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ABSTRACT

This paper investigates mutation strength control usintggMES on
the sharp ridge. The asymptotical analysis presented siflomthe
prediction of the dynamics in ridge as well as in radial di@t
Being based on this analysis the problem of the choice of lpepu
tion sizeA and isolation parameterwill be tackled. Remarkably,
the gualitative convergence behavior is not determineg alpne,
but rather by the number of function evaluationsdevoted to the
inner ES.
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1.2.8 [Problem Solving, Control Methods, and Search Control
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General Terms
Algorithms
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1. INTRODUCTION

Controlling the strategy parameters of an Evolutionarat®egy
(ES) by hierarchically organized ESs, also referred to asaMe
ESs, is a common practice in the field of ESs. Formally Meta-ES
are described by the generalized ES bracket notation dogoral
Rechenberg [8]

(W 1p" A (ulp. A)]. @)

The Meta-ES (1) rung’ parallel inner f/p, 1)-ESs overy genera-
tions. Each of these ESs are equipped witfedént initial strategy
parameters such asfiéirent initial mutation strengths or popula-
tion sizes. Selection on the higher level then chooseg:thest
for recombination with respect to a previously defined fisna#te-
rion. While there is experimented evidence that Meta-EStaaa
the inner ES to optimal performance [5], the control ingsstions
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are still scarce. There are basically two papers on thattdpi
[4] the performance of the [P(u/w, 1)’]-Meta-ES on the sphere
model has been analyzed. In [1] Arnold presented an anadysis
the mutation strength adaption by, P{u, u, 1)*]-Meta-ES on the
family of ridge functions
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i=2
His analysis did not include the sharp ridge. However, thash
ridge is especially interesting since this fithess landsgagses a
challenge on any mutation adaption mechanism includingutaim
tive step-size adaption and self-adaption, see also [6thExmore
the sharp ridge can be regarded as a model for linear camtsbzi
timization where standard methods are known to show a premat
convergence behavior. Therefore, this paper will pardidylin-
vestigate Meta-ES in the fithess environment defined by thegpsh
ridge function which is defined as

1

N 2
F(x):—x1+d[z &?] = —x +dR ®3)

i=2
for x = (X1,...,%n) € RN. The parameted is called the nonlinear-
ity strength parameter of the ridge function.

The x;-axis also referred to as the ridge axis is in this defini-

tion identified with an axis of the coordinate system. Whils tis
a special choice, an arbitrary coordinate transformationld/not
have any fect to the strategy’s performance. This is so because
the inner ES uses isotropically distributed mutations.

The termR = /X, x? describes the distance of the argument

x € RN to the ridge axis.

Without loss of generality we assume a minimization probl&ime
sharp ridge function has no finite optimum, thus minimizasteadily
decreases theé-value. Fitness improvement can be achieved in two

Figure 1: The contour plot of the 2-dimensional Sharp Ridge
function with d = 2. Notice that darker regions correspond to
lower function values.



ways: either by reducing the distanReo the ridge axis or by in-
creasing theg-value, i.e. making progress in direction of the ridge
axis. Inthe short run this is realized fastest by reducieglistance
to the ridge axis. However, the convergence to the ridge asis
results in a stagnation of the progress in direction of thgeiaxis.
Thus a long term improvement is achieved better by enlarting
x; value and accepting an increasing radiisee [1].

This paper is organized as follows: Section 2 contains ariglesc
tion of the investigated [R(u/u,, 1)"]-Meta-ES algorithm. In Sec-
tion 3 we work on the theoretical analysis of the inner ES lioe¢
cases depending on the initial distance to the ridge RxResult-
ing in a rule for the choice of the isolation length parametehich
allows for the control of the mutation strength The analysis of
the Meta-ES behavior over multiple isolation periods isspreed
in Section 4. For dfliciently long isolation lengtly we provide an
asymptotic solution for the expected results. Section Bstigates
the impact of small dimensionalitid$ on the Meta-ES dynamics.
Finally, Section 6 sums up our results arftees an outlook on fu-
ture research.

