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Abstract
The convergence behaviors of so-called natural evolution strategies (NES) and of the
information-geometric optimization (IGO) approach are considered. After a review of the
NES/IGO ideas, which are based on information geometry, the implications of this philoso-
phy w.r.t. optimization dynamics are investigated considering the optimization performance on
the class of positive quadratic objective functions (the ellipsoid model). Exact differential equa-
tions describing the approach to the optimizer are derived and solved. It is rigorously shown
that the original NES philosophy optimizing the expected value of the objective functions leads
to very slow (i.e. sublinear) convergence towards the optimizer. This is the real reason why
state-of-the-art implementations of IGO algorithms optimize the expected value of transformed
objective functions, e.g. by utility functions based on ranking. It is shown that these utility
functions are localized fitness functions that change during the IGO flow. The governing dif-
ferential equations describing this flow are derived. In the case of convergence, the solutions
to these equations exhibit an exponentially fast approach to the optimizer (i.e. linear conver-
gence order). Furthermore, it is proven that the IGO philosophy leads to an adaptation of the
covariance matrix that equals in the asymptotic limit – up to a scalar factor – the inverse of the
Hessian of the objective function considered.
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1 Introduction

For decades, engineering of Evolution Strategies (ES) as well as of other Evolutionary Algo-
rithm (EA) related designs (including Genetic Algorithms, Particle Swarm Optimization and
Differential Evolution to name a few) was mainly based on biomimicry (also referred to as
bionics). That is, principles gleaned from biology were translated into optimization algorithms.
While there were attempts to put the design philosophy of ESs on some kind of “axiomatic”
base by formulating design principles, see Beyer and Deb (2001); Beyer (2001); Hansen (2006);
Beyer (2007), a new development by Wierstra et al. (2008); Sun et al. (2009) called “Natural
Evolution Strategies” (NES) promised a more principled approach to the design of EAs. This
new approach yielded algorithm implementations that were similar to the well-known covari-
ance matrix adaptation (CMA) ES of Hansen et al. (2003) with rank-µ update, see Glasmachers
et al. (2010). This striking similarities gave rise to attempts grounding CMA-ES on information
geometry (Amari and Nagaoka (2000)) resulting in a work of Akimoto et al. (2012b).

An alternative view on NES is to consider it as an algorithmic implementation of an
information-geometric optimization (IGO) flow in the parameter space of the respective proba-
bility distribution family. That is, an IGO differential equation describing the time evolution of
∗Revised 2020 version. The author is grateful to Li Zhenhua for pointing out mistakes to be corrected here.
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the distribution parameters is set up and solved numerically by discretizing the time (thus get-
ting a generational algorithm, i.e. an EA) and estimating the expected values by Monte-Carlo
sampling (the mutation and recombination process in ES), see Akimoto et al. (2012a).

From a bird’s-eye view, most of the research done in this field follows directly or indirectly
this line of approach with the aim to derive real EA implementations. On the other hand, the
IGO flow differential equation can be used to derive theoretical assertions w.r.t. the convergence
behavior and generally the time evolution of the IGO flow system. This line of research has
been opened by the work of Glasmachers (2012) and Akimoto et al. (2012a). Considering
isotropic mutations they proved convergence to the optimizer of convex quadratic functions
using different techniques avoiding the direct solution of the IGO equation system. The most
advanced results have been provided by Akimoto (2012) who proved linear convergence order
on functions with ellipsoidal level sets.

