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ABSTRACT

The paper presents the theoretical performance analysis of a hierar-
chical Evolution Strategy (meta-ES) variant for mutation strength
control on a conically constrained problem. Infeasible offspring are
repaired by projection onto the boundary of the feasibility region.
Closed-form approximations are used for the one-generation pro-
gress of the lower-level evolution strategy. An interval that brackets
the expected progress over a single isolation period of the meta-
ES is derived. Approximate deterministic evolution equations are
obtained that characterize the upper-level strategy dynamics. It is
shown that the dynamical behavior of the meta-ES is determined by
the choice of the mutation strength control parameter. The obtained
theoretical results are compared to experiments for assessing the
approximation quality.
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1 INTRODUCTION

Among the class of Evolution Strategies (ES), hierarchical Evolution
Strategies, or Meta-Evolution Strategies (meta-ES), represent an
alternative approach for strategy parameter control [12, 13, 19]. A
crucial property of an ES is the ability to properly control its inter-
nal mutation strength, i.e. the standard deviation of the offspring
distribution that can roughly be associated with the length of a
search-steps. In the context of mutation strength control on the
Ellipsoid model, a simple meta-ES variant revealed a performance
in between those of the o-Self-Adaptation ES (0SA-ES) [17] and the
Cumulative Step-Size Adaptation ES (CSA-ES) [16], but enhanced
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robustness with respect to strategy parameter variations [11]. Due
to theoretical results on the Sharp Ridge test function which shares
similar features with simple constrained problems [7], meta-ES ap-
proaches are considered successful in constrained settings. Hence,
this paper investigates the ability of meta-ES to successfully control
the mutation strength in a constrained setting.

Recently, the design and analysis of ES applicable to constrained
optimization problems are of growing interest. Theoretical analyses
reveal a deeper understanding of the ES working principles and
their potential on such problems. Knowledge gained from theory
yields information about what kind of problems are suitably solved
by ES and guidelines for applying ES to constrained real-world
problems. Theoretical investigations gain insights into algorithm
behavior and allow for recommendations of strategy parameters.
Further, theory supports the design of novel algorithmic ideas.

For the analysis of ES variants with different constraint han-
dling mechanisms on problems with a single linear constraint, refer
to [1, 3]. The study [10] revealed that the methods that repair infeasi-
ble solutions by projection are beneficial in such situations. Another
idea for constraint handling is based on augmented Lagrangian con-
straint handling [4-6]. These investigations make use of a Markov
chain model to analyze the one-generation behavior in the presence
of a single or multiple linear constraints. A conically constrained
problem is considered in [2] for the analysis of the (1, A)-ES using
a death penalty approach. Adding self-adaptive mutation strength
control, the dynamical behavior of the (1,1)-0SA-ES is studied
in [20] by making use of the dynamical systems approach [14]
on the same problem. That work was extended to recombinative
0SA-ES in [22]. In [21] the analysis approach is transferred to mu-
tation strength control by cumulative step-size adaptation (CSA).
The aim of this paper is to analyze the performance of the non-
recombinative [1, 2(1, 1)¥ ]-meta-ES on the conically constrained
problem. To keep the analysis simpler, the paper confines itself to
isolation periods of length y = 1. Hence, the present analysis repre-
sents the first step towards a complete comprehension of mutation
strength control in the respective constrained environment.

The meta-ES variant is presented in Sec. 2. In Sec. 3 a description
of the constrained problem and the repair mechanism for infeasible
candidate solutions is provided. The theoretical analysis of the
dynamical meta-ES behavior is going to be conducted in two steps.
At first, considering a constant mutation strength, the microscopic
dynamics of the lower-level (inner) ESs are examined in Sec. 4. The
results are then used to obtain theoretical predictions for the upper-
level strategy in Sec. 5. A description of the meta-ES dynamics for
isolation periods of length one is provided. The results are then
used to estimate the expected convergence rate of the strategy. All
analysis steps are substantiated by comparisons with experimental
results obtained from real ES runs. Section 6 concludes the paper
with a discussion of the theoretical results.
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Algorithm 1 The standard (1,4)-ES with constant mutation
strength and repair.

