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ABSTRACT
This paper concerns the theoretical analysis of amulti-recombinative
meta-ES with repair by projection applied to a conically constrained
problem. Using theoretical results for the mean value dynamics and
steady state considerations of the inner ES, approximate closed-
form expressions for the mean value dynamics and the steady state
behavior of the outer ES are derived. The approximation quality
is shown by comparison with real meta-ES runs using isolation
periods larger than one. The theoretical results are compared to
known theoretical results of the multi-recombinative ES with σ -
Self-Adaptation and Cumulative Step-Size adaptation. It is shown
that the meta-ES achieves the largest steady state progress for the
considered problem at the cost of twice the function evaluations
compared to the other variants.

CCS CONCEPTS
• Theory of computation → Optimization with randomized
search heuristics; Bio-inspired optimization; Theory of ran-
domized search heuristics.
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1 INTRODUCTION
Adaptive parameter control is important for the effectiveness of Evo-
lution Strategies (ESs). Besides the 1/5th rule [15], σ -Self-Adaption
(σSA) [15], and Cumulative Step-Size Adaptation (CSA) [13], the
meta-ES is an alternative approach for adapting themutation strength
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throughout the evolution. Specifically, meta-ESs are nested ESs that
control the mutation strength through their hierarchical organiza-
tion [12, 15].

Meta-ESs represent an alternative approach formutation strength
adaptation. Theoretical investigations on the Sharp Ridge function
revealed its effectiveness and the influence of certain strategy pa-
rameters on the meta-ES behavior [9]. In that respective work, it
has been shown that meta-ESs are capable of avoiding premature
convergence. Since the Sharp Ridge problem shares similarities with
simple constrained problems, those results indicate that meta-ESs
can be a suitable option for constrained problems as well. Therefore,
by extension of the results in [11], this work provides a theoretical
analysis of a meta-ES variant with multi-recombinative inner ES in
the context of a conically constrained problem. On the other hand,
the present paper compares the derived performance results of the
meta-ES to those of two other multi-recombinative ES variants
that apply different mutation strength control mechanisms, namely
σSA-ES and CSA-ES, respectively.

Theoretical analyses of ESs on constraint problems were done
for simple linear and conical constraints.

ESs applied to a linear objective function with a single linear
constraint have been analyzed in prior work. The main motivation
for a linear optimization problem with (a single) linear constraint(s)
is to model a real-world situation for the problem of premature
convergence. For the case that the descent direction of the objective
function’s gradient points toward the hyperplane spanned by the
linear constraint, the ESs naturally move in the direction of the
boundary. In order to be effective on such problems, the ES has to
avoid stagnation. In [2], resampling has been considered. Repair by
projection has been analyzed in [1]. Reflection and truncation have
been considered in [10], and those approaches have been compared
to projection and resampling in that work. It has been shown for the
particular problem under consideration that repair by projection
can avoid premature convergence even for small constraint angles.
In contrast, other repair approaches (especially resampling) exhibit
premature convergence. Further, Lagrangian based approaches for
linearly constrained problems have been investigated in [5–7].

As a next step after considering linear constraints, a conically
constrained problem has been proposed in [4], where the objective
function is linear and the constraint is a cone. The idea here is to
model a situation where the optimum lies on a “corner” of the feasi-
bility region, which aggravates the problem of possible premature
convergence. A simplification of this problem is to treat the case
that the gradient of the linear objective function coincides with the
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cone axis. That results in a linear optimization problem constrained
by a cone such that the optimum is at the cone’s apex. It has been
presented in [3] and simplifies theoretical analyses (in compari-
son to the more general conical problem). The (1, λ)-CSA-ES with
discarding infeasible offspring has been analyzed for this prob-
lem in [3], analogously, the (µ/µI , λ)-CSA-ES has been analyzed
in [14]. As a further step, repair by projection has been considered:
The (1, λ)-σSA-ES has been analyzed in [16], the (µ/µI , λ)-σSA-ES
in [17], the (µ/µI , λ)-CSA-ES in [18], and the [1, 2(1, λ)1]-meta-ES1
in [11].

The goal of this work is the extension of the [1, 2(1, λ)γ ]-meta-
ES analysis with γ = 1 as presented in [11] to the [1, 2(µ/µI , λ)γ ]-
meta-ES with repair by projection applied to the conically con-
strained problem with the objective function gradient along the
cone’s axis. It presents a further step toward a more thorough theo-
retical understanding of the working principles of meta-ESs applied
to constrained optimization problems. Expressions are derived for
describing the algorithm’s dynamics and the algorithm’s steady
state behavior. The results are compared to σSA and CSA. The
comparison shows that the steady state progress rate achieved by
the meta-ES is larger than that of the σSA and CSA. However, one
has to note that the meta-ES runs two inner ESs in parallel and
therefore uses twice the amount of function evaluations than the
σSA and CSA variants compared.

The work is organized as follows: In Section 2, the problem is
introduced and the considered meta-ES is presented and explained.
This is followed by the theoretical analysis of the algorithm in
Section 3: Section 3.1 briefly recaps results that have already been
derived in [11]. Based on those results, Section 3.2 analyzes the
multi-recombinative [1, 2(µ/µI , λ)γ ]-meta-ES in this work. After
that, the derived results are compared to the σSA and CSA variants
for the mutation strength control in Section 4. Finally, the work is
concluded in Section 5.