It should be clear that proving convergence of the IGO flow without calculating the real
time evolution is but a first step. However, the direct solution of the IGO flow system yields
the maximum information which allows for a deeper understanding of the evolutionary dynam-
ics of IGO. This is the primary goal of this paper. It is devoted to the calculation of the exact
time evolution of NES algorithms optimizing convex quadratic objective functions (the so-called
ellipsoid model). The NES to be analyzed uses normally distributed mutations with a fully de-
veloped covariance matrix C. Both cases are considered, the ordinary expected fitness value
optimization and the case of rank-based utility optimization. It will be shown that the original
NES philosophy, i.e. the “natural gradient” ascent in the expected fitness landscape leads to sub-
linear convergence. That is, the original NES idea results in convergent but slowly performing
algorithms. Introducing a rank-based evaluation instead of the direct fitness changes the be-
havior drastically. This rank-based evaluation localizes the search in the sense that the globally
defined objective function is replaced by a locally (in time) acting utility function. Such a utility
can be obtained in different ways. For example, considering the optimal ES weighting of Arnold
(2006), one gets a locally standardized fitness. Alternatively, (µ, λ)-ES truncation selection has
a similar effect. In both cases asymptotical exponentially fast convergence to the optimizer will
be proven. These results provide the theoretical explanation why recent NES implementations
always rely on rank-based utility functions. Additionally, the analysis technique presented also
allows for the calculation of the dynamics of the covariance matrix evolution. As will be shown,
C(t) approaches up to a scalar factor the inverse of the Hessian of the objective function.

The rest of the paper is organized as follows. The philosophy of NES and IGO will be intro-
duced in a self-contained manner. However, this introduction will not consider implementation
aspects since these are not needed in this paper. In Sect. 2 it will be shown – also, but not only
for didactical reasons – that ordinary gradient ascent in expected fitness landscapes may cause
problems in that different parameterizations may yield qualitatively different (and sometimes
undesirable) behaviors. Thereafter, the idea of information distance constrained gradient ascent
is introduced building the philosophical basis of NES. The resulting IGO flow will be analyzed
in Sect. 3 by solving the differential equation system yielding a slowly converging evolution
dynamics. In Sect. 4 the idea of localized fitness evaluation is added to the NES framework and
analyzed for optimal weighting and truncation selection assuming normally distributed fitness
values. Finally, in Sect. 5 conclusions are drawn.

2 NES/IGO in a Nutshell

Given a function f(x) to be optimized, one has numerous options to perform a gradual approach
to the optimizer x̂. One way – as pursued in evolutionary algorithms – consists in randomly
sampling x values from a family of probability distributions P (θ) the density of which may be
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given by p(x|θ).1 Here, the set of distribution parameters θ evolves over time t (the generation
counter) with the goal to change the distribution in such a manner that with increasing t the
distribution is more and more concentrated about the optimizer x̂. The manner in which the θ
parameter set is changed over the generations t characterizes the different evolutionary algorithm
(EA) class such as estimation of distribution algorithms (EDAs) and Evolution Strategies (ESs).
Alternatively, θ can even be implicitly presented by the population of candidate solutions as
is usually done in genetic algorithms (GAs). However, in this work, we will focus on EAs
where the distribution parameters θ are explicitly represented. In the next section, we will
start with a naive approach by minimizing the expected value of f . It will be shown that this
approach does not always lead to a stable performing EA. Therefore, in an attempt to get a
theoretically principled approach based on expected value maximization, the class of so-called
natural evolution strategies (NES) will be considered (Wierstra et al. (2008)). The underlying
ideas will be presented and investigated in subsequent sections.

2.1 Maximizing the Expected Value of f
While each real implementation of EAs has to produce a population of random samples xl and
has to evaluate these samples w.r.t. fitness, i.e. fl = f(xl), the information obtained from
these samples can be used in different manner. From the EA modeling perspective, one possible
objective is to consider the expected value

Ef (θ) := E[f |θ] =
∫

f(x)p(x|θ) dNx (1)

as the target quantity to be optimized. That is, in the case of f -maximization this leads to a
transformed optimization problem

θ̂ := arg max
θ

Ef (θ). (2)

This approach is the starting point of the so-called natural evolution strategies (NES) by Wier-
stra et al. (2008). In order to have a meaningful optimization problem (2) one has to ensure
that the parameter set θ allows to express the estimate of the optimizer of f(x) with arbitrary
precision. This can be achieved if the expected value vector x := E[x|θ] is itself part of the pa-
rameter set θ. For example, this is attained by using multivariate Gaussian normal distributions
N (x,C) with mean x and the symmetric covariance matrix C = CT, i.e.