2. CONTROLLING THE MUTATION
STRENGTH BY [1,2-META-ES

This section recaps the simple 2(u/u,, 1)’]-Meta-ES which is
used to control the mutation strength The outer ES, see Fig. 2,
generates twou/y, , A) populations. The inner ESs start from the
same initialy, but with different mutation strengths which are
kept constant during the isolation periodjofenerations. As one

[1,2(u/m, 2)]-ES
Initialize(y,, op, @, 1, 4,7, N);
t=0;
Repeat
01 = 0pa; 4
o) = a'pa/’l; 5
[V1, fil = ES@, A, 7,61, Yp); 6
7
8
9

line

1
2
3

[yz, f2] = ESQJ’A’ Y, 6-27 yp)v

Op = 5’1;2;

Yp = Y125

t=t+1; 10
Until(termination condition) 11

Figure 2: Pseudo code of the [;12]-Meta-ES. The Code of the
inner ES is displayed in Fig. 3.

can see in Line 4 and 5 the twoflidirents” values are computed by
increasing respectively decreasing the parental mutati@ngth
by the factore > 1. As a result there is always ong/f, 1)”-ES
running with mutation strengiti, "= aop, and one withr = op/a.
Selection is explained in lines 8 and 9 using the standaratioot
“m; 2" indicating themth best population out of all’ popula-
tions. The populations are ordered by the function valuerned
by the respective inner standard ES, displayed in Fig. 8r &iv-
ing evolved independently overgenerations.  The inner ES gen-
erates a population of offspring by adding the product of the mu-
tation strengthr and a vector of independent, standard normally
distributed components to the centrgidf the parental generation.
The i best candidates (in terms of their function vallgsout of
theseA offsprings are used to build the new parental centsoid
Proceeding this way overgenerations the inner ES returns the tu-
ple [y, F(y)]-

As a termination criterion for the outer ES one can for exampl
choose an upper bound for the number of function evaluatons
specify a fixed number of isolation periods.

Function: ESg, A,y,0,y) line
g=1;
Whileg <y
Forl=1Toa
=y +~0'}V|(0, 1);
F =F();
End For
— 1 xH Y .
y=y 21 Vs
g:=0g+1;
End While
Return y, F(Y)];
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Figure 3: The inner (u/u,, )”-ES

3. THEORETICAL ANALYSIS

In what follows, we examine the dynamics of the innef, 2)-

ES over a period of generations. The theoretical analysis is based
on mean value dynamics which is a common practice in the ffeld o
ES. Taking into account the selection mechanism of the NE&a-
we can derive directives for the mutation strength contegehd-

ing on the population size and the fithess environment ingeyim
the dimensionalityN and the nonlinearity strength The theoret-
ical results are finally compared with the empirical analysfithe
algorithm.

The analysis is based on the deterministic mutation rulepitea
duces exactly two innep(u,, 1)-ES, i.e. one withr, = ac® and
one witho_ = 0@ /a. Note thair, corresponds to-{ands, men-
tioned in Section 2. We take a look at the expected val@eof the
sharp ridge function at generatiga- 1 which is already constituted
in [1] by the recurrence equation

FOD = _x@D 4 RO,

4)

where the distance in direction of the ridge axis is given by

C
X0+ =y Tl (5)
V1+d?
and the distance to the ridge axis is constituted by
2N dO'C 1
RO = RO 4 T et 6
" 2RO Vi+d? ©

For the definition of the so called progress @méentsc, . we
refer the reader to [3]. We can see tiéit? scales up linearly with
the number of generations, thus we can transform it to

@) = 5 TGl

Vi@

In order to investigate the behavior of the 2{u/u, 1)"]-Meta-ES
we need a similar expression B¢, Because of the nonlinear-
ity of the recurrence equation (6) we are not able to find aedlos
analytical solution folR@*Y. Hence we switch to the continuous
time limit to approximate the flierence equation (6) by aftéren-
tial equation which is formally obtained by expandiR(g+ 1) into

a Taylor series a and breaking f§ after the linear part

(9+1) @)

drR
R(g+1):R(g)+d—gl+.... 8)

Identifying R(g + 1) with R@*Y andR(g) with R in (6) we get the
nonlinear diferential equation
drR 02N B doCyua

W R ViaE ®)