. Initialize: 0,y, A, y;

g« 0;

: while g < y do

fori «— 1toAdo
yi — y9 + o N(0,D);
yi <Repair(y;)
Fi « F(yi);

end for

y(9+1) — Vi

ge—g+1;

: end while

: return [y, F(y)][;

> Mutation
> Repair by Projection
> Evaluation

R A U L A

> Selection

_ e e
N o= O

2 THE META-ES ALGORITHM

This section is concerned with the description of the [1, 2(1,1)¥ |-
meta-ES which is investigated in the conically constrained setting.
The meta-ES consists of two hierarchical levels. On the lower level,
two similar ES evolve for a fixed number of generations y (the
isolation time) with constant strategy parameter. A single ES on
the upper level evaluates the lower-level performance and updates
the lower-level strategy parameters accordingly. The lower-level
strategies are represented by the standard (1, A)-ES. [8]. The corre-
sponding pseudo code is presented in Alg. 1.

After initialization, the (1, A)-Evolution Strategy generates a pop-
ulation of A offspring. Therefore, the algorithm successively samples
vectors z ~ N(0,I) from a multivariate standard normal distribu-
tion in line 5, scales these vectors with o, and adds the product
to the present y. In line 6, the offspring is computed by a repair
procedure if need be (otherwise it is just a copy of y; in line 5).
The parameter o represents the standard deviation of the offspring
distribution around the parental centroid. The parameter ¢ is com-
monly referred to as mutation strength of the Evolution Strategy.
Having generated a feasible offspring candidate solution y;, its
objective function value is evaluated in line 7.

The constrained problem under investigation assumes unrelax-
able constraints of known analytical structure only, i.e. the objective
function cannot be evaluated for an infeasible candidate solution.

Algorithm 2 The pseudo code of the [1,2(1, 1) |-meta-ES. The
Code of the inner ES is displayed in Alg. 1.

1: Initialize: (0, y(O), Ay;

2: t 0

3: repeat

4 o] «— o(t)a;

oy — oD /q;

[y1. F(y1)] — ES(A,y, o1, y"));
[y2, F(y2)] — ES(A,y, 02, y"));

ot — oy

v — yia;
10: t—t+1;
11: until termination condition
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For this reason, the ES needs to apply a constraint handling tech-
nique that ensures the feasibility of the whole offspring population
in each generation. The Repair subroutine in line 6 checks the
feasibility and repairs infeasible solutions by projecting them onto
the boundary of the feasible region. We refer to this method as
projection. Having generated a population of A feasible candidate
solutions, the best candidate (w.r.t. the function values F;) is se-
lected. Note that the notation 1; A refers to the best out of A offspring
of a certain generation. The main loop of Alg. 1 is iterated until the
predefined isolation time y is exceeded. The algorithm returns the
best solution y of the final population together with the associated
objective function value F(y).

An internal mutation strength control mechanism (alike cSA
or CSA) is omitted in Alg. 1. Instead, we add an upper-level ES
that governs the mutation strength of the (1, 1)-ES. Note that the
upper-level strategy considered in this report does only control the
mutation strength o of two inner strategies and keeps all other strat-
egy parameters fixed, respectively. Refer to Alg. 2 for the pseudo
code of the upper-level strategy.

The [1, 2(1, A)¥ ]-meta-ES represents a rather simple variant of a
hierarchically organized Evolution Strategy. It employs two inner
(1, 1)-ES which evolve from the same initial search space parameter
vector yp but with different mutation strength values o1 = opa
and 02 = op/a with @ > 1. The mutation strength control is
performed in between two consecutive isolation periods ¢ and ¢ + 1
of length y. The best performing inner ES (with respect to the
returned objective function value) passes its mutation strength o712
as well as the returned parameter vector y1,2 to the next iteration, or
isolation period, respectively. Algorithm 2 terminates after reaching
amaximal number of isolation periods or another stopping criterion
(e.g. a predefined target precision).