θ = (x,C). (3)

The idea behind such a parameterization is that x evolves towards the optimizer x̂ and the
covariance matrix C shrinks in such a manner that the distribution of the samples gets more and
more concentrated about the optimizer x̂.

An implementation of the idea of maximizing the expected value function according to (2)
starts by realizing a gradient ascent in the parameter space of θ. To this end, the gradient is
needed, symbolized by the nabla operator ∇θ. In real-world cases, however, the expected value
(1) cannot be calculated analytically. Therefore, a Monte-Carlo sampling technique is applied
in order to estimate the gradient of (1), see Sun et al. (2009)

∇θEf (θ) ≈ 1
λ

λ
∑

l=1

f(xl)∇θ ln p(xl|θ), where xl ∼N (x,C) (4)

1In this work, only real-valued optimization is considered, i.e., x ∈ RN and therefore, probability distributions will
be described by their probability density functions (pdfs) p(x|θ) parameterized by sets of distribution parameters.
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and λ is the number of samples taken. λ is also referred to as the offspring population size in
Evolution Strategies (ESs). The gradient estimate (4) is then used to perform a hill climbing
step in the θ-space, thus forming an iterative update formula

θ(t+1) = θ(t) + η∇θEf (θ)|θ=θ(t) (5)

where η is a step-size factor. While in practice one is interested in an η that provides a fast
approach to the optimizer, one can also consider the η → 0 limit case. Subtracting θ(t) on both
sides of (5), dividing by η, and taking the limit, the t-discrete θ values become a continuous
time t function and one obtains

dθ
dt

= ∇θEf (θ)|θ=θ(t). (6)

This is an ordinary differential equation (ODE) system that can serve as a model description of
ESs. A modified version of (6) has been used already in the so-called information-geometric
optimization (IGO) framework in order to investigate the convergence behavior of infinite pop-
ulation size models of ESs, see Akimoto et al. (2012a); Glasmachers (2012), and the remainder
of this paper.

Before considering more advanced versions of (1) and (6), being the basis for mature ver-
sion of NES and IGO algorithms, a motivation for those will be given here. Equation (6) de-
scribes the continuous time evolution of the θ trajectories. Provided that f is given in simple
form, one can calculate this time evolution. To this end, the maximization of the general ellip-
soid model

fQ(x) := aTx− xTQx (7)

is considered with the symmetric positive definite matrix Q = QT and an arbitrary (constant)
vector a. Note that the fitness model (7) can be regarded as a local approximation of more
complex objective functions f(x). In that case, Q is simply proportional to the Hessian of f ,
i.e. Q = − 1

2Hf (x) = − 1
2∇∇

Tf(x).
Using Gaussian random vectors x ∼N (x,C), the expected value (1) can be easily calcu-

lated using results from (Beyer, 2001, p. 122)

Ef (θ) = Ef (x,C) = aTx− xTQx− Tr[QC]. (8)

Here, Tr[QC] represents the trace of the matrix product QC. Calculating the gradient of (8)
yields

∇θEf (θ) =
(

∇xEf
∇CEf

)

=
(

a− 2Qx
−Q

)

. (9)

Inserting this into (6), one obtains

dx(t)
dt

= a− 2Qx(t), (10a)

dC(t)
dt

= −Q. (10b)

Equation (10a) does not depend on C. A particular solution to the inhomogeneous equation is
given by the stationary state condition dx/dt = 0 leading to a = 2Qx̂. That is, the particular
solution is just the optimizer x̂ of (7)

x̂ =
1
2
Q−1a. (11)
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Consider the deviation z measuring the distance of x(t) to the optimizer x̂

z := x(t)− x̂, (12)

Eq. (10a) can be rewritten using (11)

dz
dt

= −2Qz. (13)

As one can easily check by insertion, its solution is given by

z(t) = exp(−2Qt)z(0). (14)

Thus, one obtains
x(t) = x̂+ e−2Qt(x(0)− x̂), (15)

i.e., the model equation approaches the optimizer x̂ exponentially fast (linear convergence or-
der).