Equation (9) describes the basis of the further theoregicalysis.
If the isolation periody is suficiently large,y — oo, the expected
distance reaches a steady sRtdenoted byR.,. This is equivalent
to dd—g — 0,i.e.R@ = ReD = R, for g — . That is, the inner ES
with constant mutation strengthapproaches the expected residual
steady state distand®, to the sharp ridge axis which is obtained

by resolving (9) for‘;—s =0

2
R0 = e (10)

Due to mathematical fliculties solving (9) folR we have to con-
sider three special cases depending on the choice of tled oiig-
tanceR of the starting point from the ridge axis:

a)R~ R,

3.1 Analysis of ther » R, Case

First we explore the situation in which the initial distarioghe
ridge axis lies in the vicinity of the residual distanBg. In this
case we are able to replace the rhs of thedéntial equation (9)
with its Taylor series aroun®.,. With the derivation of (9) with
respect tR

b)R<«< R,, andc)R> R..

—0°N

d dR
dR(dg) T 2uRe (11)
and by considering again only the linear terms we get
drR drR d dR
dg d_g'R=R>o " a?(d_g)'R—Rm(R_ Re) (12)
-2c2
_ u/M
T (1+d?)N (R R-) (13)

This differential equation can be solved fpby separating the vari-
ables, in the first step yielding

RO -2¢2, d?
1 Jud G H
drR = Lol 14
LO) R -R, o (1+d?)N (14
The integration leads to the equation
9 _ -2c2
In(R( )= . (15)
RO - R, @+ d2)N
This can be solved fdrR©@
—2(:2 ld%‘
RO = R.+(RO-R.)e Gt (16)
— R(O)efg/r +R, (1 —e Q/T) , (17)
wherer is defined as
_(1+d)N dz)N
18
o (18)
u/M

Taking into account Eq. (4), (7), and (17) we obtain an exgioss
for the expected value of the sharp ridge function at geiverat

FO - pO _ TGt —E d(R?-R.)(1-€9). | (19)
v1+d

The F@-dynamics of the inner ES is governed by a linearly de-

creasing term and a term proportional to the ini(lﬁP) - Roo) dif-

ference which reaches a saturation vad_(eR(O) - Rx,) exponen-
tially fast. The latter is approached with the time constgréee
Eqg. (18). The approach is slower for decreasihgnd increas-
ing dimensionalityN. The parental population sizedecreases the

time constant (provided that,, . ~ cons).

Now we are able to investigate thhedependency of the Meta-ES.
Starting with a random point at generati@with initial values
F©O, X9 RO, andoc® the inner ES generates twovalues from
the parentai-©

©) (20)
Thus there are two expected function valié$) aftery genera-
tions of the inner [¢/u,, 2)*]-ES

FO = FC)(a0®) and F©7) = FC (0O /a).

o, = ao and o =c9/a.

(21)
Using (19) we obtain

a5 ©c, .
Vit d?

o© Cufp.

aVi+d?

The sign of the functio@d(y) defined as the dlierence of the above
constructed function values

8(y) = F& — (24)

determines whether to increase or to decrease the mutatimyth
in the outer [12]-ES. Since we are aiming at fastdecrease we get
the conditions

F(GW) FO _ y-d (R(G) _ Roo(a/()'(G))) (1- e’V/T) (22)

&) = FO d(RY - RO /o)) (1 -€7") (23)

= £G+y)

y)<0 = &MN=qr®
5(y) >0 = o©CMN =g/ (25)
Combining (22) and (23) one gets
1
50) = 4)r® (e - ) (26)
with
Ay = ML g ey G, )
2uCyjua V1+d?
. 1 "
Sincea — - > 0 the condition (25) becomes
G+) = 0@
Ay) <0 = ¢ ao (28)

Ay >0 = &M =50@/q.

Considering the long-term behavior of theevolution in (19) one
sees that this behavior is mainly governed by the lirgeéerm.
Aiming at fastF-decrease, i.e. minimization, the mutation strength
o should be increased by the outer ES implyixg) < 0 in (28).
Thus, using (27) we obtain a rule for the choice of thealue

Cu/pa N V1 + d? e

1-¢e7 29

Viza@' 2uCy 0 ( ) 29)
N(L+d?) e

=3 Yy > -€ . (30)
2;105/”1 ( )

This causes the Meta-ES to steadily increase the mutatiength
o. Since (1- ) < 1 the inequality (30) is surely fulfilled for an
isolation periody = ¥

(CH))

N1+ d?)
Z/JC [ .

