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ABSTRACT
This paper investigates mutation strength control using Meta-ES on
the sharp ridge. The asymptotical analysis presented allows for the
prediction of the dynamics in ridge as well as in radial direction.
Being based on this analysis the problem of the choice of popula-
tion sizeλ and isolation parameterγ will be tackled. Remarkably,
the qualitative convergence behavior is not determined byγ alone,
but rather by the number of function evaluationsλγ devoted to the
inner ES.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]: Control
theory

General Terms
Algorithms

Keywords
Adaption, Evolution Strategies, Meta-ES, Mutation Strength, Sharp
Ridge Function

1. INTRODUCTION
Controlling the strategy parameters of an Evolutionary Strategy

(ES) by hierarchically organized ESs, also referred to as Meta-
ESs, is a common practice in the field of ESs. Formally Meta-ESs
are described by the generalized ES bracket notation according to
Rechenberg [8]

[

µ′/ρ′, λ′(µ/ρ, λ)γ
]

. (1)

The Meta-ES (1) runsλ′ parallel inner (µ/ρ, λ)-ESs overγ genera-
tions. Each of these ESs are equipped with different initial strategy
parameters such as different initial mutation strengths or popula-
tion sizes. Selection on the higher level then chooses theµ′ best
for recombination with respect to a previously defined fitness crite-
rion. While there is experimented evidence that Meta-ES cantune
the inner ES to optimal performance [5], the control investigations
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are still scarce. There are basically two papers on that topic: In
[4] the performance of the [1,2(µ/µI , λ)γ]-Meta-ES on the sphere
model has been analyzed. In [1] Arnold presented an analysisof
the mutation strength adaption by [1,2(µ, µI , λ)γ]-Meta-ES on the
family of ridge functions

F(x) = −x1 + d
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His analysis did not include the sharp ridge. However, the sharp
ridge is especially interesting since this fitness landscape poses a
challenge on any mutation adaption mechanism including cumula-
tive step-size adaption and self-adaption, see also [6]. Furthermore
the sharp ridge can be regarded as a model for linear constraint op-
timization where standard methods are known to show a premature
convergence behavior. Therefore, this paper will particularly in-
vestigate Meta-ES in the fitness environment defined by the sharp
ridge function which is defined as

F(x) = −x1 + d
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= −x1 + dR (3)

for x = (x1, . . . , xN) ∈ RN. The parameterd is called the nonlinear-
ity strength parameter of the ridge function.

The x1-axis also referred to as the ridge axis is in this defini-
tion identified with an axis of the coordinate system. While this is
a special choice, an arbitrary coordinate transformation would not
have any effect to the strategy’s performance. This is so because
the inner ES uses isotropically distributed mutations.

The termR ≔
√

∑N
i=2 x2

i describes the distance of the argument

x ∈ RN to the ridge axis.
Without loss of generality we assume a minimization problem. The
sharp ridge function has no finite optimum, thus minimization steadily
decreases theF-value. Fitness improvement can be achieved in two
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Figure 1: The contour plot of the 2-dimensional Sharp Ridge
function with d = 2. Notice that darker regions correspond to
lower function values.



ways: either by reducing the distanceR to the ridge axis or by in-
creasing thex1-value, i.e. making progress in direction of the ridge
axis. In the short run this is realized fastest by reducing the distance
to the ridge axis. However, the convergence to the ridge axisalso
results in a stagnation of the progress in direction of the ridge axis.
Thus a long term improvement is achieved better by enlargingthe
x1 value and accepting an increasing radiusR, see [1].

This paper is organized as follows: Section 2 contains a descrip-
tion of the investigated [1, 2(µ/µI , λ)γ]-Meta-ES algorithm. In Sec-
tion 3 we work on the theoretical analysis of the inner ES for three
cases depending on the initial distance to the ridge axisR. Result-
ing in a rule for the choice of the isolation length parameterγ which
allows for the control of the mutation strengthσ. The analysis of
the Meta-ES behavior over multiple isolation periods is presented
in Section 4. For sufficiently long isolation lengthγ we provide an
asymptotic solution for the expected results. Section 5 investigates
the impact of small dimensionalitiesN on the Meta-ES dynamics.
Finally, Section 6 sums up our results and offers an outlook on fu-
ture research.