The solution of the second equation in (10) is very simple, as one can check by insertion

C(t) = C(0)−Qt. (16)

However, this result indicates a problem since there is a t0 above which the covariance matrix
C(t) loses positive definiteness. That is, implementing an ES on the basis of the θ = (x,C)
parameterization might cause convergence problems due to inappropriate covariance matrix evo-
lution.

This covariance matrix adaptation problem can be avoided by using another ad hoc param-
eterization. Using a decomposition C = AA with a symmetric AT = A matrix resolves the
problem. That is, one uses θ = (x,A) as parameterization of the Gaussian distribution family.2

This changes Tr[QC] in (8) to Tr[QAA] = Tr[AQA] and the derivatives w.r.t. A become
∇ATr[QA2] = QA + AQ. As a result, (10b) changes to

dA(t)
dt

= −(QA(t) + A(t)Q). (17)

This equation can be solved using the Ansatz A(t) = exp(−Lt)A(0) exp(−Lt) yielding

A(t) = e−QtA(0)e−Qt, (18)

as can be easily checked by inserting (18) into (17). As one can see, A and therefore C remains
positive definite for t <∞ because Q is positive definite. The result (18) is in contrast to (16).
Using the A parameterization avoids the problem of evolving a non-positive definite covariance
matrix. Let us have a closer look at the C-dynamics imposed by (18). To this end, A(t) is
projected into the eigen system of Q. Consider the eigenvalue problem

Quk = qkuk, where uT
i uk = δik and 0 < qi ≤ qk for i ≤ k. (19)

Note, a non-decreasing ordering of the eigenvalues has been chosen in (19), i.e. q1 is the smallest
eigenvalue. Using qk (k = 1, . . . , N ) as basis, Eq. (18) becomes

(A(t))ik = uT
i A(t)uk = e−qituT

i A(0)uke−qkt = e−(qi+qk)t(A(0))ik. (20)

2This has the additional advantage that generating the x ∼ N (x,C) samples can be done directly by the transfor-
mation of isotropic standard normally distributed random vector components x ∼ x + AN (0, I). That is, no matrix
square root operations are needed.
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That is, A(t) and therefore C(t) = A(t)2 shrinks exponentially fast. However, this shrinking
appears at different time constants 1/qk. In the asymptotic limit t → ∞ the dynamics are
dominated by the slowest decaying e−(qi+qk) mode, i.e. the i = k = 1 mode. Therefore

(A(t))ik
t→∞−→

{

e−2q1t(A(0))11, for i = k = 1
0, otherwise. (21)

Transforming back, the covariance matrix C = A2 becomes

C(t) t→∞−→ e−4q1t(A(0))2
11 u1u

T
1 . (22)

This means that x samples are predominantly produced in the direction of the largest principal
axis while the other directions related to the uk with k > 1 are over-proportionally dampened.
In other words, given an ellipsoid success domain (defined by Eq. (7)), search is predominantly
conducted in the major axis direction. That is, for large t, the search degenerates in an one-
dimensional subspace of the RN . Similarly, if the ground state is degenerated by a multiplicity
of m, q1 = q2 = . . . = qm, then there are m orthogonal directions uk resulting in a degenerated
search in the corresponding m-dimensional subspace of RN .