If we consider (31) as well as the truncation ratig % and assum-

ing ¢,/ ~ 1, Eq. (30) can be transformed to

N(L + d?)

A
ve= 2v

(32




y=7641 y=3821 y=1911

100 100 — 1
80 80) - 0.8
[}
é 60 é 60 £ 06
3 5] . 5
s s - s
=l ©
T 40 S 40 S 04
20 20) R 0.2
0 0 = 0
0 0.5 1 15 2 0 2 4 6 8 10 0 1 2 3. 4 5
number of generations g x 10° number of generations g x 10 number of generations g x10°

Figure 4: lllustration of the mutation strength behavior for three different choices of the isolation length. Ther-dynamics of a
[1,2(3/3,10y]-Meta-ES with ¥ = 2y, ¥ = ¥ andy = ¥/2 are shown forN = 1000,0©® = 1, @ = 1.2 on the sharp ridge withd = 5
over 25 isolation periods " = 3821).

y=7641 y=3821 y=1911
150
15000 1 15000
@ 4 8
£ £ ‘€ 100
[ © ] ©
< c - c
2 10000 2 10000 2
g 5 L3 Ef
= =2 ]
g g - $ 50
@ 5000 @ 5000 ot 14
- 4 .
s N
0 0 [9)
0 0.5 1 15 2 0 2 4 6 8 10 0 1 2 3 4 5
number of generations g % 10° number of generations g x10° number of generations g x10*

Figure 5: On the R-value dynamics of a [12(3/3, 10¥]-Meta-ES with y = 2y, = ¥ andy = $/2 for N = 1000,0® = 1, = 1.2
on the sharp ridge with d = 5 over 25 isolation periods ¥"= 3821). The distanceR to the ridge axis is displayed according to ther
dynamics presented in Fig. 4.

Note,y1 is the number of function evaluations during the inner ES. of the mutation strength in Fig. 4 which is linked to the bebav
Equation (32) suggests that the divergence behavior of ta&-M of the R dynamics to get reduced to zero. This leads the Meta-ES
ES can be controlled either by choosing disiently large isola- to converge to the ridge axis. That is, choosjngo small, the ES
tion lengthy or by increasing the size of the population parameter exhibits premature convergence behavior.

A (andu proportionally). Only the vicinity of the criticaly-value we can observe distinct
Now we focus on the precision of our theoretical predictions deviations between theory and experimental results. Windéso-
from Eg. (6) and (7) compared to the results of a experimental lation lengthy = ¥ is theoretically sfficient to cause a steady in-
of the Meta-ES algorithm described in Section 2. For thasoea crease of the- andR dynamics, the experimental run departs from
the theoretical equations are iterated oygenerations intworuns  the theoretical results. This does not come as surpriseg sire

with different constant mutation strenglas ando-/a. Then the replaced the stochastic dynamics by mean value dynamics.
resultingo, R, andx values which lead to the best fitness function
valueF = —x + dRare selected and used as starting points for the 3.2 Analysis of ther « r,, Case

next iteration ovety generations. The dynamics and th&-value If the initial point of the Meta-ES lies near the ridge axis we

dynamics of the Meta-ES are illustrated foffdrent choices of the  again start the analysis with Eq. (9) and by using (10) oneinst
isolation length parameterin Fig. 4, and Fig. 5 respectively. In

each plot the experimental results of a run over 25 isolgtien dR oN (1 1 —0dG, . (R- Ry
riods, or 2% generations, of.the Meta-ES are represen.ted by the dg = 2u (E - @) = Vit ( R ) (33)
solid blue lines whereas the iteratively computed anaytiesults
are depicted as dashed red lines. By separating the variables this leads to the integral égjuat
There is a good agreement between theoretical predictioms a 0

experiments. For long choices of the isolation lengttelative to f R R = —0dG, . fgd , (34)
yin (31) we observe overlapping graphs of theoretical aneexp rRo R —R, CoVIx 2 Jo g
mental results for the- dynamics in Fig. 4. That is, the Meta-ES ) ) ) o ]
steadily increases the mutation strength after each isolperiod. ~ While (34) can be integrated in closed form, it is not possitol
According to ther-dynamics the strategy increases the distance to Solve the resulting equation f&9. Thus we consider the limit
the ridge axis with every isolation period, see Fig. 5 for Ehey- cases of smaR® and largeR” states separately. The former case
namics, which leads the Meta-ES to gain constantly betteedt. ~ allows for a neglection oR in the denominator of the Ihs in (34)
Even for very short isolation periods <« ¥ the experimental re- -