3 PROBLEM FORMULATION

Consider the linear constrained optimization problem

min F(y) = cyy
yeRN

N
styf—E) 420 (1)
i=2
y1 =0

with parameters ¢ > 0, £ > 0, linear objective function F(y) = cy;
and a quadratic constraint. Without loss of generality, the parameter
c is assumed to be equal to one, i.e. ¢ = 1. The two constraints in
problem 1 define a cone-shaped feasible set in the search space.
By construction, the cone is symmetrically placed around the first
coordinate axis of the RY. Due to this symmetry, each point in the
search space can be uniquely described by its distance x from 0 in
direction of the cone axis y; and its perpendicular distance r from
the cone axis. We refer to this representation as the (x, )" -space.
Note that due to the isotropy of the mutations used in the meta-ES,
the coordinate system can w.l.o.g. be rotated. Thus, a particular
candidate solution’s distance from the cone axis coincides with the
second component of this rotated coordinate system, i.e. (¥,7)T
corresponds to (X, 7,0, ..., 0.

A two-dimensional (N = 2) illustration of problem 1 is provided
in Fig. 1. Since each point has a positive distance from the cone
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Figure 1: Two-dimensional illustration of the conically con-
strained optimization problem (1).

axis, only half of the cone is displayed. The cone boundary follows
the equation r = y; /+/E. In the (x, )T -space, it can be equivalently
represented by the unit normal vector n of the constraint boundary

(=l (e e
r 1+¢ Vel \r .
The parameter £ > 0 governs the opening angle of the cone which is
decreasing with growing &. For ¢ = 1 the cone exhibits an opening
angle of 45° with the cone axis.

In order to deal with the constraint functions under consider-
ation, there exist a number of different constraint handling tech-
niques [15]. The following analysis confines itself to repair by pro-
jection. In case of the conically constrained problem, the projection
operator that maps infeasible candidate solutions back onto the
boundary of the feasible region is given by

(elynec, ifely; >0
0, otherwise °

Vi< { (3

In this representation, the vector

1 €r

denotes the unit vector in direction of the cone boundary, e is
the unit vector in direction of the y; axis, and e, refers to the unit
vector in r direction.

4 THE INNER DYNAMICS

For a description of the meta-ES, the one-generation progress of the
inner (1, A)-ES with fixed mutation strength o9 = & = const. must
be considered, first. The starting point is the progress rate theory
obtained in the context of self-adaptive ES [20]. In the same way, the
following analysis assumes that fluctuation terms can be neglected
in the asymptotic limit case N — co. Hence, the transition from
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generation g to generation g + 1 can be described by the system of
deterministic evolution equations

X = X9 (1 ¢{"/N) )
HgtD) — (9) (1 _ qo(rg)*/N) , (6)

with normalized progress rates ¢} and ¢; in x, and in r, direction,
respectively. The normalized progress rates strongly depend on the
probability of whether a generated offspring candidate solution is
initially feasible or infeasible (and needs to be repaired). To this end,
the paper [20] derived the probability Pf, that an initially feasible
candidate solution is generated by the ES. In the asymptotical limit
of large N, the probability is determined by the state variables of

generation g as
(9)+2 1
with 7 = r@4[1+ 2 1-=|, (7
N N

1 x(y) )
el

where 7 is the expected value of the r normal approximation and
® is the cumulative distribution function of a standard normal
variate. The probability that the offspring needs to be repaired is
Pinf = 1 — Ppe,. The overall expected normalized progress ¢ in
direction of the cone axis x is then obtained by combining the
progress rates calculated for both extreme cases and weighting
them with the respective probabilities [20]

Ppeg = @

09" = o5 (x9), 19 59) = E [x(g> — x4 Dx(9) 9, J(g>]

% Ppea %O—(g)*cl,ﬂ + Ping - 00, ¥
with
g = N[y o
1+¢ x(9) N
)

Here, the term ¢, refers to the progress coefficient introduced
in [18]. It is only depending on the offspring population size A. Fur-
thermore, the normalized progress rate ¢ in r direction reads [20]

09 = 1 (9,19 59)) = E [,(g) _HgtD @) (9), G(g)]

(g)2 (9) (9
~ PeaN|1-1/14 2 PN [ 1- [ 1= P
\/Er(g) N
(10)