2. CONTROLLING THE MUTATION
STRENGTH BY [1, 2]-META-ES

This section recaps the simple [1,2(µ/µI , λ)γ]-Meta-ES which is
used to control the mutation strengthσ. The outer ES, see Fig. 2,
generates two (µ/µI , λ) populations. The inner ESs start from the
same initialyp but with different mutation strengths ˜σ which are
kept constant during the isolation period ofγ generations. As one

[1,2(µ/µI , λ)γ]-ES line
Initialize(yp, σp, α, µ, λ, γ,N); 1
t = 0; 2
Repeat 3
σ̃1 ≔ σpα; 4
σ̃2 ≔ σpα

−1; 5
[ỹ1, f̃1] ≔ ES(µ, λ, γ, σ̃1, yp); 6
[ỹ2, f̃2] ≔ ES(µ, λ, γ, σ̃2, yp); 7
σp ≔ σ̃1;2; 8
yp ≔ ỹ1;2; 9
t ≔ t + 1; 10

Until(termination condition) 11

Figure 2: Pseudo code of the [1, 2]-Meta-ES. The Code of the
inner ES is displayed in Fig. 3.

can see in Line 4 and 5 the two differentσ̃ values are computed by
increasing respectively decreasing the parental mutationstrength
by the factorα > 1. As a result there is always one (µ/µI , λ)γ-ES
running with mutation strength ˜σ1 = ασp and one with ˜σ2 = σp/α.
Selection is explained in lines 8 and 9 using the standard notation
“m; λ′” indicating them-th best population out of allλ′ popula-
tions. The populations are ordered by the function value returned
by the respective inner standard ES, displayed in Fig. 3, after hav-
ing evolved independently overγ generations. The inner ES gen-
erates a population ofλ offspring by adding the product of the mu-
tation strengthσ and a vector of independent, standard normally
distributed components to the centroidy of the parental generation.
Theµ best candidates (in terms of their function valuesF̃l ) out of
theseλ offsprings are used to build the new parental centroidy.
Proceeding this way overγ generations the inner ES returns the tu-
ple [y, F(y)].

As a termination criterion for the outer ES one can for example
choose an upper bound for the number of function evaluationsor
specify a fixed number of isolation periods.

Function: ES(µ, λ, γ, σ, y) line
g=1; 1
While g ≤ γ 2

For l = 1 Toλ 3
ỹl ≔ y + σNl(0, I ); 4
F̃l ≔ F(ỹl); 5

End For 6
y ≔ 1

µ

∑µ

m=1 ỹm;λ; 7
g≔ g+ 1; 8

End While 9
Return [y, F(y)]; 10

Figure 3: The inner (µ/µI, λ)γ-ES

3. THEORETICAL ANALYSIS
In what follows, we examine the dynamics of the inner (µ/µI , λ)-

ES over a period ofγ generations. The theoretical analysis is based
on mean value dynamics which is a common practice in the field of
ES. Taking into account the selection mechanism of the Meta-ES
we can derive directives for the mutation strength control depend-
ing on the population size and the fitness environment in terms of
the dimensionalityN and the nonlinearity strengthd. The theoret-
ical results are finally compared with the empirical analysis of the
algorithm.

The analysis is based on the deterministic mutation rule that pro-
duces exactly two inner (µ/µI , λ)-ES, i.e. one withσ+ = ασ(g) and
one withσ− = σ(g)/α. Note thatσ± corresponds to ˜σ1 andσ̃2 men-
tioned in Section 2. We take a look at the expected valueF(g) of the
sharp ridge function at generationg+1 which is already constituted
in [1] by the recurrence equation

F(g+1)
= −x(g+1)

+ dR(g+1), (4)

where the distance in direction of the ridge axis is given by

x(g+1)
= x(g)

+
σcµ/µ,λ√
1+ d2

(5)

and the distance to the ridge axis is constituted by

R(g+1)
= R(g)

+
σ2N

2µR(g)
−

dσcµ/µ,λ√
1+ d2

. (6)

For the definition of the so called progress coefficientscµ/µ,λ we
refer the reader to [3]. We can see thatx(g+1) scales up linearly with
the number of generations, thus we can transform it to

x(g+1)
= x(0)

+
σcµ/µ,λ√
1+ d2

(g+ 1). (7)

In order to investigate the behavior of the [1,2(µ/µ, λ)γ]-Meta-ES
we need a similar expression forR(g+1). Because of the nonlinear-
ity of the recurrence equation (6) we are not able to find a closed
analytical solution forR(g+1). Hence we switch to the continuous
time limit to approximate the difference equation (6) by a differen-
tial equation which is formally obtained by expandingR(g+1) into
a Taylor series atg and breaking off after the linear part

R(g+ 1) = R(g) +
dR
dg

1+ . . . . (8)