. - |
sults suit our predictions. Thus we observe a permanentdser f EdR’ _ 0dGy/ua f dg'. (35)

RO R Vi+d?2Jo



by the use of the conditioR < R.,. Taking into account (10) and
solving both integrals yields

20'dq,/w

1 2 2
_~ (R9? _RO 36
2R, ( ) V1+d? %)
(R9?-RO?) - @g (37)
RO \/@. (38)

Considering the case that the ES is initialized at the ridge, a
RO® = 0, one obtains

RO = o /Ng/u « @ (39)

That is, the ES departs with a random wajig-law from the ridge
axis. Using (4), (7), and (39) the fitness at generagjtdecomes

0Cupa + dO’\/N
V1+d? Vu

For suficiently largeg (keepingo = const) F@ decreases linearly.
This is similar to (19), however, due to thg¢g term it happens
slower.

Considering the dierence betweeR®*” andF©™, (21), theo-
learning behavior of the Meta-ES can be analyzed. Usingd2d)
(40) one gets

FO — _y0) _

\a. (40)

_ dVN _ C,u/,u,,{ ) (G) _1
oo =[S - o) e
Now we can define
i = [AYN = Gua ) 5
A(y)"[vﬁﬁ iE) (42)

Similar to (28) we conclude that the Meta-ES increases th&amu
tion strengtho- if A(y) <O

~ Cu/pa d \/N
Ay) <0 o —HE s\ (43)
Vit@  E
Resolving for the isolation period duration parametewe obtain
2 2
v d?(1+d*)N (44)
”Ci/u,/i
= oM =q50, (45)

Compared toyfrom Eq. (31) one sees that the isolation period
has to be chosen by a factai®darger in order to lead the strategy
to diverge from the ridge axis in the case that the Meta-Efssta
very close to the ridge axis. However, this result must beriakm
grano salis The bound derived in (44) is based on fReynamics
(39) that assumed 8 R® « R,. That is,oc4/Ng/u < R, must
hold. This puts a constraint on the number of generatipiise
approximation can be used. Taking (10) into account, we see

[ a)
A a &
If this condition is violated, the ES already enters Bhe: R, re-
gion. Comparing the rhs of (46) with the rhs of (44) we det %rz

In other words thR < R, is left rather fast for sflicient larged
and the bound (44) is rather pessimistic. Similar to Se@idrwe
are able to compute thR dynamics iteratively by the use of Eq.

g<

(46)
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R-value dynamics
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Figure 6: On the R dynamics of the inner strategy of the
[1,2(3/3, 10y]-Meta-ES initialized on the ridge axis, R® = 0,
with N = 500,d = 7%, 0© = 0.001 ande = 1.2 . The distance
to the ridge axis is illustrated over the first isolation period of

v = 147 generations.

of the Meta-ES algorithm, see Fig. 6. Again the iterativailteis
depicted as dashed red line whereas the experiment is espees
by the solid blue line and we observe a very good correspaden
between the theory and experiments. Even for choices ofl gimal
ando values the strategy is leaving the initial state on the radge
relatively fast. That is, after a few generations the spestite of

R <« R, is left and the further dynamics can be described by the
theory presented in Section 3.1.

3.3 Analysis of ther » R, Case

In the case that the radid&of the initial point is considerably
larger thanR,, we start just like in the previous section. But Eg.
(34) now can be simplified to

RO —odc
1R = —— | dg 47
fR(O) V1+d? Jo 9 “n
which leads directly to
RO _ RO _ 970Gt 48)

Vit
Using (4), (7), and (48) the fithess dynamics of the inner ESive

(49)

FO = FO _oc,,, V1+d2g.