In both progress representations, the term c@* = ¢N/r'9 repre-
sents the normalized mutation strength of the strategy. The use of
these progress rates is justified by iterating the system of evolution
equations (5), (6), and comparing the results to experimental runs
of the inner (1, 1)-ES that operates with fixed mutation strength
o, refer to Fig. 2. All runs are initialized close to the cone axis
Vinit = (WN,1073,0,...,0)T with ¢ = 1 = const. to ensure feasibil-
ity and to demonstrate the good agreement even in the transient
phase of the dynamics. Different values of the cone parameter ¢
are considered.
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Figure 2: Comparison of the experimental (1, 10)-ES dynamics (data points displayed by the ’x’ markers) and the theoretical
dynamics that are obtained by iterating the evolutionary system (5), (6) (solid lines). The predictions use the progress rate rep-
resentations from Eq. (8) and (10). All dynamics are obtained for constant mutation strength ¢ = 1in N = 400. The experimental
runs are averaged over 20 independent algorithm runs and the standard deviation is indicated by use of the error band plots.

Assuming that the ES operates sufficiently close to the constraint
boundary, the transient phase is almost skipped and the steady-state
behavior is observable comparably quickly. In its steady-state, the
ES is likely to generate infeasible solutions that are then repaired
by the projection operator. Hence, P,¢ ~ 1 can be assumed and the
corresponding progress will be determined by Eq. (9) (x-direction)
and the second addend of Eq. (10) (r-direction) alone.

The progress rate (9) can be further simplified. In the asymp-
totic limit of N — oo, the quadratic normalized mutation strength

@+ is supposed to be considerably smaller than the search space

dimension N, i.e. @ < N. Accordingly, the second square root
in Eq. (9) is asymptotically equal to

1+ =, (11)

and the normalized progress rate (9) (conditional on Pg, = 0) in

x-direction becomes
o, L0l9)* \/Er(g)

s (9) (g)*z
qggcg) - N 1_\/Er \/1+U +
1+ é" x(g) N J1+ éf x(g)

The dynamics presented in Fig. 2 indicate that the (1, 1)-ES, see
Alg. 1, approaches a constant steady-state ratio of the x19) and the
r(9) states. This ratio is proportional to the square root of cone
parameter £. The geometrical interpretation is that the ES moves
towards the optimizer along the cone boundary in its steady-state.
As a result, the constant quotient %9 /(r9) \/E) = 1 can be inserted
into the progress rate representations yielding

. (12)

@2\ ¢ 0@

(g)* (g)* _ N o 1,A
c9y= —|1-4/1+ =L

ox (@) = — 7 N Y

(13)

as well as
(@) _(g)«
(P(rg)*(o_(g)*) =N (1 _ (1 _ Px (o )

N )) =" (@), (19

The very good approximation quality of these equations is illus-
trated in Fig. 3. All dynamics are obtained for constant mutation

strength 0 = 1in N = 400. The starting point is located on the cone
boundary, yinit = (\/ﬁ ,WNJ/E0,. .., 0)7, to illustrate the steady
state behavior. Infeasible candidate solutions are repaired by use of
the projection operator (3).

Figure 4 illustrates the corresponding 1, 2[(1, 10)]!-meta-ES dy-
namics. To this end, the iterative dynamics are obtained by iterating
the evolutionary system (5), (6) and updating the mutation strength
according to Alg. 2 after each isolation period of y = 1.
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Figure 3: Averaged over 20 runs, the experimental (1, 10)-ES
results are given by the data points. The standard deviation
is indicated by use of the error band plots. The theoretical
dynamics are illustrated by solid lines that are obtained by
iterating system (5), (6). The theoretical predictions use the
progress rates (13), and (14), respectively.
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Figure 4: Comparison of the experimental [1, 2(1, 10)]'-meta-ES dynamics (data points displayed by the ’x’ markers) and the
theoretical dynamics that are obtained by iterating system (5), (6) and by making use of the progress rates in Eq. (13), and (14),
respectively. All dynamics are obtained by making use of « = 1.2 in N = 1000. The experimental runs are averaged over 1000
independent meta-ES algorithm runs to dampen the fluctuations that occur due to the o update of the upper-level ES.

5 THE OUTER DYNAMICS

Based on the considerations above, the next step is concerned with
the analysis of the behavior of the non-recombinative [1, 2(1, 1)Y ]-
meta-ES in Alg. 2 that controls the mutation strength, cf. Sec. 2.