IdentifyingR(g+ 1) with R(g+1) andR(g) with R(g) in (6) we get the
nonlinear differential equation

dR
dg
=
σ2N
2µR

−
dσcµ/µ,λ√

1+ d2
. (9)



Equation (9) describes the basis of the further theoreticalanalysis.
If the isolation periodγ is sufficiently large,γ → ∞, the expected
distance reaches a steady stateRdenoted byR∞. This is equivalent
to dR

dg → 0, i.e.R(g)
= R(g−1)

= R∞ for g→ ∞. That is, the inner ES
with constant mutation strengthσ approaches the expected residual
steady state distanceR∞ to the sharp ridge axis which is obtained
by resolving (9) fordR

dg = 0

R∞(σ) ≔
Nσ

2µcµ/µ,λ

√
1+ d2

d
. (10)

Due to mathematical difficulties solving (9) forR we have to con-
sider three special cases depending on the choice of the initial dis-
tanceRof the starting point from the ridge axis:

a) R≈ R∞, b) R≪ R∞, and c)R≫ R∞.

3.1 Analysis of theR ≈ R∞ Case
First we explore the situation in which the initial distanceto the

ridge axis lies in the vicinity of the residual distanceR∞. In this
case we are able to replace the rhs of the differential equation (9)
with its Taylor series aroundR∞. With the derivation of (9) with
respect toR

d
dR

(dR
dg

)

=
−σ2N
2µR2

(11)

and by considering again only the linear terms we get

dR
dg

≈ dR
dg

∣

∣

∣

∣

R=R∞
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dR

(dR
dg

)

∣

∣

∣

∣

R=R∞
(R− R∞) (12)

=

−2c2
µ/µ,λ

d2µ

(1+ d2)N
(R− R∞) (13)

This differential equation can be solved forg by separating the vari-
ables, in the first step yielding

∫ R(g)

R(0)

1
R′ − R∞

dR′ =
∫ g

0

−2c2
µ/µ,λ

d2µ

(1+ d2)N
dg′. (14)

The integration leads to the equation

ln
(R(g) − R∞
R(0) − R∞

)

=

−2c2
µ/µ,λ

d2µ

(1+ d2)N
g. (15)

This can be solved forR(g)

R(g)
= R∞ + (R(0) − R∞)e

−2c2
µ/µ,λ

d2µ

(1+d2)N
g

(16)

= R(0)e−g/τ
+ R∞

(

1− e−g/τ
)

, (17)

whereτ is defined as

τ ≔
(1+ d2)N

2c2
µ/µ,λ

d2µ
. (18)

Taking into account Eq. (4), (7), and (17) we obtain an expression
for the expected value of the sharp ridge function at generation g

F(g)
= F(0) −

σcµ/µ,λ√
1+ d2

g− d
(

R(0) − R∞
)

(1− e−g/τ). (19)

The F(g)-dynamics of the inner ES is governed by a linearly de-
creasing term and a term proportional to the initial

(

R(0) − R∞
)

dif-

ference which reaches a saturation valued
(

R(0) − R∞
)

exponen-
tially fast. The latter is approached with the time constantτ, see
Eq. (18). The approach is slower for decreasingd and increas-
ing dimensionalityN. The parental population sizeµ decreases the

time constant (provided thatcµ/µ,λ ≈ const).
Now we are able to investigate theγ-dependency of the Meta-ES.
Starting with a random point at generationG with initial values
F(G), x(G), R(G), andσ(G) the inner ES generates twoσ-values from
the parentalσ(G)

σ+ = ασ
(G) and σ− = σ

(G)/α. (20)

Thus there are two expected function valuesF(G+γ) afterγ genera-
tions of the inner [(µ/µI , λ)γ]-ES

F(G+γ)
+ ≔ F(G+γ)(ασ(G)) and F(G+γ)

− ≔ F(G+γ)(σ(G)/α). (21)

Using (19) we obtain

F(G+γ)
+ = F(G) −

ασ(G)cµ/µ,λ√
1+ d2

γ − d
(

R(G) − R∞(ασ(G))
)

(1− e−γ/τ) (22)

F(G+γ)
− = F(G) −

σ(G)cµ/µ,λ

α
√

1+ d2
γ − d

(

R(G) − R∞(σ(G)/α)
)

(1− e−γ/τ) (23)

The sign of the functionδ(γ) defined as the difference of the above
constructed function values

δ(γ) ≔ F(G+γ)
+ − F(G+γ)

− (24)

determines whether to increase or to decrease the mutation strength
in the outer [1,2]-ES. Since we are aiming at fastF-decrease we get
the conditions

δ(γ) < 0 ⇒ σ(G+γ)
= ασ(G)

δ(γ) > 0 ⇒ σ(G+γ)
= σ(G)/α.

