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ABSTRACT
This paper investigates strategy parameter control by Meta-ES us-
ing the noisy sphere model. The fitness noise considered is nor-
mally distributed with constant noise variance. An asymptotical
analysis concerning the mutation strength and the population size
is presented. It allows for the prediction of the Meta-ES dynamics.
An expression describing the asymptotical growth of the normal-
ized mutation strength is calculated. Finally, the theoretical results
are evaluated empirically.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]: Control
theory

Keywords
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1. INTRODUCTION
In the field of Evolution Strategies (ESs) hierarchical organized
ESs also referred to as Meta-ESs have proven themselves useful
for learning the optimal strategy parameters depending on the un-
derlying optimization problem. According to Rechenberg [8], a
Meta-ES is formally defined by generalizing the ES bracket nota-
tion to [

μ′/ρ′, λ′(μ/ρ, λ)γ
]
. (1)

In (1), λ′ offspring populations conducting (μ/ρ, λ)-ESs run par-
allelly over a number of γ generations. Each of these ESs is re-
alized in isolation from the others and holds different initial strat-
egy parameters. Selection on the upper level then chooses those
μ′ populations for recombination which are identified to have the
best strategy parameters w.r.t. a previously defined fitness crite-
rion. Proceeding this way the Meta-ES is expected to direct the
strategy parameters to optimality.
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Systematic investigations on the dynamics of Meta-ES are still rare.
First results were obtained by Herdy [7] who investigated Meta-ES
on a set of test functions. Furthermore he was the first to provide
evidence that Meta-ES can direct the inner ES to optimal perfor-
mance. After some years without theoretical research on the topic
Arnold [3] presented an analysis of the mutation strength adap-
tation by [1, 2(μ/μI , λ)γ]-Meta-ES on the class of ridge functions.
While his analysis concerned a wide class of ridge functions, how-
ever, it excluded the sharp ridge function. The latter has been in-
vestigated by Beyer and Hellwig in [6]. In [5], Beyer et al. also
analyzed the performance of the [1, 2(μ/μI , λ)γ]-Meta-ES on the
sphere model F(y) = f (‖y − ŷ‖) considering a simple Meta-ES
which controls the mutation strength and the parental population
size to (near) optimality.

This paper is going to pick up on that analysis of Meta-ES on the
sphere model. It extends the investigated Meta-ES algorithm and
considers additionally the sphere model with fitness noise. The
paper aims at learning about the ability of the specific Meta-ES
to deal with the noisy optimization problem. A Meta-ES variant
which simultaneously controls two strategy parameters is consid-
ered. Carrying out the theoretical analysis we expect to develop a
more thorough understanding of the interactions between the differ-
ent dynamics. In the following sections we analyze the behavior of
Meta-ESs in the fitness environment defined by the N-dimensional
sphere model under the influence of fitness noise with constant vari-
ance, i.e., constant noise for short

F̃(y) =
N∑

j=1

y2
j +N(0, σ2

ε ). (2)

The constant fitness noise in (2) is modeled by means of an additive
normally distributed term with mean zero and constant standard de-
viation σε . Note, that σε will be referred to as the noise strength.
Fitness noise affects the selection mechanism of the Meta-ES algo-
rithm. That is, the measured fitness F̃(y) of a candidate solution y
will not longer comply with the ideal fitness F(y) but it is normally
distributed with mean F(y) and standard deviation σε . As a conse-
quence this may lead to the selection of inferior solutions based on
their measured fitness while superior solutions are eliminated.
We will particularly focus on the control of the mutation strength
σ as well as the parental population size μ. Considering constant
fitness noise throughout the search space, it is not possible to de-
termine the exact location of the optimizer with a regular ES on the
spherical fitness environment, see [1]. After a number of genera-
tions the distance to the optimizer will fluctuate around a nonzero
mean which increases with increasing noise strength. This residual
distance can only be decreased by increasing the population size
of the ES. As we will see, considering the idealized mean value
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dynamics, at first priority the Meta-ES will increase the population
size up to a predefined maximal value and subsequently the strat-
egy constantly decreases the mutation strength while keeping the
population size constant at its maximal value. Consequently this
leads to a permanent approach to the final residual distance.

The paper is organized as follows: In Sec. 2 we present a sim-
ple [1, 4(μ/μI , λ)γ]-Meta-ES which is intended to control σ and μ
at the same time. Sec. 3 then builds the basis of our theoretical
analysis by describing the dynamics of the inner ES and provid-
ing useful approximations. Subsequently in Sec. 4 we investigate
the dynamics of the population sizes μ and λ with fixed truncation
ratio ν. Afterwards, the theoretical analysis of the σ-dynamics fol-
low in Sec. 5. A comparison with real Meta-ES runs is presented in
Sec. 6. Finally, Sec. 7 provides a summary of the results and gives
an outlook into future research opportunities.

2. THE [1, 4]-META-ES ALGORITHM
In this section we introduce the [1, 4(μ/μI , λ)γ]-Meta-ES algorithm.
Using a deterministic adaptation rule the outer ES controls the pop-
ulation sizes μ, and λ as well as the mutation strength σ. The outer
strategy is presented in Fig. 1.

[1, 4(μ/μI , λ)γ]-ES Line
Initialize(yp, σp, α, β, μp, ν, γp,N); 1
d ← γpμp; 2
t ← 0; 3
Repeat 4
σ̃1 ← σpα; σ̃2 ← σp/α; 5
Select case μp 6

case μp = 1: μ̃1 ← μpβ; μ̃2 ← 1; 7
case μp = d: μ̃1 ← d; μ̃2 ← μp/β; 8
case Else: μ̃1 ← μpβ; μ̃2 ← μp/β; 9

End Select 10
λ̃1 ← μ̃1/ν; λ̃2 ← μ̃2/ν; 11
γ̃1 ← d/μ̃1; γ̃2 ← d/μ̃2; 12
[ỹ1, F̃1 , σ1, μ1]← ES(μ̃1, λ̃1, γ̃1, σ̃1, yp); 13
[ỹ2, F̃2 , σ2, μ2]← ES(μ̃1, λ̃1, γ̃1, σ̃2, yp); 14
[ỹ3, F̃3 , σ3, μ3]← ES(μ̃2, λ̃2, γ̃2, σ̃1, yp); 15
[ỹ4, F̃4 , σ4, μ4]← ES(μ̃2, λ̃2, γ̃2, σ̃2, yp); 16
yp ← ỹ1;4; 17
σp ← σ1;4; 18
μp ← μ1;4; 19
t ← t + 1; 20

Until(termination condition) 21

Figure 1: Pseudo code of the [1, 4]-Meta-ES. The Code of the
inner ES is displayed in Fig. 2.

In Line 2 the parameter d is defined as the product of the initial
isolation length γp and the initial population size μp. It is used as
an upper bound for these two strategy parameters and kept con-
stant. The algorithm is running four competing inner [(μ/μI , λ)γ]-
ESs which start at the same initial yp (parental y) but differ in the
choice of the population size and the mutation strength. Two off-
spring mutation strength parameters σ̃1 and σ̃2 are generated in
Line 5 by increasing and decreasing the parental mutation strength
σp by a factor α. From Line 6 up to Line 11 we create the new
population size parameters. At first two parameters μ̃1 and μ̃2 are
computed by increasing/decreasing the parental μp by a factor β.
If μp has already reached its lower bound, i.e. μp = 1, or its up-

per bound d, μp is only modified in one direction, i.e. increased or
decreased, respectively, and kept constant for the other parameter.
Dividing the new parental population sizes μ̃ j by the fixed trun-
cation ratio ν leads to the corresponding offspring population size
parameters λ̃1 and λ̃2.
The isolation length parameters γ̃1 and γ̃2 are defined depending on
μ̃1 and μ̃2 in Line 12, always complying with the condition 1

d = γμ ⇔ d/ν = λγ. (3)

Identifying λγ with the number of function evaluations during a
single inner ES run, the way of controlling γ in (3) keeps the num-
ber of function evaluations over all observed isolation periods equal.
Each combination of the two different population sizes (μ̃ j, λ̃ j) with
corresponding isolation length γ̃ j and the two mutation strength pa-
rameters σ̃ j (j=1, 2) serves as strategy parameter set and is held
constant within the inner ES. After having evolved over their as-
sociated isolation length, each inner ES returns the centroid of its
final parental population yk and its corresponding fitness value Fk =

F(yk), k = 1, . . . , 4. Finally the selection in the [1, 4]-Meta-ES is
performed in Lines 17 to 19 using the standard notation "m; λ′" in-
dicating the m-th best population out of λ′ populations with respect
to the fitness value generated by the respective inner (μ/μ, λ)-ES.
That is, the strategy parameters of the best inner population are
used as parental parameters in the outer ES.
The termination criterion can be specified as a fixed number of iso-
lation periods t, or function evaluations respectively.