Contribution: Based on prior results from [17, 18], steady state
expressions for a [1, 2(µ/µI , λ)γ ]-meta-ES are derived and compared
to those of σSA-ES and CSA-ES. A closed-form expression for the
steady state normalizedmutation strength is derived (Equation (37)).
The ES exhibits a cyclic behavior around this value. It is shown that
it can be bracketed (Equation (54)) with the corresponding interval
for the steady state normalized progress (Equation (55)). Those
derived expressions are compared to simulations of real meta-ES
runs (Figures 6 and 7) and to the theoretical results of σSA and CSA
(Figures 8 to 10) derived in prior work.

1The notation [1, 2(µ/µI , λ)γ ]-meta-ES is used throughout this paper. It denotes
a meta-ES that runs two inner (µ/µI , λ)-ESs (µ parental individuals, λ offspring,
and intermediate recombination) in parallel for γ generations (isolation period γ )
with different strategy parameters. After the isolation period, the outer ES selects the
population and the strategy parameters of the better (w.r.t fitness) inner ES for the
next outer ES iteration.

2 PROBLEM AND ALGORITHM
The problem under consideration can be stated as

minimize F (x) = x1 (1)

such that x2
1 − ξ

N∑
k=2

x2
k ≥ 0 (2)

and x1 ≥ 0, (3)

where x ∈ RN and ξ > 0. The constraints (2) and (3) define a
second-order cone and the gradient of the objective function (1)
coincides with the cone’s axis. It is important to note that since
the cone axis coincides with the first dimension, the constraint in
the (N − 1)-dimensional orthogonal subspace is symmetric and
represents a hypersphere. Consequently, a point in the search space
can be uniquely described by the distance x from 0 in x1-direction
and the distance r from the cone axis in the (N − 1)-dimensional
space, resulting in what is referred to as the (x, r )T -space. Since in
the following isotropic mutations are considered, this further allows
rotating the coordinate system such that a point in the search space
(x̃, r̃ , 0, . . . , 0)T can be represented as (x̃, r̃ )T .

Figure 1 visualizes the problem in the (x, r )T -space. The feasible
region is shaded. Its limiting equation r = x/

√
ξ follows directly

from inequality (2). The optimum xopt is at the apex of the cone.
The shown offspring individual x̃ (with parental individual x and
mutation σ̃z) is infeasible and consequently repaired by projection
onto the cone boundary at (q,qr )T along the dashed projection line.
The vectors er, ec, and e1 denote unit vectors in direction of the
r-axis, the cone boundary, and the x-axis, respectively. Infeasible
offspring are repaired by projection onto the cone boundary. The
projection can be stated as

project(x̃infeas) :=
{
(eTc x̃infeas)ec if eTc x̃infeas > 0,
0 otherwise,

(4)

where

ec =
1√

1 + 1/ξ

(
e1 +

er√
ξ

)
. (5)

By insertion of the unit vectors

e1 = (1, 0, . . . , 0)T

and

er =
(
0, x̃2
| |r̃| | , . . . ,

x̃N
| |r̃| |

)T
,

one can derive

(eTc x̃infeas)ec =
1

1 + 1/ξ

(
x̃1 +

| |r̃| |√
ξ

) (
1, x̃2√

ξ | |r̃| |
, . . . ,

x̃N√
ξ | |r̃| |

)T
(6)

and

eTc x̃infeas =

√
1

1 + 1/ξ

(
x̃1 +

| |r̃| |√
ξ

)
, (7)

where x̃1 = (x̃infeas)1, x̃2 = (x̃infeas)2, . . . , x̃N = (x̃infeas)N , and
| |r̃| | =

√∑N
k=2(x̃infeas)2k .

The considered meta-ES algorithm, which is applied to the pre-
sented conically constrained problem, is shown in Algorithm 1.
In the beginning, the initial parental individual x(0), the initial
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Figure 1: The conically constrained optimization problem
in N dimensions shown in the (x, r )T -space. The feasible re-
gion is shaded. The indicated offspring individual x̃ (with
parental individual x and mutation σ̃z) is infeasible and
therefore projected onto the cone boundary at (q,qr )T along
the dashed projection line.

mutation strength σ (0), the number of offspring λ, the parental pop-
ulation size µ, the length of the isolation period γ , and the isolation
period counter t are initialized in Line 1 and Line 2, respectively.
After that, the outer ES loop (Lines 3 to 11) runs as long as the
termination criterion is not met: The increased mutation strength
σ1 and the decreased mutation strength σ2 are computed in Line 4
and Line 5, respectively. Then, the inner ES is called for both muta-
tion strength settings in Line 6 and Line 7. After that, the parental
individual and the mutation strength for the next generation are
set to the results of the inner ES that resulted in the better objective
function value (Line 8 and Line 9)2. The update of the isolation
period counter (Line 10) ends one iteration of the loop.

The inner ES is a (µ/µI , λ)-ES with repair by projection and
constant mutation strength. Its pseudo-code is shown in Algo-
rithm 2. After initialization in Line 1 and Line 2, the generational
loop (Lines 3 to 14) is entered. It is run for the given isolation period
γ . In every generation, λ offspring are created in Lines 4 to 10. For
the creation of each offspring, a mutation vector is sampled from
an isotropic multivariate normal distribution, scaled with σ , and
added to the parental individual in Line 5. In case that the gener-
ated offspring is infeasible, it is repaired by projection (Lines 6 to 8).
After that, its fitness is determined in Line 9. After the procreation
step, the offspring are sorted in Line 11 in ascending order. The
parental individual for the next generation is set to the centroid
of the µ best offspring in Line 12. The update of the generation
counter (Line 13) ends one iteration of the generational loop.