(25)

Combining (22) and (23) one gets

δ(γ) = ∆(γ)σ(G)

(

α − 1
α

)

(26)

with

∆(γ) :=
N
√

1+ d2

2µcµ/µ,λ
(1− e−γ/τ) −

cµ/µ,λ√
1+ d2

γ. (27)

Sinceα − 1
α
> 0 the condition (25) becomes

∆(γ) < 0 ⇒ σ(G+γ)
= ασ(G)

∆(γ) > 0 ⇒ σ(G+γ)
= σ(G)/α.

(28)

Considering the long-term behavior of theF-evolution in (19) one
sees that this behavior is mainly governed by the linearg term.
Aiming at fastF-decrease, i.e. minimization, the mutation strength
σ should be increased by the outer ES implying∆(γ) < 0 in (28).
Thus, using (27) we obtain a rule for the choice of theγ-value

cµ/µ,λ√
1+ d2

γ >
N
√

1+ d2

2µcµ/µ,λ
(1− e−γ/τ) (29)

⇔ γ >
N(1+ d2)

2µc2
µ/µ,λ

(

1− e−γ/τ
)

. (30)

This causes the Meta-ES to steadily increase the mutation strength
σ. Since (1− e−kγ) < 1 the inequality (30) is surely fulfilled for an
isolation periodγ = γ̂

γ̂ =





















N(1+ d2)

2µc2
µ/µ,λ





















. (31)

If we consider (31) as well as the truncation ratioν =
µ

λ
and assum-

ing cµ/µ,λ ≈ 1, Eq. (30) can be transformed to

γλ >
N(1+ d2)

2ν
. (32)
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Figure 4: Illustration of the mutation strength behavior fo r three different choices of the isolation length. Theσ-dynamics of a
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= 1, α = 1.2 on the sharp ridge with d = 5
over 25 isolation periods (γ̂ = 3821).

0 0.5 1 1.5 2
x 10

5

0

5000

10000

15000

R
−

va
lu

e 
dy

na
m

ic
s

number of generations g

γ =7641

0 2 4 6 8 10
x 10

4

0

5000

10000

15000

R
−

va
lu

e 
dy

na
m

ic
s

number of generations g

γ =3821

0 1 2 3 4 5
x 10

4

0

50

100

150

R
−

va
lu

e 
dy

na
m

ic
s

number of generations g

γ =1911

Figure 5: On the R-value dynamics of a [1, 2(3/3, 10)γ]-Meta-ES with γ ≈ 2γ̂, γ = γ̂ and γ ≈ γ̂/2 for N = 1000,σ(0)
= 1, α = 1.2

on the sharp ridge with d = 5 over 25 isolation periods ( ˆγ = 3821). The distanceR to the ridge axis is displayed according to theσ
dynamics presented in Fig. 4.

Note,γλ is the number of function evaluations during the inner ES.
Equation (32) suggests that the divergence behavior of the Meta-
ES can be controlled either by choosing a sufficiently large isola-
tion lengthγ or by increasing the size of the population parameter
λ (andµ proportionally).

Now we focus on the precision of our theoretical predictions
from Eq. (6) and (7) compared to the results of a experimentalrun
of the Meta-ES algorithm described in Section 2. For that reason
the theoretical equations are iterated overγ generations in two runs
with different constant mutation strengthsασ andσ/α. Then the
resultingσ, R, andx values which lead to the best fitness function
valueF = −x+ dRare selected and used as starting points for the
next iteration overγ generations. Theσ dynamics and theR-value
dynamics of the Meta-ES are illustrated for different choices of the
isolation length parameterγ in Fig. 4, and Fig. 5 respectively. In
each plot the experimental results of a run over 25 isolationpe-
riods, or 25γ generations, of the Meta-ES are represented by the
solid blue lines whereas the iteratively computed analytical results
are depicted as dashed red lines.

There is a good agreement between theoretical predictions and
experiments. For long choices of the isolation lengthγ relative to
γ̂ in (31) we observe overlapping graphs of theoretical and experi-
mental results for theσ dynamics in Fig. 4. That is, the Meta-ES
steadily increases the mutation strength after each isolation period.
According to theσ-dynamics the strategy increases the distance to
the ridge axis with every isolation period, see Fig. 5 for theR dy-
namics, which leads the Meta-ES to gain constantly better fitness.
Even for very short isolation periodsγ ≪ γ̂ the experimental re-
sults suit our predictions. Thus we observe a permanent decrease

of the mutation strength in Fig. 4 which is linked to the behavior
of theR dynamics to get reduced to zero. This leads the Meta-ES
to converge to the ridge axis. That is, choosingγ too small, the ES
exhibits premature convergence behavior.