Considering the fithess fiierence in the Meta-ES (24), we imme-
diately obtain

FEN _FC) = ye, V1 + a2 (a - 1) o (50)
a
which is equivalent to
6(y)<0 VyeN. (51)

That s, each choice ofis leading the Meta-ES to a steady increase

of the mutation strengtir until the strategy reaches the steady state

distanceR., and the dynamics described in Section 3.1 hold again.
Fig. 7 compares thB-value dynamics of two runs of the Meta-

ES algorithm with the iteratively computed predictions of. £9).

In both cases we observe a good agreement of analytical ed-ex

imental results. The Ihs of the illustration shows the stygtwith

a rather short isolation length i.e. y ~ ¥/2 whereas on the rhs of

(39) and we compare them to the results of an experimental run Fig. 7 a long isolation time of ~ 2y generations has been chosen.
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Figure 7: On the R dynamics of the [1, 2(3/3, 10y]-Meta-ES initialized for R® > R,,, with N = 1000,d = 2,0©® = 1 ande = 1.2.

The distance to the ridge axis is displayed over 9500 generans with an isolation length of 368= y < ¥ generations on the lhs and
of 1470 = y > ¥ on the rhs of the figure. The black squares symbolize the locimn of the steady state distancez,, of the respective
isolation period which depends on the previously selected uation strength o, see also Fig. 8 for the respective- dynamics.

0 dynamics
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Figure 8: On the o dynamics of the [1 2(3/3, 10y ]-Meta-ES
initialized with R > R,,, with N = 1000,d = 2,0 = 1 and
a = 1.2. For the respectiveR dynamics see Fig. 7. The blue
line represents iteratively generated results of ther-dynamics
for long isolation time y = 1470 whereas the red line depicts
these results for the choice of a short isolation length paraeter
(y = 368). Because the experimental results correspond to the
iterative ones for both choices ofy, in this figure we disregard
them for reasons of clarity.

As we can see in the respectivedynamics, Fig. 8, the strat-
egy increases the mutation strength until fiisient vicinity to the
steady state distance is reached in a certain isolatioagh€Fhat is,
we observe a great compliance with the theoretical resétsEq.
(51). Afterwards the Meta-ESs behaviors continue as desdiin
Section 3.1, i.e., for short isolation time the strategyveoges to
the ridge axis and decreases the mutation strength. Cafyets
diverges and steadily increases the mutation strengtlofay iso-
lation periods.

4. BEHAVIOR OVER MULTIPLE ISOLA-
TION PERIODS

Since in Section 3 the dynamics of the inner ES were already il

lustrated over several isolation periods and comparedetexper-
imental results of the algorithm we are now going to theoedty
investigate the behavior of the Meta-ES over multiple isofape-
riods. TakingG + y instead ofg, defining

_NVI+d?

b= ——" =

ZuCH/,Md (52)

and remembering (18), Eq. (17) becomes

RG) = ROg/T 4 @ (1 — e—y/r)_ (53)
Our analysis is based on the results derived forRhe R, case

in Section 3.1. That is $ficient because in both other cases, i.e.
R <« R, or R > R,, the initial state is left rather fast with the
strategy making progress towards the steady state disRnce
Assuming the choice of big enough, i.ey > ¥ in (31), the Meta-
ES is supposed to increase the mutation strength after salalion
period. Thus, after the first isolation overgenerations the algo-
rithm picks the parental, out of the inner ES with the distance to
the ridge axis given by

R = RO/ + bac'® (1-e77). (54)
After the second isolation period with
op = & = g © (55)

again the inner ES with increased mutation strength is chose

RG+27) RGN 4+ bao G (1 —e! T) (56)

= R9e?" 1 bac®(1-e"")(e7" +a). (57)
Continuing this way we are able to predict the expected iista
to the ridge axif(C*?) aftert isolation periods

t-1
RO = ROV 1 boo® (1- &) e 3 gievr,  (sg)
i=0

Applying the geometric series formula this equation become

tely/r _
RE) = RO/ 1 pao® (1 - e/) e 0= er-1 (59)
ae’/t -1
Rewriting the second term,
teh/t — 1
© ) gty ¥ ST T 2
bao® (1- /") e — T (60)
1-ateV/r
- ©) (1 - 7\
= b 9(1-e)e T (61)
and using (10), th&dynamics becomes
1-ate®/"
G+ty) _ R(G) ot/ G) t _ a7/ S
R = RO+ R9a! (1 eyr)l—a—le‘y/f’ (62)
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Figure 9: The upper graphs show the fitness dynamics of an
[1, 2(3/3, 10/7]-Meta-ES with 0@ = 1, @ = 1.2 and two differ-
ent choices of the dimensiorN and the nonlinearity strength d
each. The dynamics are illustrated over 25 isolation periosl of
2y generations withy from (31) depending onN and d.