Function: ES(μ, λ, γ, σ, y) Line
g← 1; 1
While g ≤ γ 2

For l = 1 To λ 3
ỹl ← y + σNl(0, I); 4
F̃l ← F(ỹl); 5

End For 6
y← 1

μ

∑μ
m=1 ỹm;λ; 7

g← g + 1; 8
End While 9
Return [y, F(y), σ, μ]; 10

Figure 2: The inner (μ/μI, λ)γ-ES

The inner ES, see Fig. 2, generates a population of λ = μ/ν off-
spring by adding a σ mutation strength scaled vector of indepen-
dent, standard normally distributed components to the centroid y
of the parental generation. The μ best candidates in terms of their
function values F̃l are chosen out of these λ offspring and used to
build the new parental centroid y. Proceeding this way over γ gen-
erations, the inner ES returns the tuple [y, F(y), σ, μ].

3. THEORETICAL ANALYSIS
REGARDING CONSTANT NOISE

In this section we are going to investigate the dynamics of the in-
ner (μ/μ, λ)-ES assuming that the observed fitness is disturbed by
a noise term with constant noise strength σε . Beginning with the
distance to the optimizer R(g) in generation g we are interested in
finding a prediction of the distance R(g+γ) at the end of a single
isolation period of γ generations. The starting point of the theoret-
ical analysis is the normalized progress rate in the limit of infinite

1In order to always obtain integer values for μ, λ, and γ, the initial
μp, γp and β, 1/ν are chosen as powers of two.
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search space dimensionality

ϕ∗(σ∗, σ∗ε ) =
cμ/μ,λσ∗2√
σ∗2 + σ∗ε 2

− σ
∗2

2μ
. (4)

The normalized quantities used in Eq. (4) are given by

σ∗ = σ
N
R
, σ∗ε = σε

N
2R2
, and ϕ∗ = ϕ

N
R
. (5)

For a precise mathematical derivation of ϕ∗ we refer to [2, 1]. The
definition of the progress coefficient cμ/μ,λ can be found in [4]. Note
that according to (4) positive progress will only be achieved if the
condition

σ∗2
+ σ∗ε

2 < (2μcμ/μ,λ)
2 (6)

holds. That directly indicates an upper bound of 2μcμ/μ,λ for the
normalized mutation strength σ∗ and the normalized noise strength
σ∗ε as well.
Applying the re-normalizations to Eq. (4) and taking into account
the ϕ definition

ϕ(g) = R(g) − R(g+1) (7)

we obtain the difference equation

R(g) − R(g+1) =
2cμ/μ,λRσ2√
4R2σ2 + σε2

− Nσ2

2μR
. (8)

Equation (8) indicates the expected change in the distance to the
optimizer between two consecutive generations.
On the basis of (8) we compute the expected steady state distance
R̃∞(σ,σε ). It predicts the residual distance to the optimizer which
can be reached by the inner ES if the ES runs for a infinite num-
ber of generations given a fixed mutation strength σ and constant
population sizes μ and λ. Solving 0 = ϕ(σ,σε, R̃∞) for R̃∞, we
obtain

R̃∞(σ,σε) =

√√√√√N2σ2 +
√

4μ2c2
μ/μ,λN

2σ2
ε + N4σ4

8μ2c2
μ/μ,λ

(9)

R̃∞(σ,σε) = R∞(σ)

√√√√
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 +
√

1 +
ϑ2

R∞(σ)2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (10)

with noise-to-signal ratio ϑ =
σε
σ

and the noise-free steady state

distance

R∞(σ) =
Nσ

2μcμ/μ,λ
. (11)

Considering small mutation strength sizes, i.e. σ → 0, Eq. (9) is
becoming

R̂∞ =

√
Nσε

4μcμ/μ,λ
(12)

which is already known as a good approximation of the expected
steady state distance R̃∞ in the vicinity of small mutation strengths,
see [1].
Because we are not able to find a closed analytical solution of the
nonlinear difference equation (8) for R(g+1) we search for a good
approximation. Approximating (8) is formally done by switching
to the continuous time limit and expanding R(g + 1) in a Taylor
series at g. Identifying R(g + 1) with R(g+1) and R(g) with R(g) then
yields

R(g+1) − R(g) =
dR
dg

1 + . . . . (13)

Thus, by applying Eq. (8) one obtains a nonlinear differential equa-
tion which approximates the progress dynamics

dR
dg
=

Nσ2

2μR
− 2cμ/μ,λRσ2√

4R2σ2 + σε2
. (14)

However, even (14) is rather difficult to be solved. Therefore, we
are searching for a linear approximation describing the dynamics
towards R̃∞. Expanding (14) into a Taylor series about R̃∞, we get

dR
dg
≈
⎛⎜⎜⎜⎜⎜⎝ 8cμ/μ,λ R̃2∞σ4√(

σ2
ε +4R̃2∞σ2

)3
− Nσ2

2R̃2∞μ
− 2cμ/μ,λσ

2√
σ2
ε +4R̃2∞σ2

⎞⎟⎟⎟⎟⎟⎠ (R − R̃∞) (15)

=

⎛⎜⎜⎜⎜⎜⎝ 8cμ/μ,λ R̃2∞σ4√(
σ2
ε +4R̃2∞σ2

)3
− Nσ2

2R̃2∞μ
− 2cμ/μ,λσ

2(σ2
ε +4R̃2∞σ2)√(

σ2
ε +4R̃2∞σ2

)3

⎞⎟⎟⎟⎟⎟⎠ (R − R̃∞) (16)

= −
⎛⎜⎜⎜⎜⎜⎝ Nσ2

2R̃2∞μ
+

2cμ/μ,λσ2σ2
ε

(σ2
ε + 4R̃2∞σ2)

3
2

⎞⎟⎟⎟⎟⎟⎠ (R − R̃∞). (17)

Inserting Eq. (17) in (13) we finally obtain

R(g) − R(g+1) ≈
⎛⎜⎜⎜⎜⎜⎝ Nσ2

2R̃2∞μ
+

2cμ/μ,λσ2σ2
ε

(σ2
ε + 4R̃2∞σ2)

3
2

⎞⎟⎟⎟⎟⎟⎠ (R(g) − R̃∞) (18)

as a linear approximation of the difference equation (8). For reasons
of clarity and comprehensibility we define

a �
Nσ2

2R̃2∞μ
and b �

2cμ/μ,λσ2σ2
ε

(σ2
ε + 4R̃2∞σ2)

3
2

. (19)

Thus, Eq. (18) reads

R(g+1) =
(
R(g) − R̃∞

)
(1 − (a + b)) + R̃∞. (20)

Computing

R(g+2) =
(
R(g+1) − R̃∞

)
(1 − (a + b)) + R̃∞ (21)

=
(
R(g) − R̃∞

)
(1 − (a + b))2 + R̃∞ (22)

and continuing this way yields the following equation for the ex-
pected distance R(g+γ) after one isolation period of γ generations