Only the vicinity of the criticalγ-value we can observe distinct
deviations between theory and experimental results. Whilethe iso-
lation lengthγ = γ̂ is theoretically sufficient to cause a steady in-
crease of theσ andRdynamics, the experimental run departs from
the theoretical results. This does not come as surprise, since we
replaced the stochastic dynamics by mean value dynamics.

3.2 Analysis of theR≪ R∞ Case
If the initial point of the Meta-ES lies near the ridge axis we

again start the analysis with Eq. (9) and by using (10) one obtains

dR
dg
=
σ2N
2µ

(

1
R
− 1

R∞

)

=
−σdcµ/µ,λ√

1+ d2

(R− R∞
R

)

. (33)

By separating the variables this leads to the integral equation

∫ R(g)

R(0)

R′

R′ − R∞
dR′ =

−σdcµ/µ,λ√
1+ d2

∫ g

0
dg′. (34)

While (34) can be integrated in closed form, it is not possible to
solve the resulting equation forR(g). Thus we consider the limit
cases of smallR(0) and largeR(0) states separately. The former case
allows for a neglection ofR in the denominator of the lhs in (34)

∫ R(g)

R(0)

R′

R∞
dR′ =

σdcµ/µ,λ√
1+ d2

∫ g

0
dg′. (35)



by the use of the conditionR′ ≪ R∞. Taking into account (10) and
solving both integrals yields

1
2R∞

(

R(g)2 − R(0)2
)

=
2σdcµ/µ,λ√

1+ d2
g (36)

(

R(g)2 − R(0)2
)

=
σ2N
µ

g (37)

R(g)
=

√

R(0)2 +
σ2N
µ

g. (38)

Considering the case that the ES is initialized at the ridge axis,
R(0)
= 0, one obtains

R(g)
= σ

√

Ng/µ ∝ √g. (39)

That is, the ES departs with a random walk
√

g-law from the ridge
axis. Using (4), (7), and (39) the fitness at generationg becomes

F(g)
= −x(0) −

σcµ/µ,λ√
1+ d2

g+
dσ
√

N
√
µ

√
g. (40)

For sufficiently largeg (keepingσ = const.) F(g) decreases linearly.
This is similar to (19), however, due to the

√
g term it happens

slower.
Considering the difference betweenF(G+γ)

+ andF(G+γ)
− , (21), theσ-

learning behavior of the Meta-ES can be analyzed. Using (24)and
(40) one gets

δ(γ) =













d
√

N
√
µ

√
γ −

cµ/µ,λ√
1+ d2

γ













σ(G)

(

α − 1
α

)

. (41)

Now we can define

∆̃(γ) ≔













d
√

N
√
µ

√
γ −

cµ/µ,λ√
1+ d2

γ













. (42)

Similar to (28) we conclude that the Meta-ES increases the muta-
tion strengthσ if ∆̃(γ) < 0

∆̃(γ) < 0 ⇔
cµ/µ,λ√
1+ d2

γ >
d
√

N
√
µ

√
γ. (43)

Resolving for the isolation period duration parameterγ, we obtain

γ ≥




















d2(1+ d2)N

µc2
µ/µ,λ





















(44)

⇒ σ(G+γ)
= ασ(G). (45)

Compared to ˆγ from Eq. (31) one sees that the isolation period
has to be chosen by a factor 2d2 larger in order to lead the strategy
to diverge from the ridge axis in the case that the Meta-ES starts
very close to the ridge axis. However, this result must be takencum
grano salis. The bound derived in (44) is based on theR-dynamics
(39) that assumed 0= R(0) ≪ R∞. That is,σ

√

Ng/µ ≪ R∞ must
hold. This puts a constraint on the number of generationsg the
approximation can be used. Taking (10) into account, we see

g≪ N

4µc2
µ/µ,λ

(

1+
1
d2

)

(46)

If this condition is violated, the ES already enters theR ≈ R∞ re-
gion. Comparing the rhs of (46) with the rhs of (44) we getd≪ 1√

2
.

