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ABSTRACT
This paper analyzes the multi-recombinant self-adaptive evo-
lution strategy (ES), denoted as (µ/µI , λ)-σSA-ES on the
convex-quadratic function class under the influence of noise,
which is referred to as noisy ellipsoid model. Asymptotically
exact progress rate and self-adaptation response measures
are derived (i.e., for N →∞, N – search space dimensional-
ity) for the considered objective function model and verified
using experimental ES runs.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—parameter learn-
ing ; G.1.6 [Numerical Analysis]: Optimization

Keywords
Evolution strategy, ellipsoid model, noise, self-adaptation,
progress rate, mutation strength

1. INTRODUCTION
Theoretical analysis of evolutions strategies (ES) is an

area of active research, where much of the recent effort
has been devoted to the extension of the range of the test
functions analyzed, including particular cases of the posi-
tive definite quadratic forms (PDQFs) [4]. The general case
of the PDQF, referred to as general ellipsoid model, has
been treated in [7, 5], where asymptotically exact quadratic
progress rate and self-adaptation rate formulae have been
obtained for the self-adaptation evolutionary strategy with
intermediate recombination (the (µ/µI , λ)-σSA-ES). Based
on these results, the expected value dynamics of the ES have
been derived and in turn the optimal learning parameter,
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which provides for the highest possible convergence rate, has
been calculated analytically.

Still, the aforementioned analysis has been done for the
noise-free ellipsoid model which does not allow to account
for noisy distortions of the objective function values often
arising in practical optimization tasks. The aim of this paper
is to extend the analysis of the (µ/µI , λ)-σSA-ES to the case
of the noisy ellipsoid model and derive the corresponding
local progress measures.

The paper is organized as follows. First, the noisy ellipsoid
model to be analyzed is presented followed by the description
of the the (µ/µI , λ)-σSA-ES algorithm. The noisy progress
measures are introduced in Section 2, where their outcome
is also compared with results of one-generation experiments.
Section 3 is devoted to the self-adaptation response function,
which is derived for the noisy ellipsoid model and tested for
validity by comparison with the (µ/µI , λ)-σSA-ES experi-
mental runs. Finally, the obtained results are discussed in
the conclusion.

1.1 Noisy Ellipsoid Model
The consideration of noisy fitness environments is of par-

ticular importance because noise often arises in practical op-
timization tasks. For example, the objective function may
depend on noisy physical measurements or computer simula-
tions with simplified models. In both cases, the ES observes
a noise-disturbed Fnoisy (y) value. The perceived fitness [3]
Fnoisy (y) consists of an ideal noise-free fitness influenced
by the noise term. Therefore, the noisy ellipsoid model is
defined as

Fnoisy (y) =

N∑
i=1

aiy
2
i + σε (y)Z, y ∈ RN , ai > 0, (1)

where σε (y) is the noise strength, or standard deviation of
the noise term, and Z is a random variate. Eq. (1) is a noise-
disturbed model where the noise term represents random
influence of such factors as measurement errors, approxima-
tions, or calculations with limited accuracy.

From a number of noise models considered for the ES
analysis [1], it is assumed in this work that the distribution
of Z is Gaussian, i.e., Z ∼ N (0, 1) and N (0, 1) is a standard
normally distributed random variate.



1.2 ES Algorithm
The (µ/µI , λ)-σSA-ES algorithm is presented in Alg. 1.

Note that a symbol with superscript (g) is used to refer to
a value in a given generation g, g = 0, 1, . . . , gmax. The
subscript l after a symbol refers to a value associated with
the lth offspring, l = 1, 2, . . . , λ.

Algorithm 1 The algorithm of the (µ/µI , λ)-σSA-ES

1 σ(0) ← σinit, y(0) ← yinit, g ← 0
2 do
3 for l = 1, . . . , λ begin
4 σ̃l ← σ(g)eτNl(0,1)

5 z̃l ← Nl (0, I)

6 ỹl ← y(g) + σ̃lz̃l
7 F̃l ← F (ỹl)
8 end
9 F̃sort ← sort

(
F̃1...λ

)
10 σ(g+1) ← 1

µ

∑µ
m=1 σ̃m;λ

11 y(g+1) ← 1
µ

∑µ
m=1 ỹm;λ

12 g ← g + 1
13 until termination criterion fulfilled

The parental mutation strength σ(0) and the parental pa-
rameter vector, or parental centroid y(0) are initialized in
line 1. λ offspring are generated from line 3 to line 8 in
the following way. For each offspring, the mutation of σ(g)

is performed in line 4 using the log-normal operator eτNl(0,1),
whereNl (0, 1) is a (0, 1) normally distributed random scalar.
The learning parameter τ in the log-normal operator con-
trols the self-adaptation rate. In line 5, direction of the mu-
tation vector σ̃lz̃l is determined by means of a (0, 1) normally
distributed random vector Nl (0, I). The offspring parame-
ter vector ỹl is generated in line 6 and used in the calculation
of the objective function value F̃l in line 7.