The mutation strength control within Alg. 2 is governed by the
difference of the expected fitness values of the candidate solutions
returned by the inner ESs. Considering the objective of (1), it is
evident that the expected fitness change from generation g to g + 1
is determined by the progress rate in direction of the cone axis (8).
Assuming that the meta-ES is already operating in the vicinity
of the cone boundary (where Pj,r ~ 1 holds), the progress rate
approximation (13) qualifies to describe the expected fitness at the
end of each isolation period.

This analysis is confined to isolation periods of length y = 1, i.e.
the inner ESs are compared (and updated) after a single generation.

(t) _ (90)

The transition of a candidate solution before isolation v =Y,

to the candidate solution after the isolation period y('”) = yggoﬂ/)

is then given by the evolution equations (5), (6). Consequently, the
expected fitness values returned by the inner ESs after isolation
period t + 1 are given as

F§t+1) :F(y(lt+1)) = x§t+1) = x(t) (l b @fC(t)((ZO'*)/N)

(15)
FY =R ) = =20 (1- 9o a)/N)

Their difference D(*1) = F;Hl) - thﬂ) determines the muta-
tion strength adaptation in the meta-ES strategy. Accordingly, the

mutation strength o control rule becomes
oD = gt it DD < 0,
(16)

o) = o(t)/a it DD > o

Reconsidering the normalized progress rate representation (13)
yields the difference Dt*+D) of the fitness values as

ey _ 2 A1+ a2g*®? ey a0\ +E
T 1+& N N

17)
oH(1)? . cl’la*(t)m

1+
a’N aN

A simplification of this expression can be obtained by reusing the

assumption 0@ < N and by expanding /1 + ¢*2/N into its
Taylor series around zero (and neglecting higher order terms). One
obtains

() (D (g2 — 1 #(t)
s (1))
aN+J1+¢ 2 V1 + €& a

Since a > 1, the sign of the difference depends on the discriminant

#(t) 1
Mo = | T (o 3] 1],
( ) (201’/1 1+§ a

and the evolution equation (16) of the mutation strength becomes

o(t+1) = (8) 4sign(A(e™®))

pit+D) —

(19)

(20)
Taking into account the normalization * O =N/ D), Eq. (20)
yields the evolution equation of the normalized mutation strength
O_*(t+1)r(t+1) o_*(t)r(t)

N N
By multiplication with N/ r(t+1) and by taking into account the

evolution equation (6) together with the progress rate approxima-
tion (14), Eq. (21) reads

a—sign(A(a*m)) )

(1)

a—sign(A(a*(')))
P g VR ()

' . (22)
1 Lot (o (g siEn (8@ )
Equation (22) represents a complicated iterative mapping of the
form o*(t*1) = f,_(¢*("); o, N). This kind of recurrence equation
does not allow for the straight forward analysis of parameter influ-
ences on the normalized mutation strength dynamics. It can exhibit
different qualitative dynamics: stable fixed points, limit cycles, or
chaotic behaviors. Studying the qualitative behavior in Fig. 5, a
point of discontinuity can be observed. It corresponds to a change
in the o adaptation pattern of the meta-ES and can be calculated as
the zero of the discriminant function A(o) = 0. We obtain
N a
oy = ch’m/l+§l+a2'
The point of discontinuity depends on the cone parameter as well as
on the mutation strength control parameter a. Different dynamics
can be observed depending on a: If the fixed point of* of the

(23)

iterative mapping (22) is at o, it cannot be a stable attractor, cf.
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Fig. 5. Due to df5(c*)/do™ > 1, the other fixed point at 6" = 0 is
also unstable. Hence, the case in Fig. 5(b) displays a limit cycle.
Being interested in finding the influence factors that realize a con-
tinuous mutation strength reduction, consider the case where the
fixed point of (22) satisfies 0" > oy, i.e. A(o™) > 0. Considering

the fixed point condition o (t+]) = (1), Eq. (22) becomes
1 1
l=—————. (24)
@1-yoi(o"W/a)
After straight forward transformations, and by using the linear part

of the Taylor expansion of y'1 + ¢*2/N around zero, one obtains a
quadratic equation in "

0';2 —2acy a1+ 0'; +2(1+ &N(a — Da = 0. (25)

Hence, its solution reads

U;i:acl’A 1+&[1+ (26)

Depending on the magnitude of the square root in Eq (26), the
solution o7_* may be of relevance or not. If 67 < oy, it is not a

solution of the iterative mapping because it violates the assumption
A(a;) > 0. Accordingly, one obtains the fixed point as

(27)

Otherwise, if Uf’l
In this situation, the one which satisfies df;(c*)/do™ < 1 turns
out to be the stable attractor.