As can be seen, the inner ES uses constant σ and allows the outer
ES to control the mutation strength. The outer ES always chooses
the setting with the better result of the two inner mutation strength
choices.

2The order statistic notation is used, where more generally “m; λ” denotes them-th
best (w.r.t. fitness) out of λ values.

Algorithm 1 Pseudo-code of the [1, 2(µ/µI , λ)γ ]-meta-ES.

1: Initialization of x(0),σ (0), λ, µ,γ ,α , where µ ≥ 1, λ > µ,σ (0) > 0,
γ > 0, α > 1 must hold

2: t ← 0
3: repeat
4: σ1 ← σ (t )α
5: σ2 ← σ (t )/α
6: (x1, F (x1)) ← ES(x(t ),σ1, λ, µ,γ ) ▷ see Algorithm 2
7: (x2, F (x2)) ← ES(x(t ),σ2, λ, µ,γ ) ▷ see Algorithm 2
8: xt+1 ← x1;2 ▷ x1;2: value of the fitter inner ES result
9: σ t+1 ← σ1;2 ▷ σ1;2: value of the fitter inner ES result
10: t ← t + 1
11: until termination criterion

Algorithm 2 Pseudo-code of the (µ/µI , λ)-ES with repair by pro-
jection and constant mutation strength.

1: function ES(x(0), σ , λ, µ, γ )
2: д← 0
3: while д < γ do
4: for l ← 1 to λ do
5: x̃l ← x(д) + σN(0, I) ▷ Mutation
6: if not isFeasible(x̃l ) then ▷ see (2) and (3)
7: x̃l ← project(x̃l ) ▷ Repair (see (4) and (5))
8: end if
9: f̃l ← F (x̃l ) ▷ Evaluation
10: end for
11: Sort offspring according to f̃l in ascending order
12: x(д+1) ← 1

µ
∑µ
m=1 x̃m;λ ▷ Selection and recombination

13: д← д + 1
14: end while
15: return

(
x(γ ), F (x(γ ))

)
16: end function

3 ANALYSIS
For analyzing the dynamics and the steady state behavior3 of the
meta-ES, the inner ES must be analyzed as an initial step. The goal
is to have closed-form expressions for predicting the objective func-
tion value of the inner ES after γ inner generations. This allows
theoretically reasoning about the outer ES. The following subsec-
tions first treat the inner ES (Section 3.1) and then the outer ES
(Section 3.2).

3.1 Inner Dynamics
Since the inner ES is a (µ/µI , λ)-ES with repair by projection, the
analysis performed in [17] builds the starting point of the meta-ES
investigations. The results are briefly recapped and explained here
for the reader, but it is important to note that this section does not
present new contributions. The main results of [17] are closed-form
expressions considering the (µ/µI , λ)-σSA-ES. As a step toward
those results, progress rates for a given parental state have been
derived for the asymptotic limit case N → ∞. The assumption
3Steady state in this context characterizes the ES behavior in which there is (in expec-
tation) a constant descent rate of the outer ES toward the optimizer. In this situation,
the expected normalized mutation strength is constant.
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N →∞ was necessary in order to derive closed-form expressions.
Even thoughN →∞was assumed, those expressions can still serve
as qualitative approximations for finite values of N . The progress
rate approximations are used in this work for theoreticallymodeling
the behavior of the inner ES. Only the mean value dynamics are
considered (the fluctuations are assumed to be negligible). This
allows stating a system of mean value evolution equations for x
and r from a generation д to the next generation д + 1 as

x (д+1) = x (д)
(
1 − φ

(д)
x
∗

N

)
(8)

r (д+1) = r (д)
(
1 − φ

(д)
r
∗

N

)
. (9)

The quantities φ(д)x
∗
and φ(д)r

∗
are normalized progress rates in x

and r direction, see Equation (13) and Equation (16) below. For their
derivation, the cases of being far from the cone boundary and being
in the vicinity of the cone boundary have been distinguished. The
main idea for that has been that for N → ∞ the probability of
generating infeasible offspring tends to 1 in the vicinity of the cone
boundary, and it tends to 0 being far from the cone boundary. Hence,
the cases are denoted using subscripts named “infeas” and “feas”,
respectively. The feasibility probability has been derived as [17]

Pfeas := Pfeas(x (д), r (д),σ ) ≃ Φ

[
1
σ

(
x (д)√
ξ
− r̄

)]
, (10)

with

r̄ = r (д)
√

1 + σ (д)∗2

N

(
1 − 1

N

)
. (11)

Here,Φ denotes the cumulative distribution function of the standard
normal distribution, r̄ is the expected value of a normal approxima-
tion of the distance from the cone axis r , and σ (д)∗ is the normalized
mutation strength σ (д)∗ := N

r (д) σ . Equation (10) is accurate for suf-
ficiently large ξ and is an approximation for smaller values of ξ .
Note that since σ is constant for the inner ES, the superscript for
denoting the generation for the normalized mutation strength is
due to r (д). Using the feasibility probability, the derivations for
the feasible and infeasible cases of the normalized progress rate
derivations can be combined yielding [17]

φ∗x
(д) := φ∗x (x (д), r (д),σ ) (12)

=
N

x (д)
E[x (д) − x (д+1) | x (д), r (д),σ ] (13)

≈ Pfeas
r (д)

x (д)
σ (д)∗cµ/µ ,λ + [1 − Pfeas]φ∗x infeas (14)

and

φ∗r
(д) := φ∗r (x (д), r (д),σ ) (15)

=
N

r (д)
E[r (д) − r (д+1) | x (д), r (д),σ ] (16)

≈ PfeasN
©­«1 −

√
1 + σ (д)∗2

µN

ª®¬
+ [1 − Pfeas]N

©­­­«1 − x (д)√
ξr (д)

©­«1 −
φ∗x
(д)
infeas
N

ª®¬
√√√√√1 + σ (д)∗2

µN

1 + σ (д)∗2
N

ª®®®¬
(17)

with

φ∗x
(д)
infeas ≈

N

1 + ξ
©­­«1 −

√
ξr (д)

x (д)

√
1 + σ (д)∗2

N

ª®®¬
+

√
ξ

1 + ξ

√
ξr (д)

x (д)
σ (д)∗cµ/µ ,λ

√√√√√
1 + 1

ξ

1 + σ (д)∗2
2N

1 + σ (д)∗2
N

.