After creation, λ offspring are ranked according to their
F̃l values in line 9. The recombination of offspring mutation
strengths and parameter vectors is performed in lines 10–11
in order to obtain a new parental mutation strength σ(g+1)

and a new parental parameter vector y(g+1). The subscript
m;λ refers to the mth-best of λ offspring (the mth-smallest
for minimization).

In line 13, the termination criterion is checked. If it is
fulfilled, the current parental parameter vector is considered
an approximation of the optimizer of the objective function
F (y). Otherwise, the algorithm returns to line 2.

2. NOISY PROGRESS RATE
First, a noisy version of the (µ/µI , λ)-σSA-ES progress

rate, defined as

ϕi = E
[
y
(g)
i − y

(g+1)
i |y(g)

]
, (2)

is derived which is used in the noisy quadratic progress rate
formula obtained next.

Noise-disturbed objective function evaluations influence
the (µ/µI , λ)-σSA-ES selection process because the offspring
ranking depends on the perceived fitness Fnoisy (y). The
influence of the noise on the selection is modeled by the noisy
local quality change introduced in the following definition.
Note that the noise-free local quality change definition

Qy (x) := F (y + x)− F (y) (3)

can not be adapted to the noisy case by substitution of F (y)
with Fnoisy (y) because it leads to an incorrect formula with
the noise term included twice. The (µ/µI , λ)-σSA-ES evalu-
ates the objective function of each individual only once (as it
uses the “comma”-selection which discards individuals from
the previous generation), therefore, Qnoisy (x) must contain
one noise term.

Let y be the ES parental parameter vector and x be a
mutation vector applied to it (cf. line 6 in Alg. 1). Then the
noisy local quality change is defined as [6]

Qnoisy (x,y) := Qy (x) + σε (y + x)N (0, 1) , (4)

where Qy (x) is the noise-free local quality change given by
Eq. (3) and σε (y + x) is the noise strength.

The noise strength σε (y) in (4) may represent different
noise models including the constant non-normalized noise
model as well as the constant normalized noise model. How-
ever, for the latter it will be assumed that σε(y

(g)) ' σε (ỹl),
which states that the noise strength values of the parental
individual and offspring are sufficiently close to each other
(this holds exactly for N → ∞ or sufficiently small muta-
tion steps). Using Eq. (4), the progress rate formula for
the (µ/µI , λ)-σSA-ES on the noisy ellipsoid model is ob-
tained in the next section.

2.1 Progress Rate ϕ

The derivation steps for the noisy progress rate formula
are analogous to the noise-free case presented in [7] taking
into account that Qnoisy (x,y) is used in place of Qy (x).
The resulting formula for the progress rate of the (µ/µI , λ)-
ES along the ith axis of the noisy ellipsoid model (1) without
dominating1 coefficients ai is

ϕi (σ) '
2σcµ/µ,λyiai√

σ2
ε/σ2 +

N∑
j=1

2a2j
(
2y2j + σ2

) , (5)

where the progress coefficient cµ/µ,λ := e1,0µ,λ is a special case
of generalized progress coefficients

ea,bµ,λ =
λ− µ
√

2π
a+1

(
λ

µ

) +∞∫
−∞

(−t)b e−
a+1
2
t2

× (1− Φ (t))λ−µ−1 Φ(t)µ−adt, (6)

The derivation of Eq. (5) is sketched in Appendix A.
Since the noise strength σε (y) in general case depends on

the parameter vector y of an individual, it is normalized
in order to obtain formula invariant to the position in the
search space. Departing from the normalization used for
the sphere model [6] σ∗ε = σεN/

(
2(R(g))2

)
(where R(g) is

the distance to the optimizer at generation g), the following
generalization is used for the noise strength normalization
on the ellipsoid model

σ∗ε = σε

N∑
i=1

ai/

(
2

N∑
j=1

a2jy
2
j

)
. (7)

1This assumption guarantees that the Lindeberg condition
is fulfilled and the central limit theorem can be used in the
limit N →∞.