R(g+γ) =
(
R(g) − R̃∞

)
(1 − (a + b))γ + R̃∞. (23)

Assuming that the sum a + b is sufficiently small one can apply the
approximation

(1 − x)k ≈ 1 − kx ∀x with |x| 
 1. (24)

The assumption a + b ≈ 0 is valid considering sufficiently small
mutation sizes σ, see also (19) for σ→ 0. Using (24) we obtain an
even simpler approximation for the distance to the optimizer after
a single inner ES isolation period

R(g+γ) = R(g)(1 − (a + b)γ) + R̃∞(a + b)γ. (25)

In order to confirm the good compliance between the original Meta-
ES dynamics resulting from Eq. (8) and their approximations, see
Eq. (23) and Eq. (25), we check the iteratively generated dynam-
ics against each other. The iteration proceeds the following way:
Four pairs of strategy parameters are computed from the initial pa-
rameters. These are (βμ, ασ), (βμ, σ/α), (μ/β, ασ), and (μ/β, σ/α).
For each combination of strategy parameters the theoretical equa-
tions are iterated over a single isolation period. The length of the
isolation period depends on the chosen population size, i.e. it is
γ = d/(βμ) or γ = (dβ)/μ) respectively. The best of the four in-
dependent runs by means of the generated fitness value is selected.
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Figure 3: Illustration of the iteratively computed μ- and γ-dynamics resulting from Eq. (8) and from its approximations in Eq. (23)
and Eq. (25), respectively. To point out the slight differences only the results of the first 20 of 1000 isolation periods are presented.
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Figure 4: On the lhs the comparison of the distance R to the optimizer between the iterative results of Eq. (8) and its approximations
in Eq. (23) and Eq. (25) is depicted per isolation period, or per d/ν = 1024 function evaluations respectively. The figure on the rhs
shows the corresponding mutation strength σ.

Its strategy parameters as well as its generated distance R are used
as initial strategy parameters of the next iteration step. All results
are computed from the same initial values. Figures 3 and 4 display
the dynamics. We have chosen a search space dimensionality of
N = 1000. The initial mutation strength is σp = 1 and the con-
stant noise strength is set to σε = 5. The initial population sizes are
μp = 4 and λp = 16, respectively. This is due to the truncation ratio
of ν = 1/4. γp = 64 is the initial isolation length. The adjustment
parameters are α = 1.2 and β = 2.
In Fig. 3 we present the μ-dynamics in the graph on the lhs and the
γ-dynamics on the rhs. The strategy increases the population size
μ up to its initially defined maximal value d = 256. Consequently
by construction the corresponding γ-dynamics show the converse
behavior. That is, the isolation length of the inner ES is reduced to
1 by the selection mechanism of the outer ES. The μ-dynamics as
well as the γ-dynamics of the approximations, (23) and (25), per-
fectly match while they differ slightly from the dynamics of Eq. (8)
which is represented by the solid blue line. But these differences
can only be observed during the first few isolation periods. All
three dynamics overlap after each has finally reached its maximal
population size, and minimal isolation length respectively, and re-
main in this state until the algorithm terminates.
The R-dynamics as well as the σ-dynamics are illustrated in Fig. 4.
Again we compare the iteratively computed results of equations
(8), (23), and (25). In both cases we notice a similar pattern of the

original dynamics and its approximations. After a couple of isola-
tion periods the dynamics almost match. On the rhs the Meta-ES
reduces the mutation strength. During the decline the σ-dynamics
show an oscillating behavior. Note that this oscillation phases grow
with decreasing σ. While the oscillations slow down the decrease
of the mutation strength, the Meta-ES gradually reduces σ and by
implication σ∗, too. A more detailed investigation of this oscilla-
tion behavior will be provided in Sec. 5.
Taking a look at the distance R to the optimizer on the lhs of Fig. 4
we observe the dynamics approaching the residual steady state dis-
tance R̃∞. In fact, since the σ-dynamics converge to zero the R-
dynamics approach the approximated steady state distance R̂∞ =
1.961, see Eq. (12).
The good agreement between the dynamics resulting from Eq. (8)
and the dynamics iterating its approximations justifies the use of
the approximations in the further theoretical investigation of the
Meta-ES.
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4. THE POPULATION SIZE DYNAMICS
This section focuses on the μ-dynamics of the Meta-ES. Since all
iterations in the previous section show the strategy’s behavior to
increase the parental population size μ to its maximum we are in-
terested in a theoretical analysis. Note that in our considerations
d � μγ is defined as the upper bound of the parameter μ, or γ re-
spectively.
In the first step we assume a noise free fitness environment (σε = 0)
throughout Sec. 4.1. Afterwards in Sec. 4.2 we include fitness noise
into our considerations. In the noise-free case the results from
Sec. 3 allow for a rather simple examination of the strategy’s popu-
lation adaptation behavior. Of course, the investigations assuming
a noisy fitness landscape are more complicated.

4.1 Noise-free Fitness Environment
Since the approximation (25) corresponds well with Eq. (8) and its
application simplifies the analysis considerably, we will use (25) as
the starting point of the following investigations. Assumingσ∗ε = 0,
Eq. (25) transforms into

R(g+γ) = R(g) (1 − aγ) + R̃∞aγ. (26)

With R̃∞(σ, 0) =
Nσ

2μcμ/μ,λ
, see Eq. (9), and a =

2μc2
μ/μ,λ

N
this yields

R(g+γ) = R(g)

⎛⎜⎜⎜⎜⎜⎝1 − 2c2
μ/μ,λ

N
d

⎞⎟⎟⎟⎟⎟⎠ + cμ/μ,λσγ. (27)

The first addend does no longer depend on either the population
size parameter μ2 or on the mutation strength parameter. This sim-
plifies the following calculations significantly.
After each isolation period the outer ES computes two new parental
population sizes μ by increasing and decreasing the parental popu-
lation size of the best inner strategy by the parameter β > 1. In the
same manner the algorithm builds two new mutation strengths σ by
varying the mutation strength of the best inner strategy by the pa-
rameter α. Thus we obtain the four new strategy parameters which
will establish the next four inner ESs

μ+ � μβ and μ− � μ/β, (28)

as well as

σ+ � σα and σ− � σ/α. (29)

Note that μ±, and σ± correspond to μ̃1 and μ̃2, and σ̃1 and σ̃2 re-
spectively, which have been mentioned in Sec. 2.
In this section we apply the following simplification for the progress
coefficients

cμ/μ,λ ≈ cμ+/μ+,λ+ ≈ cμ−/μ− ,λ− . (30)

This assumption is valid because in the asymptotic limit case the
progress coefficient cμ/μ,λ only depends on the truncation ratio ν =
μ/λ, see also [4].
In the following we identify R(g+γ)

+− with the expected distance re-
alized by the inner ES that operates with μ+ and σ− over a single
isolation period. The expected distances of the three other inner
strategies R(g+γ)

++ , R(g+γ)
−+ , and R(g+γ)

−− are defined analogously. Conse-

2Assuming a sufficiently large population size such that cμ/μ,λ de-
pends only on the truncation ratio μ/λ.

quently using Eq. (27) we get

R(g+γ)
++ = R(g)

⎛⎜⎜⎜⎜⎜⎝1 − 2c2
μ/μ,λ

N
d

⎞⎟⎟⎟⎟⎟⎠ + cμ/μ,λσα
γ

β
, (31)

R(g+γ)
+− = R(g)

⎛⎜⎜⎜⎜⎜⎝1 − 2c2
μ/μ,λ

N
d

⎞⎟⎟⎟⎟⎟⎠ + cμ/μ,λ
σ

α

γ

β
, (32)

R(g+γ)
−+ = R(g)