(18)

cµ/µ ,λ = e1,0
µ ,λ is one of the so-called generalized progress coeffi-

cients [8, Eq. (5.112), p. 172]. Their definition reads

e
α ,β
µ ,λ := λ − µ

(√2π )α+1

(
λ

µ

) ∫ t=∞

t=−∞
tβe−

α+1
2 t 2

× [Φ(t)]λ−µ−1[1 − Φ(t)]µ−α dt .
(19)

The main assumptions used for the derivation of the recapped
expressions are sufficiently large values of the dimensionality N
and of the cone parameter ξ , respectively. Consequently, the ap-
proximations get better the larger the values of ξ and N get (with
ξ ≪ N ). Nevertheless, they can be used for qualitative predictions
for smaller values of ξ and N .

For justifying the use of the approximations (Equation (14) and
Equation (17)), the system stated as Equation (8) and Equation (9)
is iterated using them and the predicted dynamics are compared
to mean value dynamics of real inner ES (Algorithm 2) runs. The
results are shown in Figure 2. For the parameter ξ , different values
have been chosen and are shown in comparison. The runs have been
initialized with x(0) = (√N , 10−3, 0, . . . , 0)T , N = 400, and constant
σ = 1. This results in dynamics that show the behavior starting near
the cone axis and moving toward the cone boundary transitioning
into a steady state. As it turns out, in the steady state the ESmoves in
the vicinity of the cone boundary with a finite normalized mutation
strength and hence for N →∞ the case that the created offspring
are infeasible overwhelms. The observed deviations for ξ = 0.1 stem
from the above-mentioned assumptions in the derivations for the
progress rate expressions. For the parameters considered, ξ = 0.1 is
not large enough such that the approximations are as accurate as for
the larger values of ξ considered. In Figure 3, the experiments are
started on the cone boundary, i.e., x(0) = (√N ,√N /

√
ξ , 0, . . . , 0)T .

In this way, the comparison starts almost in the steady state. The
chosen parameters are again σ = 1, N = 400, and different values
of ξ are considered and compared. It is important to note that
this initialization can result in deviations for the first number of
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generations because r = x/
√
ξ only holds in the steady state for

the case µ = 1. For µ > 1, one would need to know the steady state
normalized mutation strength to initialize further in the steady
state (according to Equation (22)).

Assuming the ES to be sufficiently near to the cone boundary
(and therefore in the steady state), simplifications are possible be-
cause Pfeas = 0 can be assumed. One gets using (18)

φ∗x
(д) ≈ φ∗x (д)infeas

≈ N

1 + ξ
©­­«1 −

√
ξr (д)

x (д)

√
1 + σ (д)∗2

N

ª®®¬ +
σ (д)∗cµ/µ ,λ√

1 + ξ

√
ξr (д)

x (д)

(20)

by making use of

1
ξ

1 + σ ∗(д)
2

2N

1 + σ ∗(д)2
N

≃ 1
ξ

(21)

that holds for σ ∗(д)2 ≪ N and sufficiently large N . Since the steady
state behavior is assumed, the steady state expression(√

ξr

x

)
ss

=

√√√√√1 + σ ∗ss 2

µN

1 + σ ∗ss 2

N

. (22)

derived in [17] can be used for predicting the mean value dynamics
of the inner ES in the steady state. Insertion of Equation (22) into
Equation (20) results in

φ∗x
(д)(σ (д)∗) ≈ N

1 + ξ
©­«1 −

√
1 + σ (д)∗2

µN

ª®¬
+
σ (д)∗cµ/µ ,λ√

1 + ξ

√√√√√1 + σ (д)∗2
µN

1 + σ (д)∗2
N

(23)

and with the insertion of Equation (23) into Equation (17) asφ∗x
(д)
infeas

one gets
φ∗r
(д)(σ (д)∗) ≈ φ∗x (д)(σ (д)

∗) (24)
for the steady state case.

3.2 Outer Dynamics
Now that suitable approximate expressions for the inner ES have
been stated, the goal is to make use of them for the analysis of the
[1, 2(µ/µI , λ)γ ]-meta-ES that controls the mutation strength (Algo-
rithm 1). Figure 4 shows an example of its mean value dynamics
with γ = 1 in comparison to the theoretical iteration of Equation (8)
and Equation (9) using Equation (23) and Equation (24).

It is important to note that Equation (14) and Equation (17) are
difficult to treat further for the steady state considerations because
of the weighted sum involving the feasibility probability. Therefore,
for the analysis of the outer ES, it is again assumed that Pfeas = 0,
i.e., it is not the aim to handle the transient phase theoretically. This
is justified since one observes in simulations that indeed the ES
transitions into this steady state behavior. The mutation strength
control of Algorithm 1 can be modeled by considering the differ-
ence of the objective function values returned by both inner ESs.