Applying it together with the mutation strength normaliza-
tion

σ∗(g) = σ(g)
N∑
i=1

ai/

√√√√ N∑
i=1

a2i y
(g)2
i (8)

to the noisy progress rate (5) yields

ϕi (σ∗) ' σ∗cµ/µ,λaiyi/

(√
1 + (σ∗ε /σ∗)

2
N∑
j=1

aj

)
, (9)

where the assumption

(σ∗)2

2
·

N∑
j=1

a2j(
N∑
j=1

aj

)2 � 1 (10)

has been used. The assumption (10) is valid for sufficiently
small σ∗ values. For the cases ai = i, i2, it is fulfilled if
(σ∗)2 /N � 1. The term σ∗ε /σ

∗ in Eq. (9) is referred to as
noise-to-signal ratio

ϑ = σ∗ε /σ
∗. (11)

After the progress rate normalization

ϕ∗i := ϕi

N∑
j=1

aj (12)

and substitution of ϑ, the normalized progress rate of the
(µ/µI , λ)-ES on the noisy ellipsoid model reads

ϕ∗i (σ∗) ' σ∗cµ/µ,λaiyi
1√

1 + ϑ2
. (13)

Eq. (13) shows that the noisy objective function evalua-
tions negatively influence the (µ/µI , λ)-ES progress rate:
The larger is the noise-to-signal ratio ϑ, the smaller is the
progress rate. Note that Eq. (13) has the same deficiencies as
its noise-free counterpart [7] ϕ∗i (σ∗) = σ∗cµ/µ,λaiyi, in that
it does not measure the approach toward the optimizer. To
this end, the second-order y2i term must be taken into ac-
count. Due to these reasons, Eq. (13) is used exclusively as
a part of the noisy quadratic progress rate formula obtained
in the next section.

2.2 Quadratic Progress Rate ϕII

The quadratic progress rate ϕIIi is defined as

ϕIIi = E

[(
y
(g)
i

)2
−
(
y
(g+1)
i

)2
|y(g)

]
. (14)

The expression for ϕIIi on the noisy ellipsoid model (1) is
derived by considering expectations of the respective prod-
uct moments. Using the derivation steps for the noise-free
quadratic progress rate from [5], one obtains for the noisy
case the same equation

ϕIIi = 2yiϕi −
2

µ2
E1 −

1

µ2
E2, (15)

which includes the noisy progress rate ϕi given by Eq. (5)
and the product moments E1 and E2. The sums of prod-
uct moments E1 and E2 for the noisy case are provided in
Appendix B. Inserting Eq. (49) and (50) into (15) yields the
quadratic progress rate formula

ϕIIi (σ) ' 2yiϕi (σ)

−σ
2

µ

1 +
(
(µ− 1) e2,0µ,λ + e1,1µ,λ

) a2i y
2
i

σ2
ε

4σ2 +
N∑
j=1

a2j

(
y2j + σ2

2

)
 ,

(16)

where the progress rate ϕi (σ) is given by (5) and the progress
coefficients e2,0µ,λ and e1,1µ,λ are calculated using (6).

Applying to Eq. (16) the mutation strength normaliza-
tion (8), taking into account the assumption (10) and the
progress rate normalization (12) leads to

ϕII∗i (σ∗) ' 2yiϕ
∗
i (σ∗)

− (σ∗)2

µ
N∑
j=1

aj

[
N∑
j=1

a2jy
2
j +

(
(µ− 1) e2,0µ,λ + e1,1µ,λ

) a2i y
2
i

1 + ϑ2

]
, (17)

where ϕ∗i (σ∗) is given by (13).
As expected, the noisy quadratic progress rate formula

(17) yields for ϑ = 0 the corresponding noise-free equation
obtained in [5]. For ϑ > 0, the gain term 2yiϕ

∗
i (σ∗) is

decreased by a factor of 1/
√

1 + ϑ2 (cf. Eq. (13)). Interest-
ingly, the second part in the loss term in Eq. (17), i.e., the
last factor in the second line of (17) also gets smaller with
increasing ϑ.

A simplified ϕII∗i formula can be obtained from Eq. (17)

by discarding the expression
(

(µ− 1) e2,0µ,λ + e1,1µ,λ

)
a2i y

2
i in

the loss term

ϕII∗i (σ∗) ' 2σ∗cµ/µ,λaiy
2
i

1√
1 + ϑ2

− (σ∗)2

µ
N∑
j=1

aj

N∑
j=1

a2jy
2
j . (18)

Denormalization of Eq. (18) yields

ϕIIi (σ) '
2σcµ/µ,λaiy

2
i√

(1 + ϑ2)
N∑
i=1

a2i y
2
i

− σ2

µ
, (19)

where ϑ2 = σ2
ε/

(
4σ2

N∑
i=1

a2i y
2
i

)
. Eq. (19) is a rough approx-

imation of Eq. (17), and its validity is checked in the next
section by means of one-generation experiments.

2.3 One-Generation Experiments
In this section, the procedure for one-generation experi-

ments is employed to compare the theoretical predictions of
Eqs. (13), (17) and (18) with experimental results. In the
experimental code, an important implementation detail is
the noise strength denormalization: Due to the assumption
σε(y

(g)) ≈ σε (ỹl), the parental parameter vector y(g) is used
to denormalize σ∗ε and the resulting single σε participates in
the F̃l calculation for all offspring.