> o,y holds, two fixed points must be considered.
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Figure 5: On the ¢* dynamics of the [1,2(1,10)!]-meta-ES
for N = 400, { = 10. An unstable fixed point of Eq. (22) is
displayed in (a). This corresponds to the limit cycle illus-
trated in (b). The point of discontinuity o is indicated by
the dashed red line. For § and & refer to Eqs. (29) and (30).
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However, the limiting case for the existence/non-existence of a
stable fixed point, is governed by the radicand in (27). The transition
point g can be computed as the root of the radicand with respect

toa
i) 2N
a =1+ = (28)
2N—cl’/1 2N—cl/1

This expression emphasizes the impact of the search space dimen-
sion N, and the offspring population size A, on the mutation strength
control parameter a. For given N and A, a stable fixed point can
only be expected for mutation strength control parameters o < ay.

If the condition a < «y, and thus A(UJ’Z) > 0, holds, the meta-ES is
expected to gradually decrease the mutation strength o with each
isolation period (cf. Eq. (20)). On the other hand, if @ > ap holds,
the meta-ES will not approach a stable fixed point. Instead, the
o* dynamics will fluctuate around the point of discontinuity o
leading to both o-decreasing and o-increasing steps.

In the latter case, the range of normalized mutation strength
values observed in the limit cycle can be bracketed. The o* values
are confined in the interval between the left-sided and right-sided
limit of Eq. (22) at g (see Fig. 5(a)). With ¢} = ¢3.(aay) as well as
¢~ = ¢x(0; /a) from Eq. (13), one obtains

ac*
& = lim @—————
070501 - —<Px(aff*)
oy 1 (29)
=—_2C1/\V1+ —*,
1-— N(p 1+a? N¢+
and
vk G*/a
5= m —
o =030 1 - k(o)
” ) (30)
=1 =21Vl l 2—*’
a(l - ‘P ) ta N‘P—
where
2 2
L=l = 2ot (31)
T 1+ a2y

can be obtained by Taylor expansion of y/1 + ¢*2/N around zero in
Eq. (13). Provided that @ > «y, the expected value of the normalized
mutation strength is bracketed in
2c1 41 + 1
o € [6°,5"] = [1a?] - AVLEE NG

2 1
1+« l—ﬁ(p+

Considering the o™ interval (32), the expected meta-ES progress in
x direction ¢ will be contained in the interval

2a
(1+a?)

2
(/NJ;E ‘px(o' ) ‘px( pt)] ( ) ,1 @;s (33)

where ¢} = ci /2 represents the maximal progress which is de-
rived from the progress rate (13) in the asymptotical limit case
(N — o0). Figure 6 illustrates the limits derived in Eq. (32) and
presents the influence of a on the normalized steady state muta-
tion strength. To this end, the theoretical predictions are compared
with experimental meta-ES algorithm runs on problem (1). Single

runs of the [1, 2(1, 1)!]-meta-ES have been executed for different o
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Figure 6: The ¢* distribution of the [1, 2(1, 10)1]-meta-ES for
different choices of a. The experimental results displayed
by the error bar plot represent mean and standard devia-
tion of the normalized mutation strength measured during
the last 90% of 10* isolation periods of length y = 1 (ob-
tained from 50 independent meta-ES runs). The lower and
upper limit, 6 and &, are displayed by the solid blue lines,
see Egs. (29), (30). The solid red line shows the location of o;
within these bounds. The dashed vertical line close to o = 1
indicates the position of « (in this case oy ~ 1.001), while
the dashed horizontal line displays O';:Pt ~cpaV1+ &

values (@ € {1.02,1.05,1.1,1.2,1.35,1.5,1.7,1.9}). The empirically
obtained data are represented by the error bar plot. They display the
mean and standard deviation of the normalized mutation strength
values of the last 90% of 10% isolation periods.