Since the objective function only regards the first component of
an individual’s parameter vector, the x progress rate can be used
for modeling the change of σ from one isolation period to the next.
Notice that t is used to indicate the isolation period of the outer
ES and д is used to indicate the generation of the inner ES. Hence,
a value of x before isolation at isolation period t and initial inner
generation counter д0 corresponds to x (t ) = x (д0). The correspond-
ing value after isolation corresponds to x (t+1) = x (д0+γ ). Because
for the analysis it is assumed that the inner ES operates in the
steady state, φ∗x (д)(σ (д)

∗) is used that only depends on σ (д)∗ but
not on the position in the parameter space. For small values of γ ,
φ
(t )
x
∗ ≈ constant is assumed. With this assumption, Equation (8)

can be recursively applied starting at x (д0) to compute x (д0+γ ) with
φ
(д)
x
∗
= φ
(t )
x
∗
for all the γ inner iterations with generation numbers

д ∈ {д0,д0 + 1, . . . ,д0 + γ − 1}. One obtains

F
(t+1)
1 := F (x(t+1)

1 ) ≈ x (t )
(
1 − φ

(t )
x
∗(ασ (t )∗)
N

)γ
(25)

≃ x (t )
(
1 − γ φ

(t )
x
∗(ασ (t )∗)
N

)
(26)

F
(t+1)
2 := F (x(t+1)

2 ) ≈ x (t )
(
1 − φ

(t )
x
∗(σ (t )∗/α)
N

)γ
(27)

≃ x (t )
(
1 − γ φ

(t )
x
∗(σ (t )∗/α)
N

)
. (28)

With the assumption of small γ as stated above, the steps from
Equation (25) to Equation (26) and Equation (27) to Equation (28)
follow by the use of the Taylor expansion(

1 − φ
(t )
x
∗(σ (t )∗)
N

)γ
≃

(
1 − γ φ

(t )
x
∗(σ (t )∗)
N

)
with cut-off after the linear term under the assumption

φ
(t )
x
∗(σ (t )∗)/N ≪ 1.

The mutation strength update can be modeled by the difference
D(t+1) := F

(t+1)
1 − F (t+1)

2 as

σ (t+1) =


ασ (t ) if D(t+1) < 0,
σ (t )/α if D(t+1) > 0,
σ (t ) otherwise.

(29)

Using Equation (23) with the assumption that√√√√√1 + σ (д)∗2
µN

1 + σ (д)∗2
N

≃ 1 (30)

for N →∞, one obtains

D(t+1) =
γx (t )

1 + ξ
©­«
√

1 + α2σ (t )∗2

µN
−
ασ (t )∗cµ/µ ,λ

√
1 + ξ

N

−
√

1 + σ (t )∗2

α2µN
+
σ (t )∗cµ/µ ,λ

√
1 + ξ

αN

ª®¬ .
(31)
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Figure 2: Theoretical predictions (solid lines) compared with the mean value dynamics for the inner (3/3I , 10)-ES (mean value
data points are indicated by the markers with corresponding error bars showing the standard deviation). The dimension N =
400 has been considered and the constant mutation strength σ = 1 has been used. The data points for the experiments show
averages of 20 independent ES runs. The predictions have been computed by iterating Equation (8) and Equation (9) using
Equation (14) and Equation (17), respectively. The initial parental individual has been set such that x (0) =

√
N and r (0) = 10−3,

i.e., the initial parental individual is near the cone axis.

Equation (31) can be simplified for the asymptotic limit caseN →∞
by Taylor expansion of

√
1 + σ (t )∗2

µN around zero and cutoff after

the linear term, i.e.,
√

1 + σ (t )∗2
µN ≈ 1 + σ (t )∗

2

2µN for σ ∗(t )2 ≪ N . With
this and additional rewriting, one gets

D(t+1) =
γcµ/µ ,λσ (t )

∗
x (t )(α2 − 1)

αN
√

1 + ξ

(
σ (t )∗

2µ
√

1 + ξcµ/µ ,λ

(
α +

1
α

)
− 1

)
︸                                    ︷︷                                    ︸

=:∆(σ (t )∗)

.

(32)

Because α > 1 is required, only the sign of ∆(σ (t )∗) is relevant for
the update of σ , i.e.,

σ (t+1) = σ (t )α−sign
(
∆(σ (t )∗)

)
. (33)

Notice that the σ update is independent of the isolation period pa-
rameter γ , since the steady state has been assumed. The normalized
variant of Equation (33) can be expressed as

σ (t+1)∗r (t+1)

N
=

σ (t )∗r (t )

N
α
−sign

(
∆(σ (t )∗)

)
(34)

σ (t+1)∗ = σ (t )∗r (t )

r (t+1) α
−sign

(
∆(σ (t )∗)

)
. (35)

Equation (35) can be rewritten using Equation (24) and the same
argument leading to Equation (26) for the r case using Equation (9)
resulting in

σ (t+1)∗ = σ (t )∗ α
−sign

(
∆(σ (t )∗)

)
1 − γ

N φ∗x
(
σ (t )∗α−sign(∆(σ (t )∗))

) , (36)
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Figure 3: Theoretical predictions (solid lines) compared with the mean value dynamics for the inner (3/3I , 10)-ES (mean value
data points are indicated by the markers with corresponding error bars showing the standard deviation). The dimension N =
400 has been considered and the constant mutation strength σ = 1 has been used. The data points for the experiments show
averages of 20 independent ES runs. The predictions have been computed by iterating Equation (8) and Equation (9) using
Equation (14) and Equation (17), respectively. The initial parental individual has been set such that x (0) =

√
N and r (0) =

√
N /

√
ξ ,

i.e., the initial parental individual is on the cone boundary.

which is an iterative mapping of the form

σ (t+1)∗ = fσ (σ (t )∗; µ, λ,γ ,α,N ).
Studying the influence of the parameters on Equation (36) is a rather
difficult task because the dynamics of such a recurrence equation
can have stable fixed points, limit cycles, and chaotic behaviors.