First, the progress rate ϕi formulae (13) and (5) are checked
in Fig. 1 using the (3/3I , 10)-ES one-generation experiments
for ai = 1 and ai = i. The experimental settings are σ∗ε =
10, G = 106 and y(0) = 1. Each point in Fig. 1 represents



the mean of 100 one-generation experiments, while bars de-
pict their standard deviations. ϕ∗1/a1 points for N = 400,
ai = i are not shown due to large deviations.

Figure 1: One-generation experiments for
the (3/3I , 10)-ES for ai = 1 (upper figure) and
ai = i (lower figure), σ∗ε = 10. Curves depict theo-
retical predictions of Eq. (13) (dash-dot lines) and
(5) (dashed curves for N = 40 and solid curves for
N = 400, yi = 1), while points represent experimen-
tal results: + ϕ∗1/a1, ? ϕ∗N/4/aN/4, ◦ ϕ∗N/2/aN/2 and
3 ϕ∗N/aN .

In Fig. 1, the first-order ϕ∗i results (dash-dot lines) ob-
tained using Eq. (13) are depicted. Note that ϕ∗i lines for
N = 40 and N = 400 coincide due to the ϕ∗i /ai normal-
ization. In comparison to the noise-free case, ϕ∗i values are
smaller since noisy objective function evaluations reduce the
progress rate of the (µ/µI , 10)-ES. For small σ∗, the reduc-
tion is particularly large because the ES generates new off-
spring which lie close to the parental individuals and the
difference between the ideal fitness values is dominated by
the noise term (cf. Eq. (1)). Experimental ϕ∗i mean values
match theoretical curves for the same ranges of σ∗ values
as in the noise-free case. That is, errors due to assumptions
used in the derivation of ϕ∗i formulae do not increase for
the noisy ellipsoid model and both Eqs. (13) and (5) remain
asymptotically exact.

In Fig. 2, the quadratic progress rate ϕII∗i formula (17)
and its approximation (18) are compared with the results
of one-generation experiments. The experimental settings

G = 106 and y(0) = 1 are the same as in the ϕi experiments.
The results of the (3/3I , 10)-ES one-generation experiments
for ai = 1 and ai = i are shown in Fig. 2.

Figure 2: One-generation experiments for
the (3/3I , 10)-ES for N = 40 (upper figure) and
N = 400 (lower figure), σ∗ε = 2. The solid curves
and dashed curves depict theoretical predictions
of Eq. (17) for µ = 1 and µ = 3, respectively, while
points represent experimental results for N = 40
and N = 400 (yi = 1): + ϕII∗1 , ? ϕII∗N/4, ◦ ϕII∗N/2 and

3 ϕII∗N . Dot-dash curves show the results of the
simplified formula (18).

According to the results depicted in Fig. 2, the quadratic
progress rate approximation using Eq. (17) improves for
N = 400 (lower figure) in comparison with N = 40 (upper
figure) as solid and dashed curves corresponding to Eq. (17)
are situated closer to the experimental points in the for-
mer case. This observation is in accordance to the fact that
simplifications based on the assumption N →∞ have been
made during the derivation of Eq. (17). Still, the experimen-
tal behavior is correctly reproduced in the N = 40 case as
well: the ϕII∗i (σ∗) dependency has the characteristic form
with a maximum, after which the negative loss terms in ϕII∗i
prevail over the positive gain term. The results of the sim-
plified Eq. (18) (dot-dash curves) approach the curves cor-
responding to Eq. (17) for sufficiently small σ∗ and replicate
the functional dependency of Eq. (17) for larger σ∗ values.
Thus, Eq. (18) can be regarded as an upper bound estimate
of the quadratic progress rate of the (µ/µI , λ)-ES on the
noisy ellipsoid model.



3. THE SELF-ADAPTATION RESPONSE
The self-adaptation response (SAR) function is defined

as the expected relative mutation strength change from the
generation g to (g + 1)

ψ = E
[(
σ(g+1) − σ(g)

)
/σ(g) | y(g), σ(g)

]
. (20)

The derivation steps for the SAR formula are similar to the
noise-free case presented in [7]. One obtains for the (µ/µI , λ)-
σSA-ES on the noisy ellipsoid model (1)

ψ (σ) ' τ2

 1

2
+ e1,1µ,λ

N∑
i=1

2a2i
(
2y2i + σ2

)
σ2
ε
σ2 +

N∑
i=1

2a2i (2y2i + σ2)

−cµ/µ,λσ
2
N∑
i=1

ai√
σ2
ε/σ2 +

N∑
i=1

2a2i (2y
2
i + σ2)

 , (21)

where the progress coefficients cµ/µ,λ = e1,0µ,λ and e1,1µ,λ are
special cases of generalized progress coefficients (6) and τ is
the learning parameter (cf. line 4 in Alg. 1). A very short
sketch of the derivation of Eq. (21) is presented in App. C.