⎛⎜⎜⎜⎜⎜⎝1 − 2c2
μ/μ,λ

N
d

⎞⎟⎟⎟⎟⎟⎠ + cμ/μ,λσαγβ, (33)

R(g+γ)
−− = R(g)

⎛⎜⎜⎜⎜⎜⎝1 − 2c2
μ/μ,λ

N
d

⎞⎟⎟⎟⎟⎟⎠ + cμ/μ,λ
σ

α
γβ. (34)

The algorithm chooses the strategy parameter of the inner ES which
generates the smallest distance R to the optimizer. That is, by com-
paring two expected distances the sign of their difference indicates
which strategy is preferred by the Meta-ES. Thus in order to com-
pare all four inner strategies against each other we have to consider
six different cases.
At first we examine the four cases which differ in the population
parameter μ. Remembering the condition 1 < α < β we get

R(g+γ)
++ − R(g+γ)

−+ = cμ/μ,λσγ
(α − αβ2)
β

< 0, (35)

R(g+γ)
++ − R(g+γ)

−− = cμ/μ,λσγ
(α2 − β2)
αβ

< 0, (36)

R(g+γ)
+− − R(g+γ)

−+ = cμ/μ,λσγ

(
1
αβ
− αβ

)
< 0, (37)

R(g+γ)
+− − R(g+γ)

−− = cμ/μ,λσγ
(α − αβ2)
α2β

< 0. (38)

It can be observed that the Meta-ES favors the inner ESs with the
higher population size μ. Thus the Meta-ES is expected to perma-
nently increase the parental population size μ after each isolation
period of γ generations until finally the upper bound d is reached.
Consequently the strategy decreases the isolation length γ down to
1. Now we consider the two remaining cases

R(g+γ)
++ − R(g+γ)

+− = cμ/μ,λσγ
(α2β − β)
αβ2

> 0, (39)

R(g+γ)
−+ − R(g+γ)

−− = cμ/μ,λσγ
(α2β − β)
α

> 0. (40)

We observe that the Meta-ES prefers the strategies which operate
with the decreased mutation strength σ−.
Thus R(g+γ)

+− dominates the other three expected distances. That is,
the Meta-ES is to be expected to choose the inner strategy which
increases the population size μ and simultaneously decreases the
mutation strength σ. That is, in the absence of fitness noise the μ-
and σ-dynamics can be characterized by

μ(g+γ) = μ(g)β and (41)

σ(g+γ) = σ(g)/α (42)

until the upper bound d of the population size parameter is reached.
After that, the population size μ remains in its maximum while the
mutation strength σ is decreased further on. An illustration of the
μ and σ dynamics in the noise-free fitness case is given in Fig. 5.
The dynamics are generated by iteration of Eq. (25). Except for
the noise strength (σε = 0) all initial parameters agree with their
choices in Sec. 3. That is, we chose N = 1000, μp = 4, ν = 1/4,
λp = 16, β = 2, γp = 64, σp = 1 and α = 1.2.
According to our predictions, see (41) and (42), the population size
μ is increased until it reaches its maximal value d. Furthermore
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Figure 5: On the left hand side the μ-dynamic resulting from the iteration of Eq. (25) is shown. The noise strength is σε = 0. The
right hand side presents the respective σ dynamics. The initial population size is μ = 4 and the initial isolation length is γ = 64, i.e.
their upper bound is set to d = 256.

the Meta-ES steadily decreases the mutation strength σ over the
observed isolation periods.

4.2 μ-Dynamics Considering Fitness Noise
The next step includes fitness noise into our considerations. We
already know that the choice of a higher population size allows
for a lower residual distance in standard ESs [1]. That is why, in
the presence of fitness noise with constant noise strength σε , we
conclude that the Meta-ES increases the population size μ to its
maximum d just like in the noise-free case. Operating at maximal
population size, the isolation inside the algorithm only proceeds
over one generation, i.e. γ = 1. Therefore, it is possible to analyze
the μ dynamics easily. Moreover, considering sufficiently small
σ, the change in the mutation strength between two consecutive
isolation periods is neglectable. Using Eq. (4) and (5) we get

R(g+1) = R(g) − ϕ∗R(g)

N
. (43)

Remembering (28) and ignoring the σ adaptation at this point, we
write R(g+1)

+ and R(g+1)
− for the expected distance which is realized

by the inner ES that operates with μ+ and μ−, respectively. Hence
the two expected distances at the end of the isolation period are

R(g+1)
+ = R(g) −

⎛⎜⎜⎜⎜⎜⎝ cμ/μ,λσ∗2√
σ∗ε 2 + σ∗2

− σ
∗2

2βμ

⎞⎟⎟⎟⎟⎟⎠ R(g)

N
, (44)

R(g+1)
− = R(g) −

⎛⎜⎜⎜⎜⎜⎝ cμ/μ,λσ∗2√
σ∗ε 2 + σ∗2

− βσ
∗2

2μ

⎞⎟⎟⎟⎟⎟⎠ R(g)

N
. (45)

Again the sign of their difference determines which strategy param-
eters are chosen in the outer ES. Thus, we consider

R(g+1)
+ − R(g+1)

− =

(
σ∗2

2βμ
− βσ

∗2

2μ

)
R(g)

N
=

(
1
β
− β

)
σ∗2

2μ
R(g)

N
. (46)

Because of the condition β > 1 this difference is always negative

R(g+1)
+ − R(g+1)

− < 0. (47)

That is, once the Meta-ES has reached its minimal isolation length
γ = 1, the algorithm permanently increases the population size μ
up to its maximum μ = d and maintains this state for the remaining
isolation periods. This behavior has also been observed in Sec. 3,
see Fig. 3.

5. INVESTIGATING THE MUTATION
STRENGTH DYNAMICS

Due to the results of the iterated dynamics in Sec. 3 and our theo-
retical observations in Sec. 4, the [1, 4(μ, λ)γ]-Meta-ES is regarded
to continuously increases the parental population μ to its maximal
value d = μγ. As a consequence, the isolation length γ reduces to
1 respectively. In this section we assume that the strategy has al-
ready reached its maximal population size and remains in this state
according to Sec. 4.2. Therefore, we investigate the σ-dynamics
regarding an [1, 4(μ, λ)1]-Meta-ES with β = 1. That is, neither the
population size μ nor the isolation length γ = 1 will be changed by
the outer ES. In the first step, Sec. 5.1 aims at a qualitative descrip-
tion of the σ dynamics. This allows for an interpretation of the σ
dynamics observed in Sec. 3, Fig 4. Then in Sec. 5.2 we are going
to investigate the dynamics of the normalized mutation strength.
We provide a description of the σ∗ dynamics’ asymptotic growth.

5.1 Explaining the σ-Dynamics
The outer ES generates two new σ-values from the parental muta-
tion strength σ(t) (t being the generation counter of the outer ES)

σ+ � ασ(t) and σ− � σ(t)/α. (48)

Remembering Eq. (8), and writing σ instead of σ(t), this results in
two expected distances R(t+1) at the end of isolation period t + 1

R(t+1)
+ = R(t) − ασcμ/μ,λ√

1 + σε2

4R(t)2α2σ2

+
α2σ2N
2μR(t)

, (49)

R(t+1)
− = R(t) − σcμ/μ,λ

α
√

1 + α2σε 2

4R(t)2σ2

+
σ2N

2α2μR(t)
. (50)

Note that in contrast to Sec. 4, R(t+1)
+ and R(t+1)

− now refer to the in-
ner ES which operates with σ+ and σ−, respectively.
The algorithm chooses the parameters of the strategy which gener-
ates the smaller distance to the optimizer. That is, the sign of the
difference R(t+1)

+ − R(t+1)
− determines whether the Meta-ES increases

or decreases the mutation strength σ

R(t+1)
+ − R(t+1)

− < 0 ⇒ σ(t+1) = σ(t)α

R(t+1)
+ − R(t+1)