In other words theR≪ R∞ is left rather fast for sufficient larged
and the bound (44) is rather pessimistic. Similar to Section3.1 we
are able to compute theR dynamics iteratively by the use of Eq.
(39) and we compare them to the results of an experimental run
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Figure 6: On the R dynamics of the inner strategy of the
[1, 2(3/3, 10)γ]-Meta-ES initialized on the ridge axis, R(0)

= 0,
with N = 500,d = 1

100, σ
(0)
= 0.001 andα = 1.2 . The distance

to the ridge axis is illustrated over the first isolation period of
γ = 147 generations.

of the Meta-ES algorithm, see Fig. 6. Again the iterative result is
depicted as dashed red line whereas the experiment is represented
by the solid blue line and we observe a very good correspondence
between the theory and experiments. Even for choices of small d
andσ values the strategy is leaving the initial state on the ridgeaxis
relatively fast. That is, after a few generations the special state of
R ≪ R∞ is left and the further dynamics can be described by the
theory presented in Section 3.1.

3.3 Analysis of theR≫ R∞ Case
In the case that the radiusR of the initial point is considerably

larger thanR∞ we start just like in the previous section. But Eq.
(34) now can be simplified to

∫ R(g)

R(0)
1dR′ =

−σdc
√

1+ d2

∫ g

0
dg′ (47)

which leads directly to

R(g)
= R(0) −

dσcµ/µ,λ√
1+ d2

g. (48)

Using (4), (7), and (48) the fitness dynamics of the inner ES become

F(g)
= F(0) − σcµ/µ,λ

√
1+ d2g. (49)

Considering the fitness difference in the Meta-ES (24), we imme-
diately obtain

F(G+γ)
+ − F(G+γ)

− = −γcµ/µ,λ
√

1+ d2

(

α − 1
α

)

σ (50)

which is equivalent to

δ(γ) < 0 ∀γ ∈ N. (51)

That is, each choice ofγ is leading the Meta-ES to a steady increase
of the mutation strengthσ until the strategy reaches the steady state
distanceR∞ and the dynamics described in Section 3.1 hold again.

Fig. 7 compares theR-value dynamics of two runs of the Meta-
ES algorithm with the iteratively computed predictions of Eq. (9).
In both cases we observe a good agreement of analytical and exper-
imental results. The lhs of the illustration shows the strategy with
a rather short isolation lengthγ, i.e. γ ≈ γ̂/2 whereas on the rhs of
Fig. 7 a long isolation time ofγ ≈ 2γ̂ generations has been chosen.
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As we can see in the respectiveσ dynamics, Fig. 8, the strat-
egy increases the mutation strength until a sufficient vicinity to the
steady state distance is reached in a certain isolation period. That is,
we observe a great compliance with the theoretical results,see Eq.
(51). Afterwards the Meta-ESs behaviors continue as described in
Section 3.1, i.e., for short isolation time the strategy converges to
the ridge axis and decreases the mutation strength. Conversely it
diverges and steadily increases the mutation strength for long iso-
lation periods.

4. BEHAVIOR OVER MULTIPLE ISOLA-
TION PERIODS

Since in Section 3 the dynamics of the inner ES were already il-
lustrated over several isolation periods and compared to the exper-
imental results of the algorithm we are now going to theoretically
investigate the behavior of the Meta-ES over multiple isolation pe-
riods. TakingG + γ instead ofg, defining

b :=
N
√

1+ d2

2µcµ/µ,λd
(52)

and remembering (18), Eq. (17) becomes

R(G+γ)
= R(G)e−γ/τ + bσ(G)

(

1− e−γ/τ
)

. (53)

Our analysis is based on the results derived for theR ≈ R∞ case
in Section 3.1. That is sufficient because in both other cases, i.e.
R ≪ R∞ or R ≫ R∞, the initial state is left rather fast with the
strategy making progress towards the steady state distanceR∞.
Assuming the choice ofγ big enough, i.e.γ > γ̂ in (31), the Meta-
ES is supposed to increase the mutation strength after each isolation
period. Thus, after the first isolation overγ generations the algo-
rithm picks the parentalyp out of the inner ES with the distance to
the ridge axis given by

R(G+γ)
= R(G)e−γ/τ + bασ(G)

(

1− e−γ/τ
)

. (54)

After the second isolation period with

σp ≔ σ
(G+γ)

= ασ(G) (55)

again the inner ES with increased mutation strength is chosen

R(G+2γ)
= R(G+γ)e−γ/τ + bασ(G+γ)

(

1− e−γ/τ
)

(56)

= R(G)e−2γ/τ
+ bασ(G)

(

1− e−γ/τ
) (

e−γ/τ + α
)

. (57)

Continuing this way we are able to predict the expected distance
to the ridge axisR(G+tγ) aftert isolation periods