Applying to Eq. (21) the normalization (8) and taking into
account the assumption (10) yields

ψ (σ∗) ' τ2
(

1

2
+ e1,1µ,λ

1

1 + ϑ2
− cµ/µ,λσ∗

1√
1 + ϑ2

)
. (22)

Similar to the case of the noise-free SAR function [7], the
normalized noisy SAR formula (22) has the same form as the
normalized SAR function obtained in [9] for the (µ/µI , λ)-
σSA-ES on the noisy sphere model. That is, Eq. (22) gen-
eralizes the previously published result to the class of noisy
ellipsoid models (1) by introducing an appropriate mutation
strength normalization.

3.1 One-Generation Experiments
In Fig. 3, the results of one-generation experiments are

shown for the (3/3I , 10)-σSA-ES with initial parameter vec-

tor y(0) = 1, learning parameter τ = 1/
√
N on the sphere

model ai = 1 and ellipsoid model with coefficients ai = i
and ai = i2. Each point represents the mean of 10 one-
generation experiments, while the corresponding standard
deviations are smaller than the size of the data points and
not shown. Note that the ψ values on the vertical axis are
multiplied by N . Due to the mutation strength normaliza-
tion (8), experimental points for ai = 1, ai = i and ai = i2

coincide for the N = 400 case.
The experimental results in Fig. 3 are presented for 4 noise

strength values (from the bottom group of curves to the top:
solid curves for σ∗ε = 1, curves with longer dashes for σ∗ε = 5,
solid curves for σ∗ε = 10, and curves with shorter dashes for
σ∗ε = 20, respectively). The experimental points in Fig. 3
match the theoretical curves based on Eqs. (22) (single black
curves) and (21) (groups of 3 curves with different colors)
for sufficiently small σ∗ values. These borderline σ∗ values
increase for larger N (cf. the upper figure for N = 40 and
the lower figure for N = 400) due to the assumption N →∞
used in the analysis. As expected, the curves corresponding
to Eq. (21) lie closer to the experimental points than the
curves depicting the simplified Eq. (22) with the difference

Figure 3: One-generation experiments for
the (3/3I , 10)-σSA-ES for N = 40 (upper figure)

and N = 400 (lower figure), yi = 1, τ = 1/
√
N ,

σ∗ε = 1, 5, 10, 20 from the bottom group of curves
to the top. Curves depict theoretical predictions
of Eqs. (22) and (21), respectively, multiplied by
N , while points represent experimental results for
N = 40 and N = 400: + ai = 1, ? ai = i, ◦ ai = i2.

more pronounced for the smaller N = 40. The approxima-
tion quality appears to improve with increasing noise (com-
pare, for example, the lower curves for σ∗ε = 1 with the
upper curves for σ∗ε = 20). This issue does not stem from
the better approximation for the larger noise strength, but
is due to smaller SAR values for higher noise strengths and
can be resolved with appropriate normalization.

4. SUMMARY AND CONCLUSIONS
The analysis of the (µ/µI , λ)-σSA-ES on the noisy el-

lipsoid model (1) between two consecutive generations has
been performed. To this end, an asymptotically exact noisy
progress rate (9) and noisy quadratic progress rate (17) have
been derived along with corresponding simplified formulae
(13) and (18), respectively. Comparison with experiments
showed that the obtained formula predicts the noisy progress
rate of the (µ/µI , λ)-ES satisfactorily even for the N = 40
case despite of the N → ∞ assumption used in the deriva-
tions.

As one can conclude from the experimental results, the
SAR function is satisfactorily approximated by Eq. (22) for
small mutation strength values. Since the (µ/µI , λ)-σSA-



ES in the steady state usually yields σ∗st = 0, . . . , 2.5, this
behavior should not pose a problem even for N = 40. For
smaller N , a more precise Eq. (21) can be used, although
one should keep in mind that the assumption N → ∞ has
been used in the derivation of the SAR function.

Following the steps of the noise-free analysis further, the
continuation of the work will be the formulation of a time
discrete system describing the evolutionary dynamics of the
(µ/µI , λ)-σSA-ES. Solutions of this system will lead to an
analytical formula for the optimal learning parameter of the
self-adaptive ES on the noisy ellipsoid model.
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APPENDIX
A brief outline of steps necessary to obtain the progress rate
and the SAR formulae is presented in the following. For a
detailed treatment it is referred to [8].

A. NOISY PROGRESS RATE
The goal of this section is to determine the (µ/µI , λ)-ES

progress rate along the ith axis of the noisy ellipsoid model.