− > 0 ⇒ σ(t+1) = σ(t)/α.
(51)

16



Combining (49) and (50), the difference R(t+1)
+ − R(t+1)

− reads

α2σ2N
2μR(t)

− ασcμ/μ,λ√
1 + σε2

4R(t)2α2σ2

− σ2N
2α2μR(t)

+
σcμ/μ,λ

α
√

1 + α2σε 2

4R(t)2σ2

(52)

=
σ2N

2μR(t)

(
α2 − 1

α2

)
−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ασcμ/μ,λ√

1 + σε 2

4R(t)2α2σ2

− σcμ/μ,λ

α
√

1 + α2σε2

4R(t)2σ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (53)

and considering the normalizations, see Eq. (5), it can be trans-
formed into

σ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣σ
∗

2μ

(
α2 − 1

α2

)
− cμ/μ,λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ α√
1 + σ∗ε 2

α2σ∗2

− 1

α

√
1 + α

2σ∗ε 2
σ∗2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (54)

=σ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ (α4 − 1)σ∗

2μα2
− cμ/μ,λσ∗

α2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ α4

√
α2σ∗2+σ∗ε 2

− 1√
σ∗2

α2 +σ
∗
ε

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (55)

Defining Δ by the term in the square brackets of Eq. (55)

Δ �
(α4 − 1)σ∗

2μα2
− cμ/μ,λσ∗

α2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ α4

√
α2σ∗2+σ∗ε 2

− 1√
σ∗2

α2 +σ
∗
ε

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (56)

the σ-dynamic depends only on the sign of Δ, i.e.,

Δ < 0 ⇒ σ(t+1) = σ(t)α,

Δ > 0 ⇒ σ(t+1) = σ(t)/α.
(57)

Note that Δ depends on the normalized mutation strength σ∗ as well
as the normalized noise strength σ∗ε . With Δ(σ∗, σ∗ε ) we have found
the evolution equation for σ

σ(t+1) = σ(t)α−sign(Δ(σ∗(t),σ∗ε (t))). (58)

The sign of Δ is plotted depending on σ∗ and σ∗ε in Fig. 6. The val-
ues of σ∗ and σ∗ε are varied within their range of positive progress
from zero to 2μcμ/μ,λ, see Eq. (6). Negative values of Δ(σ∗, σ∗ε )
are represented by the yellow region, and positive ones by the red
region respectively. For example, if the strategy operates with a
combination of σ∗ and σ∗ε values from the yellow region (Δ < 0) it
will increase the mutation strength after the isolation period.

Figure 6: On the sign of Δ depending on σ∗ and σ∗ε . The re-
maining parameters are μ = 256, ν = 1/4, and α = 1.2

We are interested in the critical value σ∗0 > 0 around which the sign
of Δ(σ∗, σ∗ε ) changes. According to the combination of σ∗ and σ∗ε
in Fig. 6 this critical value can be found on the black line between
the two colored regions. Computing σ∗0 from Eq. (56) leads directly
to the condition

(α4 − 1)
2μcμ/μ,λ

!
=

α4

σ∗ε
√

1 + α
2σ∗2

σ∗ε 2

− 1

σ∗ε
√

1 + σ∗2

α2σ∗ε 2

. (59)

This must be solved for σ∗. Finding an analytical expression for σ∗0
of (59) is demanding. Therefore, we apply the following approxi-
mation √

1 +
σ∗2

σ∗ε 2
≈ 1 +

σ∗2

2σ∗ε 2
, (60)

assuming that σ∗2
/σ∗ε 2 < 1 holds when the Meta-ES has reached a

certain vicinity to its steady state R̂∞, see Eq. (12). Thus we can
rewrite (59)

(α4 − 1)σ∗ε
2μcμ/μ,λ

� α4

1 + α
2σ∗2

2σ∗ε 2

− 1

1 + σ∗2

2α2σ∗ε 2
. (61)

Converting the fractions to a common denominator, we get

(α4 − 1)σ∗ε
2μcμ/μ,λ

� (α4 − 1)

1 + σ∗2

2α2σ∗ε 2 +
α2σ∗2

2σ∗ε 2
+ σ∗4

4σ∗ε 4
. (62)

Rearranging the terms leads to

2μcμ/μ,λ
σ∗ε

� 1 +
σ∗2

2α2σ∗ε 2
+
α2σ∗2

2σ∗ε 2
+
σ∗4

4σ∗ε 4
, (63)

and with further transformations we get a quadratic equation in σ∗2

σ∗4 + 2
α4 + 1
α2
σ∗ε

2σ∗2
+ 4σ∗ε

4

(
1 − 2μcμ/μ,λ

σ∗ε

)
� 0. (64)

Solving (64) for σ∗2 yields

σ∗0
2 � −α

4 + 1
α2
σ∗ε

2
+

√
σ∗ε 4

⎡⎢⎢⎢⎢⎣(α4 + 1
α2

)2

+ 4

(
2μcμ/μ,λ
σ∗ε

− 1

)⎤⎥⎥⎥⎥⎦. (65)
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Taking the square root, one finally gets

σ∗0 � σ∗ε

√√√√(
α4 + 1
α2

)2

+ 4

(
2μcμ/μ,λ
σ∗ε

− 1

)
−
(
α4 + 1
α2

)
. (66)

Dividing Eq. (66) by σ∗ε , one obtains

σ∗0
σ∗ε
�

√√√√(
α4 + 1
α2

)2

+ 4

(
2μcμ/μ,λ
σ∗ε

− 1

)
−
(
α4 + 1
α2

)
. (67)

Note that for σε = const., it holds

σ∗ε =
σεN
2R2

R→R̂∞−→ 2μcμ/μ,λ. (68)

Taking (68) into account, one sees that in (67) the critical value
σ∗0 in relation to the normalized noise strength σ∗ε is decreasing
to zero in the asymptotic limit. Figure 7 displays this behavior.
A continuous increase of σ∗ε to its maximal value 2μcμ/μ,λ drives
σ∗0/σ

∗
ε and σ∗0 to zero.

Taking up the σ∗0 behavior, we can continue with the qualitative
analysis of the σ-dynamics. Equation (57) becomes

σ∗ < σ∗0 ⇒ σ(t+1) = σ(t)α,

σ∗ > σ∗0 ⇒ σ(t+1) = σ(t)/α.
(69)

According to these equations, the Meta-ES adapts σ so that the nor-
malized mutation strength σ∗ reaches a certain vicinity to its point
of discontinuity σ∗0. In this region the σ dynamics enter a limit cy-
cle. This corresponds to the oscillatory behavior of the σ dynamics
which was already observed in Sec. 3, Fig. 4. The limit cycle will
only be left if the point of discontinuity σ∗0 changes. Notice that
σ∗0 still depends on the normalized noise strength σ∗ε . As long as
the Meta-ES reduces the distance R to the optimizer, σ∗ε approaches
its saturation value 2μcμ/μ,λ. Since the critical value σ∗0 decreases
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Figure 7: The dashed red line shows the results of the approx-
imation σ∗

0/σ∗ε , see Eq. (67). It is compared to the numerically
computed root of Eq. (56) which is plotted with regard to σ∗ε
and represented by the solid blue line. The graph presents the
results for σ∗ε/2μcμ/μ,λ ∈ [0.9, 1]. One observes a good compliance
between the numerical results and the approximation for σ∗ε
values in the vicinity of 2μcμ/μ,λ.

tendentially, the strategy is able to leave the current σ limit cycle
and decrease the mutation strength until it enters the next limit cy-
cle. This behavior explains the σ dynamics in Sec. 3 where we
observed a rather slow mutation strength decrease in stepwise limit
cycles.