N Vitd? 0.

; (G) _
with RS = 2y jud
Equation (62) simplifies when taking into account’g < 1

RG) ~ RO

In order to have this dynamics, we have to demari¢f ex 1, i.e.
v/t > 1. Using an isolation period (31) andgiven by (18), this
transfers to the condition

(63)

yir=d>»1 (64)

which is approximately fulfilled for dfticiently large nonlinearity
parameted in (4). In the same manner we can derive a formula for
the progress of the Meta-ES in direction of the ridge axisintys
(7) and (55) one gets

Cu/pa

xC = O 4 mao-(e)y (65)
G2 () \/(;’-’/_’;_"ldzyaa(eﬂ) (66)
EENCON %W(%(l +a). (67)
After t isolation periods we have
X&) = @) G/t yo-(G)a/i o, (68)
m i=0

By use of the geometric series formula this can be simplified t

C A a’t -
s cOq

1
V1+d? a-1
Using (63), (68), and (4) the approximdtedynamics of the Meta-

WG+ (@)

(69)

ES readsX©® = 0)

C A at - 1
FG0) o il )50 +dR%a!. (70)
V1+d? a-1
This leads to an asymptotic dynamics
FG) | gt @NVI+d G ya 1 (71)
2ucyuy \NQ+d?) -1

That is, the Meta-ES diverges exponentially fast at a rate of
The fitness value dynamics predicted in Eq. (70) compared to
three diferent Meta-ES runs are displayed in Fig. 9 for= 500
andN = 1000. We observe an increasing compliance of iteratively
computed and experimental results by increasing the diioegis
ity N. On the lower depiction of Fig. 9 the influence of the nonlin-
earity strength parameteris shown, i.e. the fithess dynamics of
two Meta-ESs on dierent fithess landscapes are illustrated. The
use of a bigger nonlinearity strengthcauses longer isolation pe-
riods, see (31), letting the Meta-ES reach better fitness.ldhgy
isolation periods and high dimensionalities the predidiagree
with the experiments.

5. FINITE SEARCH SPACE DIMENSION-
ALITY EFFECTS

The inequality (32) fiers an astonishing interpretation: The pro-
gress on the ridge function only depends on the number ofifumc
evaluations being larger than the constant term on the ri32)f
That is, in the asymptotic limit cas&l(— oo) isolation periods- 1
are unnecessary. This conclusion calls for an examinatigheo
Meta-ES dynamics in low-dimensional spaces. From the pesgyr
rate analysis of the sphere model and also the ridge funet®n
know that the progress rate does not linearly scale with tipeija-
tion size. That s, the increase @floes only make senseyif<« N.

If this condition is violatedy > 1 might be of use.

Therefore, we investigate the Meta-ES behaviors for a eonst
number of function evaluations but withffrent choices of popu-
lation size parameterg (1) and isolation length parametgunder
the condition of smalN. Using (32) withv = 0.25 we consider

N(1 + d?)
2

with gy == 281,y == 292 andpg = B; + B2 € N. As we can
see in the illustrations for small dimensional spaces, sge FO
(B=8 N=30d=09)and Fig. 116 =8 N = 30 d = 3),
the use of isolation within the Meta-ES leads to a great im@ro
ment in the case of small search space dimensions. In Fig. 10
the inequality in (32) is relatively high because of the drolabice
of d which results in similar mutation strength dynamics andehe
fore overlapping graphs of the illustrated five Meta-ESisg&with
(u=21y=256),u=4,vy=64), u=16,y =16), u = 64,y = 4)
and { = 256 y = 1). While theo- dynamics are equal we can ob-
serve that the Meta-ESs with longer isolation periods andllsm
populations outperform the conversely constructed ondls e+
spect to theiR-value and fithess dynamics compared against the
same number of function evaluations (or isolation periapec-
tively). The situation illustrated in Fig. 11 describes & inequal-
ity in Eq. (32). In contrast to Fig. 10 thRe-value dynamics of the
Meta-ES settings with short isolation periods and larg@utetion
sizes tend to converge to the ridge axis. This leads to premat
convergence behavior while longer isolation periods &t to in-
crease the distance to the ridge axis and gain greater gsogféhe
fithess values. Regarding thedynamics in Fig. 11, we see that no
Meta-ES setting steadily increases the mutation strenglernuthe