Following the approach introduced in [7], the ES progress
along each axis is considered separately. That is, the noisy
progress rate along the ith axis of the ellipsoid model (1) is
defined as (2) leading to

ϕi =
1

µ

µ∑
m=1

E

[
y
(g)
i −

(
ỹ
(g)
i

)
m;λ
|y(g)

]
, (23)

where the subscript m;λ refers to the mth-best of the λ
offspring. To simplify notation, indices (g) are omitted in
the following derivations. Introducing the mutation vector
xl = σ̃lz̃l (note that σ is fixed and xl = σz̃l in the progress

rate analysis due to the assumption τ
N→∞→ 0) yields [7]

ϕi = − 1

µ

µ∑
m=1

∫ ∞
−∞

xpm;λ (x|y) dx. (24)

The density of induced order statistics pm;λ (x|y) in (24) has
been obtained in [7] for N →∞ and reads

pm;λ (x|y) =
λ!

(m− 1)! (λ−m)!
px (x)

∫ +∞

−∞
pQ (q|x,y)

× PQ (q|y)m−1 [1− PQ (q|y)]λ−m dq, (25)

where pQ (q|x,y) is the conditional density and PQ (q|y) is
the cumulative distribution function to be determined be-
low. Plugging (25) into (24), changing the order of integra-
tion and denoting the inner integral by

Ii (q|y) :=

∫ +∞

−∞
xpx (x) pQ (q|x,y) dx, (26)

the progress rate formula (24) reads

ϕi = − 1

µ

µ∑
m=1

λ!

(m− 1)! (λ−m)!

∫ +∞

−∞
Ii (q|y)

× PQ (q|y)m−1 [1− PQ (q|y)]λ−m dq. (27)

To determine PQ (q|y), the normal approximation is used

PQ (q|y) ' Φ

(
q − E [Qnoisy (x,y)]

D [Qnoisy (x,y)]

)
, (28)

where E [Qnoisy (x,y)] is the expectation and D [Qnoisy (x,y)]
is the standard deviation of the noisy local quality change
(4). Inserting the expansion of Qy (x) into Eq. (4) yields

Qnoisy (x,y) =

N∑
j=1

aj
(
2yjxj + x2j

)
+ σεN (0, 1) , (29)

where xj are the components of the mutation vector x. The
expectation of Qnoisy (x,y) is equal to the expectation of the
noise free Qy (x)

E [Qnoisy (x,y)] = σ2A0, An :=

N∑
j 6=n

aj . (30)

To determine D [Qnoisy (x,y)], Qnoisy (x,y) is written down
as a sum of noise-free components and the noisy termQnoisy =
N∑
j=1

(Qy)j + σεN (0, 1), where each component (Qy)j is de-

fined as (Qy)j := aj
(
2yjxj + x2j

)
. D [Qnoisy (x,y)] is calcu-



lated then by means of the variances

D2 [Qnoisy (x,y)] =

N∑
j=1

D2
[
(Qy)j

]
+ σ2

ε , (31)

where D2
[
(Qy)j

]
has been obtained in [7] D2

[
(Qy)j

]
=

2a2jσ
2
(
2y2j + σ2

)
. The standard deviation of Qnoisy is

D [Qnoisy (x,y)] = σ
√
B0 + σ2

ε/σ2, Bn :=

N∑
j 6=n

2a2j
(
2y2j + σ2) .

(32)

After inserting (30) and (32) into (28) the conditional
probability distribution reads

PQ (q|y) ' Φ
((
q − σ2A0

)
/
(
σ
√
B0 + σ2

ε/σ2
))

. (33)

The conditional density in Eq. (25) is calculated analo-
gously to the noise free case [7]

pQ (q|x,y) ' 1√
2πD [Qnoisy]

exp

[
−1

2

(
q − E [Qnoisy]

D [Qnoisy]

)2
]
,

(34)

except that the noisy local quality change Qnoisy is used.
First, the ith summand of (29) is taken out and the substi-
tution xi = σzi is used. Next, under the assumption that
|σzi| � |2yi| for σ → 0, a rough Qnoisy (x,y) approximation
is introduced

Qnoisy (x,y) ≈ 2aiyixi +

N∑
j 6=i

aj
(
2yjxj + x2j

)
+ σεN (0, 1) .

(35)
The validity of (35) is verified experimentally. Keeping xi =
x fixed (since this is the condition, D2 [x] = 0) yields

E [Qnoisy (x,y) |x] = 2aiyix+ σ2Ai. (36)

and

D2 [Qnoisy (x,y) |x] = σ2
N∑
j 6=i

2a2j
(
2y2j + σ2)+ σ2

ε , (37)

which leads to D [Qnoisy (x,y) |x] = σ
√
Bi + σ2

ε/σ2. Insert-
ing (36) and D [Qnoisy (x,y) |x] into (34) results in

pQ (q|x,y) ' 1√
2πσ

√
Bi + σ2

ε/σ2

× exp

[
−1

2

(
q − 2aiyix− σ2Ai

σ
√
Bi + σ2

ε/σ2

)2]
. (38)