5.2 Calculating the σ∗-Dynamics
Now we consider the evolution of the normalized mutation strength
σ∗ in order to analyze the steady state behavior of the Meta-ES.
Remembering Eq. (5), Eq. (58), and taking into account

R(t+1) = R(t)

(
1 − 1

N
ϕ∗(σ∗(t)α−sign(Δ(σ∗(t),σ∗ε (t))), σ∗ε

(t))

)
, (70)

see Eq. (8), finally yields

σ∗(t+1)
= σ∗(t) α−sign(Δ(σ∗(t),σ∗ε (t)))

1 − 1
N ϕ
∗(σ∗(t)α−sign(Δ(σ∗(t),σ∗ε (t))), σ∗ε (t))

. (71)

Our goal is the computation of the expected normalized mutation
strength dynamics σ∗ around which the ES oscillates in its steady
state. At this point it should be noticed that theσ∗-dynamic directly
interacts with the σ∗ε -dynamic. The latter determines the critical
value σ∗0 and thereby the strategy’s behavior to increase or decrease
the (normalized) mutation strength. That is, we have to solve an
iterative mapping depending on σ∗(t) and σ∗ε

(t)

σ∗(t+1)
= fσ(σ∗(t), σ∗ε

(t);α, μ,N). (72)

With Eq. (5), and (8) we also derive the iterative mapping of the
σ∗ε -dynamics

σ∗ε
(t+1)
=

σ∗ε
(t)(

1 − 1
N ϕ
∗(σ∗(t)α−sign(Δ(σ∗(t),σ∗ε (t))), σ∗ε (t))

)2 . (73)

In order to calculate the asymptotic dynamics one has to apply
various asymptotically exact simplifications. First, consider the
progress rate

ϕ∗(σ∗, σ∗ε ) =
cμ/μ,λσ∗2√
σ∗ε 2 + σ∗2

− σ
∗2

2μ
(74)

which asymptotically (σ∗/σ∗ε → 0) can be expressed by

ϕ∗(σ∗, σ∗ε ) =
cμ/μ,λσ∗2

σ∗ε
√

1 + σ
∗2

σ∗ε 2

− σ
∗2

2μ
(75)

� σ∗2
(

cμ/μ,λ
σ∗ε
− 1

2μ

)
(76)

=
σ∗2

2μσ∗ε

(
2μcμ/μ,λ − σ∗ε

)
︸���������������������︷︷���������������������︸
� ϕ̃∗(σ∗, σ∗ε )

. (77)

As a consequence one obtains a simpler σ∗ε -dynamics. Writing σ∗

and σ∗ε instead of σ∗(t) and σ∗ε
(t), it reads

σ∗ε
(t+1) � σ∗ε(

1 − 2
N ϕ̃
∗(σ∗α−sign(Δ(σ∗,σ∗ε )), σ∗ε )

) . (78)

Considering small progress in the asymptotic limit one can apply

1
1 − x

≈ 1 + x ∀ x with |x| 
 1 (79)

resulting in

σ∗ε
(t+1) � σ∗ε (t)

(
1 +

2
N
ϕ̃∗(σ∗(t)α−sign(Δ(σ∗(t),σ∗ε (t))), σ∗ε

(t))

)
. (80)

Using ϕ̃∗, Eq. (77), one obtains

σ∗ε
(t+1) � σ∗ε +

σ∗2α−2sign(Δ(σ∗,σ∗ε ))

μN

(
2μcμ/μ,λ − σ∗ε

)
. (81)
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Figure 8: Illustration of the trade-off between Δ, Eq. (56) and
its approximation Δ̃, Eq. (87).

As a next step an approximation for Δ(σ∗, σ∗ε ), Eq. (56) is needed.
Assuming σ∗/σ∗ε → 0, one finds the following asymptotical ap-
proximation

σ∗

2μ
α4 − 1
α2

− σ
∗cμ/μ,λ
α2σ∗ε

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ α4(
1 + α

2σ∗2

2σ∗ε 2

) − 1(
1 + σ∗2

2α2σ∗ε 2

)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (82)

This can further be transformed into

σ∗

α2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ (α4 − 1)
2μ

− cμ/μ,λ
σ∗ε

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ (α4 − 1)

1 + α
4+1
α2

σ∗2

2σ∗ε 2
+ σ∗4

4σ∗ε 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (83)

=
σ∗(α4 − 1)
α2

⎛⎜⎜⎜⎜⎜⎜⎝ 1
2μ
− 4cμ/μ,λσ∗ε

3

4σ∗ε 4 + σ∗4 + 2 α
4+1
α2 σ

∗
ε

2σ∗2

⎞⎟⎟⎟⎟⎟⎟⎠ . (84)

The termσ∗4 in the denominator of the subtrahend can be neglected
considering small mutation strengths, i.e. σ → 0. Thus, one ob-
tains

σ∗(α4 − 1)
α2

⎛⎜⎜⎜⎜⎜⎜⎝ 1
2μ
− cμ/μ,λσ∗ε
σ∗ε 2 +

α4+1
2α2 σ

∗2

⎞⎟⎟⎟⎟⎟⎟⎠ (85)

=
σ∗(α4 − 1)

2μα2
(
σ∗ε 2 +

α4+1
2α2 σ

∗2
) (σ∗ε 2 + α4 + 1

2α2
σ∗2 − 2μcμ/μ,λσ

∗
ε

)
︸������������������������������������︷︷������������������������������������︸

� Δ̃(σ∗, σ∗ε )

. (86)

The sign of Δ and, by implication, the decision inside the Meta-ES
to increase or decrease the mutation strength σ or σ∗, respectively,
by the factor α is now only depending on

Δ̃(σ∗, σ∗ε ) =
α4 + 1

2α2
σ∗2 − σ∗ε

(
2μcμ/μ,λ − σ∗ε

)
. (87)

In Fig. 8 Δ(σ∗, σ∗ε ), see Eq. (56), and its approximation Δ̃(σ∗, σ∗ε )
are compared. The gray region (Δ̃ > 0,Δ < 0) represents the
trade-off between exact Δ and its approximation. Especially in
the asymptotically interesting region of small σ∗ values and σ∗ε ≈
2μcμ/μ,λ, the approximation shows a good agreement with Δ.
The results of the iterative computations of the original dynamics

(71) and (73) lead to the conclusion that the σ∗-dynamics mainly
depend on the α term. That is, the term (1 − ϕ∗/N) in (71) can be
neglected and by combination with Eq. (87) this yields the follow-
ing approximation of the σ∗-dynamics

σ∗(t+1)
= σ∗(t)α−sign(Δ̃(σ∗(t),σ∗ε (t))). (88)

A conclusive asymptotic approximation of theσ∗ε -dynamics is found
by inserting Eq. (87) into Eq. (81)

σ∗ε
(t+1) � σ∗ε (t) +

(
σ∗ (t)α−sign(Δ̃(σ∗(t) ,σ∗ε (t)))

)2
μN

(
2μcμ/μ,λ − σ∗ε (t)

)
. (89)

Note, if σ∗ is in the vicinity of σ∗0, i.e. Δ̃ ≈ 0, the analysis of the
Meta-ES suggests an oscillatory behavior in the σ∗ values. Actu-
ally, such a behavior is observed, see Fig. 9. The actual σ∗ dy-
namics have a globally decreasing tendency superimposed by local
oscillations. In Fig. 9 and Fig. 10 we validate the approximations
(88) and (89) by comparing them with the original σ∗ and σ∗ε dy-
namics from Eq. (71) and Eq. (73), respectively. The normalized
noise strength is depicted in relation to its saturation value 2μcμ/μ,λ.
Both dynamics are iterated over one million isolation periods of
γ = 1 generation using a population size of μ = 10 and a truncation
ratio ν = 1/4. The search space dimension is N = 100 and the
adjustment parameter is set to α = 1.05. The iterations start with