The dynamical meta-ES behavior is characterized by the above
derivations. However, the question of how to choose the control
parameter « in the conically constrained setting (1) still needs to
be discussed. The o* adaptation should be fast and reliable while it
would be desirable to generate the best average performance (i.e.,
the progress towards the optimizer) possible. Choosing @ < ap
will drive the meta-ES to approach the stable fixed point (27) of
the iterative mapping (22). Yet, it is obvious that this fixed point
cannot be shifted towards the normalized mutation strength value
Ggpt = ¢1,)V/1 + £ that ensures maximal progress with respect to
Eq. (13) (since a > 1 must hold). Consequently, choosing a < ag
will result in suboptimal progress. Further, such « values that sat-
isfy @ < ap turn out to be very close to 1 (for large N) in the case
of the [1, 2(1, 1)!]-meta-ES (see Fig. 6). Hence, the o dynamics are
only gradually decreasing in this case. Further, it is shown in [9]
(Section 5.2.2) that the [1, 2(yt/py, A)!]-meta-ES dynamics are sub-
ject to large fluctuations that impede the prediction quality of the
deterministic evolution equations for very small o values. The best
average performance of the meta-ES is realized for ¢ > ag, i.e. with
normalized mutation strength oscillating around the point of dis-
continuity oy The point of discontinuity oy always resides within
the limits of the normalized mutation strength (32). In Fig. 6, it is
represented by the solid red line. According to Eq. (23), o depends
on the population size 4, the cone parameter &, as well as on the
mutation strength control parameter a. With growing « values, the
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point of discontinuity will slowly decrease. Yet, moderate choices
of a yield oy values in close vicinity of the optimal normalized
mutation strength value offpt =caV1+E

Assume that the meta-ES on average operates with ¢* in close
proximity to the point of discontinuity oy in its limit cycle. This
allows for modeling the steady state dynamics of the normalized

mutation strength by a mean value o} and corresponding fluctu-
ation parts €52 as ogs = E + €57, - In case that the mean value
dynamics of this equation are sufficiently characterized by o; one
can approximate the steady state behavior of the meta-ES. Omitting

of the fluctuation term, by using Eq. (23) one obtains
a
Oy = 0 :201’“/1+§—1+a2' (34)

Hence, the steady state fitness dynamics of the [1, 2(1, 1)! ]-meta-ES
can be derived by making use of the progress rate (13). Ignoring
the fluctuations, the fitness change from one isolation period to the
next is determined by

D~ 0 (1= g% (0g)/N) . (35)

Division by X0, inserting (34) into Eq. (13), and taking into account
the limit ¢ — oo, yields the [1, 2(1, 1) ]-meta-ES convergence rate
v = limyyeo xUHD /x() = 1-¢%(g))/N < 1for mutation strength
control parameters a > ag. Considering (13), it reads

1 4c2 a?(1+¢) 2¢2 ,a
~ —— | E4+\| 1+ : - - . 36
Y 1+¢& § N(Q1 + a?)? N@1 + a?) (36)

Making use of the Taylor expansion of the square root (N — o),
the asymptotical convergence rate becomes

2¢?
O 5 (1— a ) 37)
N + a?) 1+ a?

Figure 7 illustrates the convergence rates predicted by Eq. (37)
for different values of « in dimension N = 400 and N = 1000. The
results are compared to experimental convergence rates obtained
by measuring v = 1-¢(d;)/N over the last 50% of 10* isolation pe-
riods and averaging over 100 independent meta-ES runs with fixed
normalized mutation strength o = 09. The experimental data are
displayed by the error bar plot while the theoretical derivations
are presented by the solid lines. The dashed and the dotted black
lines display the expected minimal and maximal convergence rates
according to Eq. (33). One observes that the predicted convergence
rates do slightly deviate from the theoretical predictions (37). These
deviations that are reduced with growing search space dimension
N are discussed in Sec. 6.

