problems with such constraints can reveal its power. The experi-
mental results show that the Active-Set ES is an effective method
for the considered problem as well. However, it is worth noting that
it uses an iterative repair procedure for treating infeasible individu-
als. This is in contrast to the relatively simple and computationally
cheap closed form transformation for ensuring feasibility presented
in this work.

Another direction for future work could concern the considered
DE methods except ConSaDE: It is of interest to understand why
they do not reach the most difficult target, especially for the larger
dimensions.
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APPENDIX
A PROOF OF THE TRANSFORMATION

ENSURING FEASIBILITY
For showing that Equation (10) ensures feasibility, as a first step
properties of S−, S+, P−, P0, and P+ are derived.

For P−P−, one can derive

P−P− =
∑

𝑖:𝜆𝑖<0
u𝑖u𝑇𝑖

∑
𝑖′:𝜆𝑖′<0

u𝑖′u𝑇𝑖′ =
∑

𝑖:𝜆𝑖<0

∑
𝑖′:𝜆𝑖′<0

u𝑖u𝑇𝑖 u𝑖′u
𝑇
𝑖′

=
∑

𝑖:𝜆𝑖<0

∑
𝑖′:𝜆𝑖′<0

u𝑖𝛿𝑖𝑖′u𝑇𝑖′ =
∑

𝑖:𝜆𝑖<0
u𝑖u𝑇𝑖 = P− .

(17)

Analogously, one gets
P+P+ = P+ (18)

and similarly
P+P− = 0, (19)
P−P+ = 0, (20)
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Figure 1: Bootstrapped empirical cumulative distribution function of the number of objective function and constraint evalu-
ations divided by dimension: comparison of the various algorithms.

and
P−P0 = P0P− = P+P0 = P0P+ = 0 (21)

can be derived. For P𝑇−, one obtains

P𝑇− =
©­«
∑

𝑖:𝜆𝑖<0
u𝑖u𝑇𝑖

ª®¬
𝑇

=
∑

𝑖:𝜆𝑖<0

(
u𝑖u𝑇𝑖

)𝑇
=

∑
𝑖:𝜆𝑖<0

u𝑖u𝑇𝑖 = P− . (22)

The derivation for
P𝑇+ = P+ (23)

is analogous.
For S−P−, one can derive

S−P− =
∑

𝑖:𝜆𝑖<0
𝜆𝑖u𝑖u𝑇𝑖

∑
𝑖′:𝜆𝑖′<0

u𝑖′u𝑇𝑖′ =
∑

𝑖:𝜆𝑖<0

∑
𝑖′:𝜆𝑖′<0

𝜆𝑖u𝑖u𝑇𝑖 u𝑖′u
𝑇
𝑖′

=
∑

𝑖:𝜆𝑖<0

∑
𝑖′:𝜆𝑖′<0

𝜆𝑖u𝑖𝛿𝑖𝑖′u𝑇𝑖′ =
∑

𝑖:𝜆𝑖<0
𝜆𝑖u𝑖u𝑇𝑖 = S− .

(24)
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Analogously, one gets
S+P+ = S+ (25)

and similarly
S+P− = S+P0 = 0 (26)

and
S−P+ = S−P0 = 0 (27)

can be derived.
Now, use of Equation (10) results in

Sx̃ =

√
𝜘−√

−x𝑇 S−x
SP−x + P0x +

√
𝜘+√

x𝑇 S+x
SP+x. (28)

Due to (8), (24), (25), (26), and (27), SP− = (S− + S+)P− = S−, SP+ =
(S− + S+)P+ = S+, and SP0 = (S− + S+)P0 = 0 hold. Consequently,

Sx̃ =

√
𝜘−√

−x𝑇 S−x
S−x +

√
𝜘+√

x𝑇 S+x
S+x. (29)

Using (10), (22), and (23), one can derive

x̃𝑇 Sx̃ = x𝑇
[ √

𝜘−√
−x𝑇 S−x

P− +
√
𝜘+√

x𝑇 S+x
P+

] [ √
𝜘−√

−x𝑇 S−x
S−x +

√
𝜘+√

x𝑇 S+x
S+x

]
.