2.2 How to Get Unbiased
Degeneration of the search distribution is undesirable. Instead of (22), it would be desirable to
get an asymptotic behavior like this

C(t) t→∞−→ c(t)Q−1. (23)

This would ensure that the sample points are distributed according to the shape of the ellipsoid
described by Q and the covariance matrix could shrink in even manner. How can such a behavior
be ensured by first principles?

It is quite clear that such a behavior can only be obtained by constraining the evolution
of the search distribution p(x|θ(t)). It is the goal to change p(x|θ(t)) from t to t + δt only
minimally while being maximally unbiased. That is, the information gained in this step should
be rather small. A quantity measuring this change is reminiscent of a relative entropy loss or
information gain I considering the ratio h := p(x|θ + δθ)/p(x|θ) (see Rényi (1961))

I(P (θ + δθ)|P (θ)) :=
∫

h(x) lnh(x)p(x|θ) dNx. (24)

The logarithm with base e has been used instead of the usual base 2 resulting in an additional
factor of ln 2 which is, however, without any relevance for the considerations here. Equation (24)
evaluates to

I(P (θ + δθ)|P (θ)) =
∫

ln
(

p(x|θ + δθ)
p(x|θ)

)

p(x|θ + δθ) dNx =: KL(P (θ + δθ)||P (θ)),

(25)
where the resulting integral can be also interpreted as the Kullback-Leibler divergence KL.
While it is well-known that the information gain defined in (25) is not a distance measure with
the meaning of a metric (see, e.g. Eguchi and Copas (2006)), its infinitesimal version is. In-
terpreting δθ as small quantities, the Taylor expansion of I up to the second order in the δθk
components yields after a simple calculation

I(P (θ + δθ)|P (θ)) =
1
2

∑

i,j

Iij(θ)δθiδθj +O((δθ)3), (26)
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where

Iij(θ) =
∫

∂ ln p(x|θ)
∂θi

∂ ln p(x|θ)
∂θj

p(x|θ) dNx = −
∫

∂2 ln p(x|θ)
∂θi∂θj

p(x|θ) dNx (27)

are the components of the Fisher information matrix I , see Lehmann and Casella (1998).3

While for non-infinitesimal deviations ∆θ it generally holds that I(P (θ + ∆θ)|P (θ)) 6=
I(P (θ)|P (θ+∆θ)), one can easily show that I(P (θ+δθ)|P (θ)) = I(P (θ)|P (θ+δθ)) holds
for infinitesimal deviations. That is, the rhs of (26) can be considered as a differential length
element on the statistical manifold induced by P (θ). This is the starting point of information
geometry by noting that Iij is just the metric tensor of the statistical manifold, see Amari and
Nagaoka (2000). However, for the considerations in this paper the apparatus of Riemannian
geometry is not really needed. All what is needed is the distance formula (26).

As we have seen at the end of Section 2.1, a gradient ascent in the θ-parameter space on the
expected value landscapeEf (θ) can result in a degeneration of the search distribution P (θ) with
the result that the search gets finally restricted in subspaces of the RN . Such a collapse might be
avoided by constraining the search step δθ in the θ parameter space such that the information
gain I is kept at a (given) small level ε, i.e. I(P (θ+ δθ)|P (θ)) = ε, while searching for the δθ
that provides the largest increase of Ef (θ). Using Taylor expansion for Ef (θ + δθ) this yields
the constrained maximization problem

Ef (θ + δθ)− Ef (θ) =
∑

i

∂Ef (θ)
∂θi

δθi + . . . → Max! (28a)

s.t. I(P (θ + δθ)|P (θ)) = ε (28b)

that can be solved by using Lagrange’s method. Using (26) and (28), neglecting higher order δθ
terms, one obtains the Lagrange function

L(δθ, κ) =
∑

i

∂Ef (θ)
∂θi

δθi + κ



ε− 1
2

∑

i,j

Iij(θ)δθiδθj



 . (29)

Taking the derivatives w.r.t. δθk and κ, one gets

∂L

∂δθk
=
∂Ef (θ)
∂θk

− κ
∑

j

Ikj(θ)δθj , (30a)