Inserting (33) and (38) into (26) and substituting t = x/σ
yields

Ii (q|y) ' 1

2π
√
Bi + σ2

ε/σ2

∫ ∞
−∞

te−
1
2
t2

× exp

[
−1

2

(
q − 2yiaiσt− σ2Ai

σ
√
Bi + σ2

ε/σ2

)2]
dt. (39)

Further an integral formula from [6] is applied to (39) and
the result is simplified by neglecting σ2ai and σ2 terms under
assumption that the resulting error is negligible for N →

∞. Inserting the result and (33) into Eq. (27), setting s =
q−σ2A0

σ
√
B0+σ2

ε/σ
2

and rearranging the resulting equation leads

to an equation, where the sum is substituted by an integral
[6]. Using the substitution v = 1−Φ (t) and exchanging the
order of integration leads to

ϕi '
2σyiai√
B0 + σ2

ε/σ2

λ− µ
2π

(
λ

µ

)∫ t=∞

t=−∞
e−t

2

× (1− Φ(t))λ−µ−1 (Φ(t))µ−1 dt. (40)

Comparing the resulting integral with (6), the coefficient
cµ/µ,λ = e1,0µ,λ is recognized leading to the final formula (5).

B. NOISY QUADRATIC PROGRESS RATE
The product moments E1 and E2 in the noisy quadratic

progress (15) are given by [5]

E1 = σ2E

[
µ∑
l=2

l−1∑
k=1

zk;λzl;λ|y

]
, E2 = σ2E

[
µ∑

m=1

z2m;λ|y

]
,

(41)
where the zk;λ noisy order statistics correspond to the j-
components of the mutation vector xk;λ producing the kth
best offspring ỹk;λ = y + xk;λ = y + σ̃k;λzk;λ. The kth
best offspring is ranked according to its objective function
value F̃ (ỹk;λ) which depends on the random vector zk;λ =
N (0, I). Since the progress rate analysis is performed for
small τ (τ →∞), it follows that ỹk;λ = y + σzk;λ.

To compute E1 and E2, the local quality change is con-
sidered first. Its expansion leads to

Qnoisy (x,y) = 2σajyj (zj)k;λ + 2σ

N∑
i6=j

aiyi (zi)k;λ

+ σ2
N∑
i=1

ai (zi)
2
k;λ + σεN (0, 1) . (42)

Dividing both sides by 2σajyj and introducing the quotient
Qnoisy (x,y) /2σajyj =: vk;λ yields

vk;λ = (zj)k;λ +

N∑
i 6=j

aiyi
ajyj

(zi)k;λ (43)

+
σ

2

N∑
i=1

ai
ajyj

(zi)
2
k;λ +

σε
2σajyj

N (0, 1) .

Equation (43) is a sum of the random variate (zj)k;λ, two
sum expressions and a noise term. For N →∞, the central
limit theorem can be applied to the second and third term
in (43) yielding an approximate normal distribution

vk;λ = (zj)k;λ (44)

+N

σ
N∑
i=1

ai

2ajyj
,

1

a2jy
2
j

 N∑
i 6=j

a2i y
2
i +

σ2

2

N∑
i=1

a2i +
σ2
ε

4σ2


 .

The kth random variate (zj)k;λ in Eq. (44) corresponds to

the kth best Qnoisy (x,y) value which is proportional to vk;λ.
Considering the second term in Eq. (44) as a noise term, the
variates (zj)k;λ can be identified as noisy order statistics or
concomitants of vk;λ.



The sums of product moments of (zj)k;λ have been calcu-

lated in [5]

E1 = µ (µ− 1)
σ2

2
ρ2e2,0µ,λ, E2 = µσ2 (1 + ρ2e1,1µ,λ

)
, (45)

where ρ is the correlation coefficient [2]

ρ = 1/
√

1 + β2. (46)

As follows from Eq. (44), the variance β2 in (46) is expressed
as

β2 =
1

a2jy
2
j

 N∑
i6=j

a2i y
2
i +

σ2

2

N∑
i=1

a2i +
σ2
ε

4σ2

 . (47)

Thus the correlation coefficient ρ for the noisy case reads

ρ = |ajyj | /

√√√√ σ2
ε

4σ2
+

N∑
i=1

a2i

(
y2i +

σ2

2

)
. (48)

Inserting Eq. (48) into Eqs. (45), the final formulae for the
expectations of product moments are obtained

E1 ' µ (µ− 1)
σ2

2

a2jy
2
j e

2,0
µ,λ

σ2
ε

4σ2 +
N∑
i=1

a2i

(
y2i + σ2

2

) , (49)

E2 ' µσ2

1 +
a2jy

2
j e

1,1
µ,λ

σ2
ε

4σ2 +
N∑
i=1

a2i

(
y2i + σ2

2

)
 . (50)

C. THE NOISY SAR FUNCTION
The derivation of the SAR formula for the (µ/µI , λ)-σSA-

ES on the noisy ellipsoid model follows the analysis steps for
its noise-free counterpart described in [7]. The starting point
is the integral representation of the SAR function [7]

ψ (σ) =
1

µ

µ∑
m=1

∞∫
0

(
σ̃ − σ
σ

)
pm;λ (σ̃|σ) dσ̃, (51)

where pm;λ (σ̃|σ) is the density of induced order statistics.
The pm;λ (σ̃|σ) formula reads [7]

pm;λ (σ̃|σ) =
λ!