σ∗ε = 2μcμ/μ,λ−0.1 and σ∗ =
√

(2μcμ/μ,λ)2 − σ∗ε 2 to ensure the com-
pliance with condition (6). In both figures the original dynamics are
illustrated by solid blue lines while the dashed red lines represent
the approximations. Notice the oscillating behavior of the normal-
ized mutation strength dynamics in Fig. 9. With the continuous
decrease of the difference 2μcμ/μ,λ − σ∗ε in Fig. 10 also the critical
value σ∗0 slowly decreases, see Eq. (66). This way the σ∗ dynamics
are able to leave their limit cycles from time to time which leads to
the observable stepwise descent. Note that the phases of oscillation
grow with decreasing σ∗. It can be observed that in both cases the
slopes of the approximations and the original dynamics match after
having evolved over a sufficiently large number of isolation peri-
ods. Therefore, one can use the approximation in order to compute
the rate at which the mutation strength dynamics descent. To this
end, combine the σ∗-, Eq. (88), and σ∗ε -dynamics from Eq. (89).
Introduce the quantity δ(t)

δ(t) = 2μcμ/μ,λ − σ∗ε (t), (90)
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Figure 9: The comparison of the iterated σ∗-dynamic from
Eq. (71) represented by the blue line and its asymptotic approx-
imation from Eq. (88) depicted as the red dashed line.
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that measures the deviation of the normalized noise strength σ∗ε
from its saturation value 2μcμ/μ,λ. Inserting (90) into (89), one ob-
tains

δ(t+1) =

⎛⎜⎜⎜⎜⎜⎝1 − σ∗(t)2

μN
α−2sign(Δ̃(σ∗(t),σ∗ε (t)))

⎞⎟⎟⎟⎟⎟⎠ δ(t). (91)

As one can see in Fig. 9, there are periods in the σ∗ evolution where
the σ∗ values exhibits oscillatory behavior. This is reflected in the
oscillatory change in the sign of Δ̃. Since σ∗0 corresponds to Δ̃ = 0
one has to mathematically treat the behavior at Δ̃ = 0, i.e. sign(Δ̃) =
sign(0) = 0. This immediately leads to (92).

δ(t+1) =

⎛⎜⎜⎜⎜⎜⎝1 − σ∗(t)2

μN

⎞⎟⎟⎟⎟⎟⎠ δ(t) (92)

=

⎛⎜⎜⎜⎜⎜⎝1 − σ∗(t)2

μN

⎞⎟⎟⎟⎟⎟⎠
t+1

δ(0). (93)

With Eq. (93) we are able to simplify Eq. (87) in order to make a
prediction about the asymptotic behavior of the σ∗-dynamics. In a
first step Eq. (90) is inserted into (87) yielding

Δ̃(σ∗, δ(t)) =
α4 + 1

2α2
σ∗2 − 2μcμ/μ,λδ(t) + δ(t)2

. (94)

Applying (93), the rhs becomes

α4 + 1
2α2

σ∗2 − 2μcμ/μ,λ

(
1 − σ

∗2

μN

)t

δ(0) +

⎛⎜⎜⎜⎜⎝(1 − σ∗2
μN

)t

δ(0)

⎞⎟⎟⎟⎟⎠2

(95)

=
α4 + 1

2α2
σ∗2 − 2μcμ/μ,λ

(
1 − σ

∗2

μN

)t

δ(0) +

(
1 − σ

∗2

μN

)2t

δ(0)2
. (96)

Taking advantage of
(
1 − σ∗2

μN

)t � (1 − t σ
∗2

μN

)
for σ

∗2

μN 
 1 one finds

the asymptotical approximation of Δ̃(σ∗, δ(0))

α4 + 1
2α2

σ∗2 − 2μcμ/μ,λ

(
1 − t

σ∗2

μN

)
δ(0) +

(
1 − 2t

σ∗2

μN

)
δ(0)2
. (97)

By further transformation one obtains[
α4 + 1

2α2
+

(
2δ(0)(μcμ/μ,λ − δ(0))

μN

)
t

]
σ∗2 − 2μcμ/μ,λδ

(0) + δ(0)2
. (98)
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Figure 10: The difference of the iterated σ∗ε -dynamic from
Eq. (73) to the saturation value 2μcμ/μ,λ (blue line) is com-
pared to its asymptotic approximation given by the dynamics
of Eq. (89), which are represented by the dashed red line.

The root σ∗0 of Eq. (98) can easily be found by solving Δ̃
!
= 0

resulting in

σ∗0 �
√√√√ (2μcμ/μ,λ − δ(0))δ(0)

α4+1
2α2 +

(
2δ(0)(μcμ/μ,λ−δ(0))

μN

)
t
. (99)

That is, in the asymptotic limit the point of discontinuity σ∗0 can be
approximated by Eq. (99). The mutation strength dynamics oscil-
late around σ∗0. Thus, we have found a description of the asymp-
totic σ∗-dynamics which only depends on the initial deviation δ(0)

of σ∗ε from 2μcμ/μ,λ and on the number of isolation periods t. In the
next step we consider

(α4 + 1)
2α2

1
t

t→∞−→ 0 (100)

in order to develop an even simpler expression describing the asymp-
totic growth rate:

σ∗0 �
τ√

t
. (101)

Here, we have substituted

τ �

√
μN(2μcμ/μ,λ − δ(0))

2μcμ/μ,λ − 2δ(0)
. (102)

After a sufficiently large number of isolation periods, the descent
of σ∗0 is described by Eq. (101). It decreases obeying a square root
law proportional to τ. Since the σ∗ dynamics oscillate around σ∗0
they consequently decrease with the same rate. That is, having
evolved over a large number of isolation periods, the normalized
mutation strength dynamics of the Meta-ES approach zero. In order
to illustrate the compliance of this results we refer to the illustration
in Fig. 11.
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Figure 11: Combination of the results from Fig. 9 with the
prediction of Eq. (99) depicted by the solid green line which
overlaps with the red dotted curve representing Eq. (88).
The dashed blue line with markers represents the result of
Eq. (101).

The solid green line in Fig. 11 depicts the approximation of σ∗0
from Eq. (99). Equation (101) is represented by the dashed blue
line. One observes that the growth characteristics overlap in the
asymptotic limit. It can be seen that the dashed red line, which
asymptotically approximates the σ∗-dynamics, see Eq. (88), oscil-
lates perfectly around the point of discontinuity σ∗0.
At this point one can draw the following conclusion concerning the

20



asymptotic growth rate of the σ-dynamics. First note that the dis-
tance to the optimizer R is nearly constant in the vicinity of the
steady state distance R̂∞. Considering R→ R̂∞ and (5) one obtains

σ∗ =
N
R
σ �

√
4μcμ/μ,λN

σε
σ. (103)

Thus in the asymptotic limit the σ-dynamics exhibits a similar be-
havior as the σ∗-dynamics: The mutation strength oscillates around
a critical value σ0 which asymptotically decreases with t according
to

σ0 � τ̃√
t
. (104)

Similar to σ∗0, it decreases according to a square root law, however,
with a different time constant τ̃. The calculation of τ̃ is beyond the
scope of this paper.