∂L

∂κ
= ε− 1

2

∑

i,j

Iij(θ)δθiδθj . (30b)

Equating (30a) to zero in order to find the stationary point δθ̂, one obtains in matrix notation
∇θEf (θ)− κIδθ̂ = 0. Solving for δθ̂ yields

δθ̂ =
1
κ
I−1(θ)∇θEf (θ), (31)

where I−1(θ) is the inverse of the Fisher matrix (27). Equating (30b) to zero and inserting (31),
one gets in matrix notation (note, I = IT ⇒ I−1 = (I−1)T)

ε =
1

2κ2
∇T
θ Ef (θ)I−1(θ)∇θEf (θ). (32)

3Here, calligraphic I has been used in order to distinguish this matrix from the unity matrix I.
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Solving for κ and reinserting the result into (31) yields

δθ̂ =

√

2ε
∇T
θ Ef (θ)I−1(θ)∇θEf (θ)

I−1(θ)∇θEf (θ). (33)

Noting that the square root in (33) is an infinitesimal quantity as ε→ 0, one can interpret this as
an infinitesimal time change from t to t+δt that causes a change from θ(t) to θ(t)+δθ̂ leading
to θ(t + δt) − θ(t) = δθ̂. Therefore, dividing by δt, the rhs of (33) can be interpreted as the
time derivative of θ. Thus, one gets the ordinary differential equation (ODE) system

dθ
dt

= I−1(θ)∇θEf (θ)|θ=θ(t). (34)

This ODE system is different from Eq. (6) in that the gradient direction given by ∇θEf (θ) is
transformed by the inverse of the Fisher information matrix. According to Amari (1998), the rhs
of (34) is called “natural gradient”4 in contrast to the ordinary gradient ∇θEf (θ).

The idea of “natural gradient” descent in the expected value landscapeEf (θ) is the key idea
of the so-called “natural evolution strategies” (NES)5 (see e.g. Wierstra et al. (2008)). The dif-
ferential Eq. (34) is also referred to as “information-geometric optimization” (IGO) differential
equation in Akimoto et al. (2012a). The information flow generated by this differential equation
will be subject of investigation in the next section. A very astonishing result will be derived for
the ellipsoid model (7) showing that the IGO flow (34) results in a sublinear convergence order.

3 On the Dynamics of IGO without Utility Functions

According to (Amari, 1998, p. 251),

“the ordinary gradient does not give the steepest direction of a target function; rather,
the steepest direction is given by the natural (or contravariant) gradient.”

This assertion was made under the premise of a “Riemannian metric structure” (Amari, 1998,
p. 251). From the analysis presented so far in this paper, this assertion seems hard to be justified
under the premise of expected value maximization of (1). While the family of Gaussian dis-
tributions gives rise to a non-flat metric, it remains an open question how fast (34) approaches
the steady state and the optimizer x̂. To shed some light on this matter, we will investigate the
dynamics of IGO flow on the general quadratic function f given by (7) using Gaussian samples
parameterized by θ = (x,C), i.e. x ∼ N (x,C). To this end, the inverse Fisher information
matrix I−1 of the Gaussian distributionN (x,C) must be calculated in order to get the concrete
form of (34).

3.1 Derivation of the IGO Differential Equation
As a first step, I must be calculated. This calculation starting from (27) is simple, but somewhat
lengthy. Therefore, we abstain from presenting it here and use the result of (Kay, 1993, p. 47)

Iα,β =
∂xT

∂θα
C−1 ∂x

∂θβ
+

1
2

Tr
[

C−1 ∂C
∂θα

C−1 ∂C
∂θβ

]

. (35)

Here, α and β are (multi-) indices corresponding to the components of the vector x and the
covariance matrix C, respectively.6 Since x does not depend on C and vice versa, the resulting

4The term “natural gradient” is put into quotes throughout this paper because in the author’s opinion there is nothing
“natural” here. As have been shown, the “natural gradient” yields just a special ascent direction.