A discontinuity can be observed (cf. Figure 5) that represents a
change from increasing σ to decreasing σ . It can be computed by
setting the discriminant function ∆(σ ∗) from Equation (32) to zero,
i.e., ∆(σ ∗0 ) = 0. Straightforward rewriting leads to

σ ∗0 = 2µ
√

1 + ξcµ/µ ,λ
α

α2 + 1
. (37)

The reason that the discontinuity shown in the left plot of Figure 5
does not coincide completely with σ ∗0 for N = 1000 is due to the
simplifications made for N →∞ such as (30).

As one can see, σ ∗0 depends on the parameters ξ , α , µ, and λ.
Influenced by α , different behaviors can be observed. If the fixed

point σ ∗f of Equation (36) is at the point σ ∗f = σ ∗0 , it is not a stable
one as can be seen in the figure. The other fixed point at σ ∗f = 0

can also not be a stable fixed point because d fσ (σ ∗)
dσ ∗ > 1 (as one can

conclude from the figure).
Let us study the case of continuous mutation strength reduction

∆(σ ∗f ) > 0 next. Note that this case holds for σ ∗f > σ ∗0 . With ∆(σ ∗f ) >
0, consideration of the fixed point σ (t+1)∗ = σ (t )∗ in Equation (36)
results in

1 = 1
α

1

1 − γ
N φ∗x

(
σ ∗f /α

) . (38)

Using Equation (23) with the assumption stated in (30) for N →∞,
one can write

1 = 1
α

1

1 − γ
N

[
N

1+ξ

(
1 −

√
1 +

σ ∗f
2

α 2µN

)
+

σ ∗f cµ/µ ,λ

α
√

1+ξ

] (39)
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Figure 4: Theoretical predictions (solid lines) compared with the mean value dynamics for the [1, 2(3/3I , λ)1]-ES (mean value
data points are indicated by the markers with corresponding error bars showing the standard deviation) for the dimension
N = 1000 and α = 1.2. The data points for the experiments show averages of 20 independent ES runs. The predictions have been
computed by iterating Equation (8) and Equation (9) using Equation (23) and Equation (24), respectively. For the experimental
runs and the theoretical iteration, σ has been updated as shown in Algorithm 1. The initial parental individual has been set
such that x (0) = 1 and r (0) = 1/

√
ξ , i.e., the initial parental individual is on the cone boundary. The initial mutation strength

has been set to σ (0) = 1.

for Equation (38). Equation (39) can be simplified for the asymptotic

limit case N →∞ by Taylor expansion of
√

1 +
σ ∗f

2

µN around zero

and cutoff after the linear term, i.e.,
√

1 +
σ ∗f

2

µN ≈ 1 +
σ ∗f

2

2µN for
σ ∗f

2 ≪ N yielding

1 = 1
α

1

1 +
γ σ ∗f

2

2α 2µN (1+ξ ) −
γ σ ∗f cµ/µ ,λ

Nα
√

1+ξ

(40)

after straightforward simplifications. As one can see, Equation (40)
represents a quadratic equation in σ ∗f . Rewriting it into standard
form yields

σ ∗f
2 − 2αµ

√
1 + ξcµ/µ ,λσ ∗f +

2α(α − 1)µN (1 + ξ )
γ

= 0. (41)

Solving it results in

σ ∗f ± = αµ
√

1 + ξcµ/µ ,λ
©­«1 ±

√
1 − 2N

µc2
µ/µ ,λγ

α − 1
α

ª®¬ (42)

after rewriting. The solution σ ∗f − is of relevance depending on the
square root expression in Equation (42). If σ ∗f − < σ ∗0 , it does not
satisfy the assumption of continuous mutation strength decrease
∆(σ ∗f ) > 0. Hence, for that case, the fixed point is

σ ∗f + = αµ
√

1 + ξcµ/µ ,λ
©­«1 +

√
1 − 2N

µc2
µ/µ ,λγ

α − 1
α

ª®¬ . (43)



Steady State Analysis of a Multi-Recombinative Meta-ES on a Conically Constrained Problem FOGA ’19, August 27–29, 2019, Potsdam, Germany

Figure 5: Visualization of the σ ∗-behavior of the [1, 2(3/3I , 10)1]-meta-ES for N = 1000, ξ = 1, and α = 1.2. The left plot shows
an unstable fixed point of Equation (36), which results in a limit cycle as shown in the right plot. The discontinuity point σ ∗0
is shown as the dashed red line and calculated using Equation (37). The upper and lower bounds of the normalized mutation
strength bracketing the cycle have been computed using Equation (54) and are shown in the right plot as dashed black lines.
The dashed black line in the left plot shows σ ∗(t+1) = σ ∗(t ). The initial parental individual for the creation of the right subplot
has been set such that x (0) =

√
N and r (0) =

√
N /

√
ξ .