(m− 1)!(λ−m)!
pσ (σ̃|σ)

∫ ∞
−∞

pQ (q|σ̃)

× PQ (q|σ)m−1 (1− PQ (q|σ))λ−m dq, (52)

where pσ (σ̃|σ) is the distribution density [6]

pσ (σ̃|σ) =
1√

2πτσ̃
exp

[
−1

2

(
ln (σ̃/σ)

τ

)2
]
. (53)

The conditional probability distribution PQ (q|σ) is calcu-
lated using the formula

PQ (q|σ) '
∫ ∞
0

Φ

 q − σ̃2A0

σ̃
√
B̃0 + σ2

ε/σ̃2

 pσ(σ̃|σ)dσ̃, (54)

where B̃0 =
N∑
j=0

2a2j
(
2y2j + σ̃2

)
. For sufficiently small τ ,

the integral in (54) can be approximated by [6] PQ (q|σ) '

Φ
(
q−E[σ]
D[σ]

)
, where the expectation E [σ] = σ2A0 and the

standard deviation D [σ] = σ
√
B0 + σ2

ε/σ2 have been calcu-
lated in Section A. Inserting these results yields

PQ (q|σ) ' Φ

(
q − σ2A0

σ
√
B0 + σ2

ε/σ2

)
(55)

Approximating pQ (q|σ̃) as normal distribution yields

pQ (q|σ̃) ' 1√
2πD [Qnoisy|σ̃]

exp

[
−1

2

(
q − E [Qnoisy|σ̃]

D [Qnoisy|σ̃]

)2
]
.

(56)
The expectation E [Qnoisy (x,y) |σ̃] and standard deviation
D [Qnoisy (x,y) |σ̃] can be obtained similarly to results in
Section A. Taking into account these results, one obtains

pQ (q|σ̃) ' 1
√

2πσ̃
√
B̃0 + σ2

ε/σ̃2

exp

−1

2

 q − σ̃2A0

σ̃
√
B̃0 + σ2

ε/σ̃2

2 .
(57)

Inserting Eqs. (57) and (55) into (52) and Eq. (52) into
(51) yields

ψ ' 1

µ

µ∑
m=1

∞∫
0

(
σ̃ − σ
σ

)
λ!

(m− 1)! (λ−m)!
pσ (σ̃|σ)

× σ

σ̃

√
B0 + σ2

ε/σ2

B̃0 + σ2
ε/σ̃2

∫ ∞
−∞

1√
2π

e
− 1

2

σ
√
B0+σ2ε /σ

2s−A0(σ̃2−σ2)
σ̃
√
B̃0+σ2ε /σ̃

2

2

× Φ (s)m−1 (1− Φ (s))λ−m dsdσ̃, (58)

where the substitution s =
(
q − σ2A0

)
/
(
σ
√
B0 + σ2

ε/σ2
)

has been employed.
The sum in (58) can be expressed by an integral repre-

sentation of the incomplete regularized beta function. After
a further transformation and an exchange of the integration
order one ends up with a triple integral

ψ ' λ− µ√
2π

(
λ

µ

) ∞∫
0

(
σ̃ − σ
σ

)
pσ (σ̃|σ)

× 1√
2π

p=+∞∫
p=−∞

e−
1
2
p2 (1− Φ (p))λ−µ−1 Φ (p)µ−1

×
σ
√
B0 + σ2

ε/σ2

σ̃
√
B̃0 + σ2

ε/σ̃2

s=p∫
s=−∞

e
− 1

2

σ
√
B0+σ2ε /σ

2s−A0(σ̃2−σ2)
σ̃
√
B̃0+σ2ε /σ̃

2

2

dsdpdσ̃,

(59)

where the innermost integral can be expressed by the CDF of
the normal distribution. This CDF is expanded into a Taylor
series about σ including the linear term. After that step,
the remaining integral can be determined using formulae
obtained in [9]. Thus, one finally obtains the SAR function
(21)

ψ (σ) 'τ
2

2
+ e1,1µ,λ

B0

B0 + σ2
ε/σ2

τ2

− cµ/µ,λ
2A0σ√

B0 + σ2
ε/σ2

τ2 +O
(
τ4
)
. (60)