R(G+tγ)
= R(G)e−tγ/τ

+ bασ(G)
(

1− e−γ/τ
)

e−(t−1)γ/τ
t−1
∑

i=0

αieiγ/τ. (58)

Applying the geometric series formula this equation becomes

R(G+tγ)
= R(G)e−tγ/τ

+ bασ(G)
(

1− e−γ/τ
)

e−(t−1)γ/τα
tetγ/τ − 1
αeγ/τ − 1

. (59)

Rewriting the second term,

bασ(G)
(

1− e−γ/τ
)

e−(t−1)γ/τα
tetγ/τ − 1
αeγ/τ − 1

(60)

= bσ(G)
(

1− e−γ/τ
)

αt 1− α−te−tγ/τ

1− α−1e−γ/τ
(61)

and using (10), theR-dynamics becomes

R(G+tγ)
= R(G)e−tγ/τ

+ R(G)
∞ α

t
(

1− e−γ/τ
) 1− α−te−tγ/τ

1− α−1e−γ/τ
, (62)
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Figure 9: The upper graphs show the fitness dynamics of an
[1, 2(3/3, 10)2γ̂]-Meta-ES with σ(0)

= 1,α = 1.2 and two differ-
ent choices of the dimensionN and the nonlinearity strength d
each. The dynamics are illustrated over 25 isolation periods of
2γ̂ generations withγ̂ from (31) depending onN and d.

with R(G)
∞ =

N
√

1+d2

2µcµ/µ,λd
σ(G).

Equation (62) simplifies when taking into account e−γ/τ ≪ 1

R(G+tγ) ≃ R(G)
∞ α

t. (63)

In order to have this dynamics, we have to demand e−γ/τ ≪ 1, i.e.
γ/τ ≫ 1. Using an isolation period (31) andτ given by (18), this
transfers to the condition

γ/τ = d2 ≫ 1 (64)

which is approximately fulfilled for sufficiently large nonlinearity
parameterd in (4). In the same manner we can derive a formula for
the progress of the Meta-ES in direction of the ridge axis. Using
(7) and (55) one gets

x(G+γ)
= x(G)

+
cµ/µ,λ√
1+ d2

ασ(G)γ (65)

x(G+2γ)
= x(G+γ)

+
cµ/µ,λ√
1+ d2

γασ(G+γ) (66)

= x(G)
+

cµ/µ,λ√
1+ d2

γσ(G)α(1+ α). (67)

After t isolation periods we have

x(G+tγ)
= x(G)

+
cµ/µ,λ√
1+ d2

γσ(G)α

t−1
∑

i=0

αi . (68)

By use of the geometric series formula this can be simplified to

x(G+tγ)
= x(G)

+
cµ/µ,λ√
1+ d2

γσ(G)α
αt − 1
α − 1

. (69)

Using (63), (68), and (4) the approximateF-dynamics of the Meta-

ES reads (x(G)
= 0)

F(G+tγ) ≃ −
cµ/µ,λ√
1+ d2

γσ(G)α
αt − 1
α − 1

+ dR(G)
∞ α

t. (70)

This leads to an asymptotic dynamics

F(G+tγ) ∼ −αtσ(G) N
√

1+ d2

2µcµ/µ,λ















2µc2
µ/µ,λ

N(1+ d2)
γα

α − 1
− 1















. (71)

That is, the Meta-ES diverges exponentially fast at a rate oflnα.
The fitness value dynamics predicted in Eq. (70) compared to

three different Meta-ES runs are displayed in Fig. 9 forN = 500
andN = 1000. We observe an increasing compliance of iteratively
computed and experimental results by increasing the dimensional-
ity N. On the lower depiction of Fig. 9 the influence of the nonlin-
earity strength parameterd is shown, i.e. the fitness dynamics of
two Meta-ESs on different fitness landscapes are illustrated. The
use of a bigger nonlinearity strengthd causes longer isolation pe-
riods, see (31), letting the Meta-ES reach better fitness. For long
isolation periods and high dimensionalities the predictions agree
with the experiments.

5. FINITE SEARCH SPACE DIMENSION-
ALITY EFFECTS

The inequality (32) offers an astonishing interpretation: The pro-
gress on the ridge function only depends on the number of function
evaluations being larger than the constant term on the rhs of(32).
That is, in the asymptotic limit case (N→ ∞) isolation periods> 1
are unnecessary. This conclusion calls for an examination of the
Meta-ES dynamics in low-dimensional spaces. From the progress
rate analysis of the sphere model and also the ridge functionwe
know that the progress rate does not linearly scale with the popula-
tion size. That is, the increase ofµ does only make sense ifµ≪ N.
If this condition is violated,γ > 1 might be of use.