The representation of the fitness dynamics provides an estimate
for the expected running time needed to reach a fitness improve-

ment of a factor of 275 Denoting the number of necessary isolation
periods as T, one obtains

p x(t+T)
2P =~ T,

D) v (38)
Taking the logarithm and considering (13) together with Eq. (34)
results in —flog(2) =~ Tlog (v). Straight forward transformations
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Figure 7: Comparison of the convergence rate prediction
with experimental measurements from real meta-ES runs.

yield the expected number of isolation periods to reach an improve-
ment of the factor 27% as
T = —flog(2)/log (v). (39)

By expanding log(v) in the Taylor series around zero (N — o), its
asymptotically exact approximation is

22
LA (1 “ ) . (40)

CN(1+ad)| 1+a?

log(v) =
Consequently, the insertion of (40) in Eq. (39) yields

. ) N@1 + a?)?

Plog@) ZCiAa (a2 —a+1)
The influence of a on the approximated expected running time T in
terms of isolation periods of the [1, 2(1, 1)?]-meta-ES is illustrated
in Fig. 8 for search space dimensions N = 400, N = 1000, and
N = 2000. All cases consider the running time until an improvement
by a factor of 2% with § = 2 is realized. The experimental results
obtained in 100 independent meta-ES runs are represented by the
error bar plots. Similar to Fig. 7, the experimental dynamics do
achieve slightly better running times than expected.

(41)

6 DISCUSSION AND OUTLOOK

This paper investigates the behavior of the [1, 2(1, 1)!]-meta-ES in
the conically constrained environment (1). To this end, the inner ES
dynamics (Alg. 1) are described by the progress rate theory obtained
in the context of the analysis of ¢SA-ES [20]. Assuming that the
meta-ES is predominantly generating infeasible candidate solutions
that need to be repaired (cf. (3)) with probability Py, ~ 1 in its steady
state, the analysis is extended to the upper-level strategy (Alg. 2).
The evolution equations of o, as well as ¢*, are derived and the
mutation strength control behavior of the meta-ES is characterized
with respect to the choice of the control parameter « > 1. Choosing
a smaller than the obtained threshold «( realizes a continuous
mutation strength reduction. On the downside, the o value turns
out to be very small when considering non-recombinative inner ESs.
Thus the corresponding o adaptation is very slow and the ensuing
dynamics are accompanied with extremely large fluctuations that
are due to aggravated discriminability of the inner strategies [9].

Michael Hellwig and Hans-Georg Beyer

For a > ap, the o dynamics of the meta-ES are oscillating around
the point of discontinuity oj. In this case, the expected progress
per isolation period of length y = 1 can be approximated. This
allows for the derivation of the dynamical long-term behavior of
the meta-ES with respect to its convergence rate v and the expected
runtime T.

Taking into account the convergence rate v in Fig. 7, one ob-
serves that the experimental dynamics slightly deviate from the
theoretical predictions. It turns out that the theoretical results are
too pessimistic especially in small search space dimensions. An
explanation of these deviations is the negligence of the first addend
of progress rate (8), i.e. the assumption of Pg, ~ 0. In fact, the prob-
ability to generate feasible candidate solutions that do not need to
be repaired is approaching zero with growing N. However, in finite
dimensions there is always a non-zero probability to find so-called
initially feasible candidate solutions. Consequently, Eq. (8) includes
an additional positive contribution to the expected progress that
is omitted in the representation of Eq. (13), and in the subsequent
meta-ES analysis in Sec. 5. Hence, the predictions may be regarded
to represent the worst case behavior.

Yet, the contribution of the typical meta-ES fluctuations that
impede the prediction quality of the deterministic evolution equa-
tions [9] to these deviations needs to be examined more closely. To
this end, additional investigations of the [1, 2(u/puy, A)Y ]-meta-ES
need to be conducted considering recombination for 4 > 1, and
larger isolation periods y > 1, respectively. Both parameters are
expected to reduce the impact of the fluctuations and to stabilize the
long-term dynamics. First experiments indicate that larger values
of 41, or y, result in a rise of the o threshold that determines the
meta-ES characteristics. However, an extension of the analysis to
these cases poses novel difficulties that need to be managed first.
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Figure 8: The expected runtime of the [1,2(1,10)!]-meta-ES
on problem (1) with ¢ = 1. The predictions of Eq. (41) are dis-
played by the dotted, dashed, and solid, red lines. The data
points are obtained by averaging over the experimental mea-
surements of 100 independent meta-ES runs.
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