6. SIMULATIONS
This section focuses on a comparison of the analytical investiga-
tions from the previous sections with the experimental runs of the
[1, 4(μ/μI , λ)γ]-Meta-ES algorithm presented in Sec. 2. This way
we check the compliance of the results of the experiments with our
theoretical predictions. The algorithm, see also Fig. 1 and Fig. 2, is
initialized with parental population size μp = 2 and truncation ratio
ν = 1/4 yielding λp = 8. The adjustment parameter of the pop-
ulation size is β = 2. We consider a search space dimensionality
of N = 1000. The initial isolation time is set to γp = 128 which
leads to an upper bound of d = 256 for the μ and γ dynamics. The
mutation strength is initialized at σp = 1 with adjustment param-
eter α = 1.05. As the starting point of the algorithm we choose
(yp)i = 10, i = 1, . . . ,N. This allows for a better observation of the
point at which the influence of the constant fitness noise gains in
importance. The noise strength is set to σε = 5. The algorithm is
terminated after evolving over 10000 isolation periods.
The theoretical results are obtained by the iteration of Eq. (8) on
the basis of the same initial values. The iteration proceeds as de-
scribed at the end of Sec. 3. In the figures the results are displayed
by the solid blue lines. Note that the iterated dynamics rely on the
knowledge of the ideal fitness values in the selection process of the
best inner ES. Whereas the selection in the experiments is based
on the observed noisy fitness of the centroids returned by the inner
strategies. This leads to deviations between iteratively generated
and experimental results. In order to decrease the deviations we
consider multiple experiments. Averaged over 20 independent runs
of the algorithm the experimental results are presented as dashed
red lines in Fig. 12 to Fig. 14.
Figure 12 depicts the R-dynamics of the Meta-ES. During the first
10 isolation periods the iterative and the experimental dynamics
nearly match. Then the effects of the fitness noise can be ob-
served. The iteratively computed R-dynamics approaches its ex-
pected residual steady state distance R̂∞. The decrease of the ex-
perimentally obtained R values decelerates. This results from the
reduction of the isolation time γ, which is induced by increasing the
population size. Regarding the population size dynamics in Fig. 13,
we observe a good agreement provided that the strategy is able to
increase the population size μ. After having reached the maximal
value d = 256, the corresponding isolation time is γ = 1. In this
state the μ-dynamics can either remain in its maximum or decrease
again. Unlike our theoretical predictions suggest, the experimental
μ-dynamics leaves the state of maximal population size. Despite
the population size fluctuates under the influence of noise, we can
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Figure 12: Comparison of the distance to the optimizer, ob-
tained by iteration of Eq. (8), with the results of the average of
20 independent experimental runs of the Meta-ES.
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Figure 13: The parental population size dynamics resulting
from the experiment are depicted by the dashed red line. The
iteratively computed dynamics resulting from Eq. (8) is repre-
sented by the solid blue line.
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Figure 14: The σ dynamics resulting from Eq. (8) is compared
to the experimental results. The mutation strength adjustment
parameter is set to α = 1.05.
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measure the strategy’s tendency to favor greater population sizes.
Considering the small isolation time and the influence of the fit-
ness noise, we are able to explain the fluctuations. The smaller the
fitness value the more it is affected by the noise. As the strategy ap-
proaches its residual steady state distance R̃∞ the noise disturbs the
selection process. That is, the algorithm may select an inner strat-
egy which decreases the population size, because it has the best
observed noisy fitness. This leads the Meta-ES to leave its maxi-
mal population size μ = 256 which directly influences the steady
state distance R̃∞. Decreasing μ values cause R̃∞ to rise and conse-
quently the R-dynamics increase, see Fig. 12. Since the population
size is adjusted by the factor β = 2 this changes in the steady state
distance can be relatively large. In Fig. 14 the σ-dynamics are dis-
played. Again one observes a good agreement of both dynamics
during the first isolation periods.
At the point where the population size reaches its maximum the
empirically generated results reveal significant deviations from the
theoretical predictions. However, both dynamics show the same
tendency to decrease the mutation strength σ. One can reduce the
deviation by increasing the α factor, e.g. α = 1.2. While this en-
sures a faster adaptation of the σ values and thus getting closer
to the theoretical σ curve, the general deviation tendency does not
change. The rather large deviations observed are due to the noisy
fitness information which has not been included in the modeling of
the selection process of the outer ES.
The theoretical analysis neglects the influence of fitness noise on
the selection process of the outer ES. The dynamics resulting from
the iteration of the theoretical equations rely on the knowledge of
the expected ideal fitness values returned by the inner ESs. Whereas
the selection in the experiments is based on the observed noisy fit-
ness of the final parental centroids. This leads to significant devi-
ations between theoretical and experimental dynamics. In order to
confirm this explanation the following experiment has been con-
ducted.
The real Meta-ES run can be emulated by adding noise to the fit-
ness values of the theoretical predictions. In each isolation period
a simulated noise term is added to the four iteratively generated fit-
ness values resulting from the inner ESs. Selection within the iter-
ation is then performed by choosing the best of these four “noisy”
fitness values. The inner ES corresponding to the best observed
fitness value provides its strategy parameters to the next iteration
step. The noise term is modeled by a normally distributed ran-
dom number with mean 0. Its variance is varying with the isolation
period. For each isolation period this variance is determined by
measuring the empirical variance of the four function values in the
according isolation period of the real Meta-ES run. The empirical
variances are averaged over 20 independent simulations. Also the
iterative dynamics incorporating noise are averaged over 20 inde-
pendent runs. Note, that the experimental dynamics are generated
as explained in the beginning of this section. The initialization is
maintained as well.
The iteration of Eq. (8) equipped with noise in the selection process
of the outer ES is referred to as noisy iteration. The corresponding
dynamics are illustrated by the solid blue lines in Fig. 15 to Fig. 17.
The experimental dynamics are represented by dashed red lines.
Regarding the distance to the optimizer in this situation both dy-
namics fail to approach the minimal residual steady state distance

R̂∞(d), see Fig. 15. R̂∞(d) =
√

Nσε
4dcd/d,λ

corresponds to the maximal

parental population size μ = d realizable by the Meta-ES algorithm.
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Figure 15: Dynamics of the distance to the optimizer, obtained
by iteration of Eq. (8) provided with noise, and the results of
the experimental run of the Meta-ES.
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Figure 16: The parental population size dynamics resulting
from the experiment compared to the noisy iteration dynam-
ics using Eq. (8).
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Figure 17: The mutation strength dynamics resulting from
Eq. (8) equipped with noise is compared to the experimental
results.

22



The deviations are a result of the fluctuations in the μ dynamics il-
lustrated in Fig. 16. The noisy iteration as well as the experimental
dynamics show larger deviations from the maximal parental pop-
ulation size μ = d with increasing number of isolation periods t.
This behavior is resulting from the influence of fitness noise while
selecting the best observed inner ES. Additionally, in Fig. 17 an
improved agreement of the two mutation strength dynamics is ob-
servable.
In each case the iterative and the experimental dynamics show a
similar behavior. Thus the behavior of the experimental dynam-
ics can be reconstructed better by considering noise disturbances in
the selection process of the theoretical model. This indicates that
the deviations are - at least partially - a result of the disregard of
selection noise in the theoretical modeling.

7. CONCLUSIONS AND OUTLOOK
In this paper we investigated the ability of a [1, 4(μ/μI , λ)γ]-Meta-
ES to simultaneously control the population size μ and the mutation
strength σ on the sphere model in particularly under the influence
of fitness noise with constant variance. A theoretical analysis of
the strategy’s adaptation behavior has been presented. Considering
asymptotically exact approximations we were able to calculate the
general behavior of the μ- as well as the σ-dynamics. While the
μ-dynamics increases μ exponentially fast up to the predefined μ-
bound, the σ-dynamics exhibits a square root law when approach-
ing the steady state. That means that the approach to the steady
state is rather slow.
The derivations presented assumed an error-free selection process
in the meta strategy. In that point, the analysis deviates from the
real Meta-ES. This deviation is the main reason for the deviations
observed when comparing the theoretical results with real Meta-ES
experiments.
One might consider to incorporate the noisy selection process of
the outer ES in the analysis. This way the theoretical model would
gain accuracy in reproducing the experimental dynamics. However,
this is not really the direction of research we regard as a meaningful
next step. The results rather indicate that the Meta-ES considered
is not well suited for this noisy optimization problem. This leads to
the question how to change the Meta-ES algorithmically such that
it exhibits a better long-term behavior. That is, the selection pro-
cess of the outer ES must be improved. One may think of various
measures how to improve the selection process. For example, one
could use γ > 1 runs to obtain more reliable fitness values (moving
average). Investigations dealing with such questions will be next
on our agenda.
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