For the case that σ ∗f − > σ ∗0 , the positive and negative solutions
derived as Equation (42) are relevant. The stable attractor is the one
that satisfies d fσ (σ ∗)

dσ ∗ < 1.
If the expression under the square root in Equation (43) is nega-

tive, no real solution exists. Computing the zero of that expression
under the square root yields the limiting case for the existence of a
stable fixed point with α0 > 0:

1 − 2N
µc2

µ/µ ,λγ
α0 − 1
α0

≥ 0 (44)

α0µc
2
µ/µ ,λγ ≥ 2Nα0 − 2N (45)

α0 ≤ 2N
2N − µc2

µ/µ ,λγ
. (46)

Consequently, for α < α0 it is true that ∆(σ ∗f ) > 0 and the muta-
tion strength is continuously decreased as can be seen from Equa-
tion (33). For the opposite case of α > α0, the dynamics of σ ∗
fluctuate around σ ∗0 .

The lower and upper bounds for the observed σ ∗ values in the
limit cycle for the case α > α0 can be computed. They can be cal-
culated as the left-sided and right-sided limits of Equation (36). By
introducing the abbreviations φ∗+ := φ∗x (ασ ∗0 ) and φ∗− := φ∗x (σ ∗0 /α),
one can write

σ̂ ∗ := lim
σ ∗→σ ∗0 −0

ασ ∗

1 − γ
N φ∗x (ασ ∗)

(47)

=
ασ ∗0

1 − γ
N φ∗+

(48)

= 2µ
√

1 + ξcµ/µ ,λ
α2

α2 + 1
1

1 − γ
N φ∗+

(49)

and

σ̌ ∗ := lim
σ ∗→σ ∗0 +0

σ ∗/α
1 − γ

N φ∗x (σ ∗/α)
(50)

=
σ ∗0 /α

1 − γ
N φ∗−

(51)

= 2µ
√

1 + ξcµ/µ ,λ
1

α2 + 1
1

1 − γ
N φ∗−

. (52)

For φ∗+ and φ∗−, one derives

2µc2
µ/µ ,λα

2

(α2 + 1)2 (53)

by consideration of Equation (23) with the assumption stated in (30)

for N → ∞ and a Taylor expansion of
√

1 + σ (д)∗2
µN around zero

and cutoff after the linear term for σ (д)∗2 ≪ N . These derivations
lead to the interval for the expected normalized mutation strength

σ ∗ ∈ [σ̌ ∗, σ̂ ∗] = [1,α2] ·
2µ

√
1 + ξcµ/µ ,λ
α2 + 1

1
1 − γ

N φ∗+
(54)

and the interval for the expected progress of the meta-ES

φ̃∗x ∈ [φ∗x (σ̌ ∗),φ∗x (σ ∗opt)︸    ︷︷    ︸
=:φ∗x opt

] =
[(

2α
α2 + 1

)
, 1

]
·
µc2

µ/µ ,λ
2 , (55)

where
γ 2µc2

µ/µ ,λα
2

N (α 2+1)2 ≪ 1 has been assumed for the calculation of

φ∗x (σ̌ ∗) and φ∗x opt =
µc2

µ/µ ,λ
2 has been derived as follows: Again,

Equation (23) can be simplified using (30) for N →∞ and a Taylor
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expansion of
√

1 + σ (д)∗2
µN around zero and cutoff after the linear

term for σ (д)∗2 ≪ N leading to

φ∗x
(д)(σ ∗(д)) ≃

σ ∗(д)cµ/µ ,λ√
1 + ξ

− σ ∗(д)
2

2µ(1 + ξ ) (56)

for the steady state case with Pfeas = 0 andmovement in the vicinity
of the cone boundary. Calculating the derivative of Equation (56)
results in

dφ∗x (д)(σ ∗(д))
dσ ∗(д)

=
cµ/µ ,λ√

1 + ξ
− σ ∗(д)

µ(1 + ξ ) . (57)

Setting Equation (57) to zero, one obtains

σ ∗opt = µcµ/µ ,λ
√

1 + ξ (58)

that maximizes φ∗x . Back-insertion of Equation (58) into Equa-
tion (56) finally yields the maximal (optimal) progress as

φ∗x opt =
µc2

µ/µ ,λ
2 . (59)

Figures 6 and 7 show comparisons of the derived steady state ex-
pressions with real ES runs. One can see that except for ξ = 0.1, the
normalized steady state mutation strength prediction comes near to
the one determined from the experiments. The predicted progress
is larger than the one observed in the experiments. However, for
ξ = 5 and ξ = 10, the experimental results are in the theoretically
determined bracket [φ∗x (σ̌ ∗),φ∗x (σ ∗opt)] for α ≥ 1.2.

4 COMPARISONWITH σSA AND CSA
The derived steady state normalizedmutation strength and progress
rate expressions for the [1, 2(µ/µI , λ)γ ]-meta-ES allow a theoretical
comparison with other mutation strength control methods. Since
the (µ/µI , λ)-ES applied to the conically constrained problem has
already been theoretically analyzed with σSA [17] and CSA [18] as
the mutation strength adaptation mechanism, the goal of this sec-
tion is to compare the steady state behavior of the meta adaptation
approach to σSA and CSA.