5NES inherits its “natural” from the “natural gradient” ascent, thus, being a rather special, i.e, synthetic choice. A
better characterizing term would be “synthetic ES” (SES) instead of NES.

6The part of I that corresponds to x is indexed by a single index whereas the C-matrix related part needs two
indices, e.g. α = (α1, α2).
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Fisher information (35) subdivides into a part acting on x and another on C. That is, the cross
terms Iα,(β1β2) and I(α1α2),β vanish. As for the components w.r.t. x one immediately gets from
(35)

x : Iα,β = C−1
αβ . (36)

Treating the C-related part in (35) using ∂Cab
∂Ccd

= 1
2 (δacδbd + δadδbc) (here, symmetry of C has

been taken into account) yields

I(α1α2),(β1β2) =
1
2

∑

k,l,m,n

C−1
kl

∂Clm
∂Cα1α2

C−1
mn

∂Cnk
∂Cβ1β2

=
1
8

∑

k,l,m,n

C−1
kl (δlα1δmα2 + δlα2δmα1)C−1

mn(δnβ1δkβ2 + δnβ2δkβ1). (37)

Thus, one gets for the C-related part of θ (taking the symmetry of C−1 into account; for an
alternative derivation, see Appendix A in the supplement material)

C : I(α1α2),(β1β2) =
1
4

(

C−1
α1β1

C−1
α2β2

+ C−1
α1β2

C−1
α2β1

)

. (38)

Due to the block structure of I , calculating the inverse of I reduces to the calculation of the
inverse of (36) and (38) separately. Considering (36), one immediately concludes that

x : I−1
α,β = Cαβ . (39)

The correctness of
C : I−1

(α1α2),(β1β2) = 2Cα1β2Cβ1α2 (40)

is proven directly by checking

∑

β1,β2

I−1
(α1α2),(β1β2) I(β1β2),(γ1γ2) =

1
2

(δα1γ2δα2γ1 + δα1γ1δα2γ2) .

Now, the IGO differential equation can be directly obtained from (34) using (39) and (40). It
reads

d
dt

(

x(t)
C(t)

)

=

(

C(t) ∇xEf
(

θ(t)
)

2C(t) ∇CEf
(

θ(t)
)

C(t)

)

. (41)

While the x-dynamics were directly obtained as a matrix vector product, the C-dynamics
needed an intermediate step:

∑

β1,β2

I−1
(α1α2),(β1β2)

∂Ef (θ)
∂Cβ1β2

= 2
∑

β1,β2

Cα1β2Cβ1α2

∂Ef (θ)
∂Cβ1β2

=
(

2C ∇CEf (θ) C
)

α1α2
.

Using the gradients already calculated in (9) one finally obtains the non-linear IGO differential
equation system

dx(t)
dt

= C(t)
(

a− 2Qx(t)
)

, (42a)

dC(t)
dt

= −2C(t)QC(t). (42b)

In the next section, a solution to this system (42) will be derived.
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3.2 On the Time Evolution of the IGO System
A closer look at (42) reveals that (42b) is independent of (42a). That is, in a first step (42b) must
be solved.

Theorem 1 (IGO C-dynamics). The non-linear ordinary differential equation (ODE) system
dC(t)

dt = −2C(t)QC(t) with the symmetric matrices Q and C(t), both invertible, and the
initial condition C(0) = C0 has the solution

C(t) =
(

C−1
0 + 2tQ

)−1
. (43)

Proof. Let G(t) be an invertible matrix. Let C(t) = Q−1G(t) and substitute this expression in
(42b), then multiply from the left with Q, this yields the ODE

dG(t)
dt

= −2G2(t). (44)