Therefore, we investigate the Meta-ES behaviors for a constant
number of function evaluations but with different choices of popu-
lation size parameters (µ, λ) and isolation length parameterγ under
the condition of smallN. Using (32) withν = 0.25 we consider

N(1+ d2)
2

< µγ = 2β = 2β12β2 = const. (72)

with µ ≔ 2β1 , γ ≔ 2β2 and β = β1 + β2 ∈ N. As we can
see in the illustrations for small dimensional spaces, see Fig. 10
(β = 8, N = 30, d = 0.9) and Fig. 11 (β = 8, N = 30, d = 3),
the use of isolation within the Meta-ES leads to a great improve-
ment in the case of small search space dimensions. In Fig. 10
the inequality in (32) is relatively high because of the small choice
of d which results in similar mutation strength dynamics and there-
fore overlapping graphs of the illustrated five Meta-ES settings with
(µ = 1, γ = 256), (µ = 4, γ = 64), (µ = 16, γ = 16), (µ = 64, γ = 4)
and (µ = 256, γ = 1). While theσ dynamics are equal we can ob-
serve that the Meta-ESs with longer isolation periods and smaller
populations outperform the conversely constructed ones with re-
spect to theirR-value and fitness dynamics compared against the
same number of function evaluations (or isolation periods respec-
tively). The situation illustrated in Fig. 11 describes a low inequal-
ity in Eq. (32). In contrast to Fig. 10 theR-value dynamics of the
Meta-ES settings with short isolation periods and larger population
sizes tend to converge to the ridge axis. This leads to premature
convergence behavior while longer isolation periods stilllead to in-
crease the distance to the ridge axis and gain greater progress of the
fitness values. Regarding theσ dynamics in Fig. 11, we see that no
Meta-ES setting steadily increases the mutation strength under the
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Figure 10: Illustration of the [1 , 2(µ/µ, λ)γ]-Meta-ES dynamics for dimensionN = 30, nonlinearity strength parameter d = 0.9 and
truncation ratio ν = 0.25. The mutation strengthσ, the distance to the ridge axisR and the fitness function valueF are compared
for five different combinations ofγµ = 28

= 256 over a time of 25 isolation periods.
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Figure 11: Depiction of the [1, 2(µ/µ, λ)γ]-Meta-ES dynamics for dimensionN = 30, d = 3 and ν = 0.25. Again the dynamics of the
five Meta-ES runs with γµ = 28

= 256 are compared over 25 isolation periods. Note that Fig. 10only differs from Fig. 11 by the
choice of the nonlinearity strength parameterd.

condition that the inequality (32) is not sufficiently satisfied. But
again rather the settings with longer isolation periods andsmaller
population sizes tend to increase the mutation strength. That is,
leaving the asymptotic limit case we can infer advantages from the
use of a sufficiently long isolation period.

6. CONCLUSIONS AND OUTLOOK
In this paper we examined theσ-control of the [1, 2(µ/µ, λ)γ]-

Meta-ES on the sharp ridge. Our theoretical analysis allowsfor a
deeper understanding of the influence of the isolation length γ on
the performance of the Meta-ES. We derived an estimate for the
choice ofγ which depends on the population sizesλ andµ and
the dimensionalityN as well asd being the nonlinearity strength
parameter determining the “hardness” of the sharp ridge. From
earlier empirical investigations [5] it was conjectured that the iso-
lation parameterγ has considerable influence on the performance
of the Meta-ES. The asymptotical analysis done here, however, re-
vealed that it is notγ alone that determines the qualitative behavior
(whether there is premature convergence or not), but the number
of function evaluationsγλ devoted to the inner ES. That is, similar
convergence effects can be obtained by either increasing the popu-
lation size or the isolation period. This is a very remarkable results,
since it predicts Meta-ES functioning even forγ = 1 provided that
the population size has been chosen sufficiently large, see Inequal-
ity (32). The result has been obtained forN → ∞ assuming that
the population size is much smaller than the search space dimen-
sionality N. This still leaves room forγ > 1 advantages. Consid-
ering small dimensionalities, we have found indeed experimental
evidence for advantages of longer isolation periods.

The investigations should be extended to other test problems
where the choice of the populations size versus the isolation time

might have a much greater impact on the ES performance, as per-
haps for noisy problems. The theoretical analysis performed will be
also the basis for the design of theoretically motivated population
size control rules.
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