Figures 8 to 10 show the comparison of the theoretical steady
state mutation strength and progress rate predictions for µ = 1,
µ = 2, and µ = 3, respectively. The parameter λ is set to 10 for
all variants. The CSA parameters c and D are set to c = 1/N and
D = 1/c , respectively, the σSA parameter τ is set to τ = 1/√2N , and
the parameter α of the the meta-ES is set to α = 1.2. The choice for
the CSA cumulation parameter c = 1/N has been used in the work
that presents the theoretical analysis concerning CSA [18]. For σSA,
the setting τ = 1/√2N has also been discussed as a recommended
value in the work with the σSA theoretical analysis [17]. The choice
of α = 1.2 for the meta-ES stems from the observation that the
predictions are near the real behavior in Figures 6 and 7. The lines
for the meta-ES are determined by computing the steady state
normalized mutation strength σ ∗ss using Equation (37). For σSA, [17,
Eq. (59)] is used to compute σ ∗ss . And for CSA, [18, Eq. (118)] is used
to compute σ ∗ss . The results are then inserted into Equation (23)
using (30) for N →∞ for plotting the line showing φ∗x ss (σ ∗ss ).

Since it has been pointed out in the theoretical derivations for
the meta, σSA, and CSA approaches thatN →∞ has been used, the

N = 10000 plots are the most accurate predictions of the real behav-
ior. A further peculiarity in the derivations for all the approaches
has been mentioned to be the necessity of assuming sufficiently
large values of ξ in order to make the analyses tractable. This ex-
plains possible discrepancies for small ξ .

The plots show that the meta-ES achieves the largest steady
state progress for all the values ξ considered in dimension 10000.
Between the σSA and the meta-ES, the difference in the progress
is about 0.1, whereas the CSA achieves less than half the progress
of that of the meta-ES. Since the meta-ES runs two inner ESs in
parallel, it uses twice the amount of function evaluations than the
σSA-ES and CSA-ES variants compared.

Moreover, one observes that for largerN , the steady state progress
for the range of ξ considered gets almost constant. For smaller N ,
it increases slightly with increasing values of ξ .

5 CONCLUSIONS AND OUTLOOK
This work extended the analysis of the [1, 2(1, λ)1]-meta-ES with re-
pair by projection applied to the conically constrained problem [11]
to the [1, 2(µ/µI , λ)γ ]-meta-ES. The derived expressions show a
similar prediction quality as the µ = 1 case for the dynamics and
the steady state considerations. The most important difference of
the µ > 1 in comparison to the µ = 1 case is the steady state dis-
tance to the cone boundary. Whereas it is 0 in the µ = 1 case, the
ES in the µ > 1 case evolves also along the cone boundary but at
a certain distance from it. This has an important influence on the
behavior of the meta-ES that makes the analysis for γ = 1 difficult,
if not impossible. Therefore, the experimental results presented and
compared with the steady state derivations have considered γ > 1.
The reason for the difficulty is two-fold. First, treatment of only the
infeasible case (being in the vicinity of the cone boundary) for the
behavior of the inner ES led to tractable approximate expressions
for the steady state analysis. For the experimental comparison with
the theoretical results, this means that the experiments need to
be started almost in the steady state, since the transient phase is
not modeled for the theoretical considerations. However, the sec-
ond difficulty is that for µ > 1, the steady state distance from the
cone boundary depends on the normalized steady state mutation
strength. Therefore, with an isolation of γ = 1, the experiments
cannot be initialized near enough the steady state, since the first in-
ner iteration increases/decreases the mutation strength by α , which
results in a situation in which the initial parental individual is no
longer in the steady state. To overcome this, γ > 1 allows the in-
ner ES to transition sufficiently into the steady state. It has been
shown that with γ = 30 the theoretical predictions serve as usable
approximations of the real behavior for larger values of N and ξ .

The comparison of the meta-ES with σSA and CSA led to an
interesting finding. It turned out that the meta-ES achieves the
largest steady state progress. However, in comparison to σSA and
CSA it requires twice the number of function evaluations due to the
two inner ESs running in parallel. An interesting topic for future
work is to investigate whether the same observation also holds for
the case that the ES simply discards infeasible offspring instead of
repairing them by projection.
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Figure 6: Comparison of the [1, 2(3/3I , 10)30]-meta-ES mutation strength and progress rate steady state theoretical results with
experiments for different values of α . The lines with the error bars show the experimental results. Their data have been
obtained by computing themean and standard deviation of the last 60% of 2N isolation periods from 50 independent algorithm
runs. The runs have been started in the vicinity of the cone boundary such that the steady state is reached after a relatively
small number of isolation periods. The dashed horizontal lines in the left plots show σ ∗opt (Equation (58)). (Part 1/2)
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Figure 8: Comparison of the theoretical steady state normalized mutation strength and steady state progress rate results of
the mutation strength control mechanisms σSA, CSA, and the meta approach. The considered dimensions are N = 400 (top),
N = 1000 (middle), and N = 10000 (bottom). The parameters are set to the ones discussed in the corresponding analyses: c = 1/N ,
D = 1/c, τ = 1/√2N , α = 1.2, λ = 10, and µ = 1.
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Figure 9: Comparison of the theoretical steady state normalized mutation strength and steady state progress rate results of
the mutation strength control mechanisms σSA, CSA, and the meta approach. The considered dimensions are N = 400 (top),
N = 1000 (middle), and N = 10000 (bottom). The parameters are set to the ones discussed in the corresponding analyses: c = 1/N ,
D = 1/c, τ = 1/√2N , α = 1.2, λ = 10, and µ = 2.
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Figure 10: Comparison of the theoretical steady state normalized mutation strength and steady state progress rate results of
the mutation strength control mechanisms σSA, CSA, and the meta approach. The considered dimensions are N = 400 (top),
N = 1000 (middle), and N = 10000 (bottom). The parameters are set to the ones discussed in the corresponding analyses: c = 1/N ,
D = 1/c, τ = 1/√2N , α = 1.2, λ = 10, and µ = 3.
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