(30)
This can further be rewritten using (24), (25), (26), and (27) yielding

𝜘−
−x𝑇 S−x

x𝑇 S−x+x𝑇 0x+x𝑇 0x+
𝜘+

x𝑇 S+x
x𝑇 S+x = −𝜘−+𝜘+ = 𝜘, (31)

where the last step is justified by (7). □

B TWO-DIMENSIONAL EXAMPLES OF THE
PROBLEM

Examples of the considered problem in two dimensions are shown
in Figure 2:
• The top plot shows a visualization of the problem

min. ((x)1 − 1)2 + (x)22

s.t. x𝑇
(
1.0 0.1
0.2 2.0

)
x = 1.0.

(32)

• The middle plot shows a visualization of the problem

min. ((x)1 − 1)2 + (x)22

s.t. x𝑇
(
1.0 0.5
1.0 −1.0

)
x = 1.0.

(33)

• The bottom plot shows a visualization of the problem

min. ((x)1 − 1)2 + (x)22

s.t. x𝑇
(
1 0
0 0

)
x = 1.0.

(34)

C DE EVALUATION RESULTS WITH
CONSTRAINT TOLERANCE 10−4

As shown in the paper, the iUDE, the LSHADE44, the ECHT-DE,
and the 𝜖DEga are only able to reach the most difficult target for the
smaller dimensions. One reason for this can stem from the way the
equality constraint is turned into two inequality constraints using a
tolerance of 10−8. To investigate this further, experiments have been
performed for those variants using a tolerance of 10−4 and keeping
all other experimental setup considerations. The corresponding
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Figure 2: Two-dimensional visualization of a spherical prob-
lem (solid contour lines are shown) with an elliptical (top), a
hyperbolic (middle), and a parabolic (bottom) equality con-
straint (shown as black dashed lines).

ECDF plots are shown in Figure 3 and Figure 4. All variants except
iUDE are still only able to reach the most difficult target for the
smaller dimensions. However, note that their performance is better
compared to the experiments with the tolerance of 10−8.
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Figure 3: Bootstrapped empirical cumulative distribution
function of the number of objective function and constraint
evaluations divided by dimension: comparison of DE algo-
rithms with an equality constraint tolerance of 10−4. (Part
1/2)
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Figure 4: Bootstrapped empirical cumulative distribution
function of the number of objective function and constraint
evaluations divided by dimension: comparison of DE algo-
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Supplementary Material

D FURTHER EXPERIMENTAL EVALUATION RESULTS
For the quantitative evaluation, problems are generated by randomly sampling 𝑁 eigenvalues 𝜆 𝑗 ∼ N(0, 1) for 𝑗 ∈ {1, . . . , 𝑁 } resulting in a
quadratic constraint. Using those eigenvalues, a randomized S matrix is computed with S = U𝑇DU, where U is also randomly generated
such that U𝑇U = I and D = diag(𝜆1, . . . , 𝜆𝑁 ). To ensure that there are not only hyperbolically constrained problems, additional problems
are considered: Absolute eigenvalues are considered to have additional elliptically constrained problems. In addition, half of the absolute
eigenvalues are set to 0 to generate additional parabolic problems. For the objective function, a randomized ellipsoid function

𝑓 (x) =
𝑁∑
𝑖=1

10
𝑖−1
𝑁−1 (Rx + t)2𝑖 (35)

is used, where R𝑗𝑘 ∼ N(0, 1) and t𝑗 ∼ N(0, 1). ECDF plots are shown in Figure 5 for dimension 10, Figure 6 for dimension 20, Figure 7 for
dimension 30, and Figure 8 for dimension 40. The optimal values used as a reference for creating the ECDF plots are determined by solving
the randomly generated optimization problems using fmincon.
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Figure 5: Results (as ECDF plots) of applying the proposed algorithm to the randomly generated problems for dimension 10.
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Figure 6: Results (as ECDF plots) of applying the proposed algorithm to the randomly generated problems for dimension 20.
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Figure 7: Results (as ECDF plots) of applying the proposed algorithm to the randomly generated problems for dimension 30.
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Figure 8: Results (as ECDF plots) of applying the proposed algorithm to the randomly generated problems for dimension 40.
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