< py =2 =212 = const (72)
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Figure 11: Depiction of the [1, 2(u/u, 1)”]-Meta-ES dynamics for dimensionN = 30, d = 3 andv = 0.25. Again the dynamics of the

five Meta-ES runs with yu = 28 = 256 are compared over 25 isolation periods. Note that Fig. 16nly differs from Fig. 11 by the
choice of the nonlinearity strength parameterd.

condition that the inequality (32) is not figiently satisfied. But might have a much greater impact on the ES performance, as per

again rather the settings with longer isolation periods smdller haps for noisy problems. The theoretical analysis perfdrwi# be
population sizes tend to increase the mutation strengthat iBh also the basis for the design of theoretically motivatedutetppn
leaving the asymptotic limit case we can infer advantagas the size control rules.

use of a sfficiently long isolation period.

7. ACKNOWLEDGMENTS

6. CONCLUSIONS AND OUTLOOK This work was supported by the Austrian Science Fund (FWF)

In this paper we examined the-control of the [12(u/u, 1)?]- under grant P22649-N23.
Meta-ES on the sharp ridge. Our theoretical analysis alfova
deeper understanding of the influence of the isolation kepgin 8. REFERENCES
the performance of the Meta-ES. We derived an estimate for th [1] D. V. Arnold and A. MacLeod. Step length adaption on ridge

choice ofy which depends on the population sizegnd u and functions.Evolutionary Computationl6:151-184, 2008.

the dimensionalityN as well asd being the nonlinearity strength [2] H.-G. Beyer. On the Performance on {)-Evolution
parameter determining the “hardness” of the sharp ridgeomFr Strategies for the Ridge Function CladSEE Transactions on
earlier empirical investigations [5] it was conjecturedttthe iso- Evolutionary Computatiorb(3), June 2001.

lation parametey has considerable influence on the performance [3] H.-G. Beyer.The Theory of Evolution Strategiddatural

of the Meta-ES. The asymptotical analysis done here, hawese Computing Series, Springer, Heidelberg, 2001.

vealed that it is noy alone that determines the qualitative behavior [4] H.-G. Beyer, M. Dobler, C. Hammerle, and P. Masser. On

(whether there is premature convergence or not), but thebaum Strategy Parameter Control by Meta-ES. GECCO'09, 2009.

of function evaluationgA devoted to the inner ES. That is, similar [5] M. Herdy. Reproductive Isolation as Strategy paramigter
convergenceféects can be obtained by either increasing the popu- Hierarchically Organized Evolution Strategies RnManner

Iqtlon i'ze %r. t?e':jotlatlé)g ?emi.d' Thls IS a very rlemartgg‘egligsi and B. Manderick, editors, Parallel Problem Solving from
the poptlation ive has been chosemently lrge, soe Inoqual-  NAIUTE VOume 2, pages 207-217. Elseier, 1992.
hop y large, q M. Lunacek and D. Whitley. Searching for Balance:

. ; . 6]
ity (32). The result has been obtained fér— o assuming that [ . ! ; .
the population size is much smaller than the search spacendim ;Jggeerstandmg Seli-Adaption on Ridge Functions. PPSN,

sionality N. This still leaves room foy > 1 advantages. Consid- . . . .
ering small dimensionalities, we have found indeed expentai [7] s. Meyer-_N|ebergSeIf-Adaptat|on in Evolution Strategies
evidence for advantages of longer isolation periods. PhD thesis, Dortmur?d, 2007. .

The investigations should be extended to other test prablem [8] - RechenbergEvolutionsstrategie '94Frommann-Holzboog
where the choice of the populations size versus the isolaiioe Verlag, Stuttgart, 1994.