Now, differentiate the identity dI(t)
dt = d

dt (GG−1) = dG
dt G−1 + G d

dtG
−1 = 0 and multiply

from the right with G. This yields after rearrangement

dG
dt

= −G
dG−1

dt
G. (45)

Plugging this result into (44) and multiplication from the left and the right with G−1 yields

dG−1

dt
= 2I. (46)

This ODE system can be easily solved yielding G−1 = K + 2tI, where K is a constant (time
independent) matrix. Thus, one gets G(t) = (K + 2tI)−1. Recalling that C(t) = Q−1G(t)
was originally substituted, one gets

C(t) = Q−1(K + 2tI)−1 = [(K + 2tI)Q]−1
. (47)

The constant matrix K is obtained by considering the initial condition C(0) = C0. Using (47)
one gets C(0) = (KQ)−1 != C0 and therefore K = C−1

0 Q−1. Introduced in the rhs of (47)
finally yields (43).

Rewriting the C dynamic (43) for t > 0, one gets for the asymptotic t→∞ behavior

C(t) =
1
2t

(

1
2t

C−1
0 + Q

)−1

=⇒ C(t) ' 1
2t

Q−1. (48)

That is, for sufficiently large time, IGO forgets the initial covariance matrix and approaches a
matrix that is proportional to the inverse of the Q matrix as postulated by (24). However, this
approach is rather slow since it obeys an 1/t law. The question arises whether this slow approach
transfers also to the x-dynamics.

In order to derive a solution for x it should be first noted that (42a) has a fixed point
(attractor), characterized by dx(t)

dt = 0, which is determined by the solution of a−2Qx(t) = 0
already calculated in Eq. (11). That is, x approaches the maximizer x̂ of f(x) for t → ∞.
Let us investigate the approach to the maximizer by considering the evolution of the deviation
z = x(t)− x̂. Using (11), the ODE (42a) becomes

dz(t)
dt

= C(t)
(

QQ−1a− 2Qx(t)
)

= C(t)Q
(

2x̂− 2x(t)
)

= −2C(t)Qz(t). (49)
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Inserting (47) with K = C−1
0 Q−1 into (49) and applying matrix algebra, one gets step-by-step

dz(t)
dt

= −2
[(

C−1
0 Q−1 + 2tI

)

Q
]−1

Qz(t)

= −2
[

Q−1
(

C−1
0 Q−1 + 2tI

)

Q
]−1

z(t)

= −2
[

Q−1
(

C−1
0 + 2tQ

)]−1
z(t)

= −2
(

Q−1C−1
0 + 2tI

)−1

︸ ︷︷ ︸

:=D(t)

z(t). (50)

This is a linear ODE system with a time dependent coefficient matrix D(t) that can be solved
using the Ansatz

z(t) = eB(t)z0. (51)

Calculating the time derivative of (51), one gets

dz(t)
dt

=
dB
dt

eB(t)z0 =
dB
dt
z. (52)

Here it was implicitly assumed that dB
dt and B commute.7 Comparing (52) with (50) one obtains

the ODE
dB
dt

= −2
(

Q−1C−1
0 + 2tI

)−1
. (53)

This ODE can be formally integrated using the matrix logarithm yielding B(t) = ln B0 −
ln
(

Q−1C−1
0 + 2tI

)

where B0 is a constant matrix to be determined below. Inserting this result
in (51), one gets

z(t) = B0

(

Q−1C−1
0 + 2tI

)−1
z0. (54)

Taking the initial condition z(0) = z0 into account, one gets using (54)

z(0) = B0

(

Q−1C−1
0

)−1
z0 =⇒ B0C0Q = I =⇒ B0 = Q−1C−1

0 . (55)

Plugging this into (54) it follows the

Theorem 2 (IGO residual distance to optimizer dynamics). Consider the IGO system (42)
where samples are generated using Gaussian normal vectors N (x,C) and the fitness is given
by the ellipsoid model (7). Then the residual distance z = x(t) − x̂ to the optimizer x̂ of the
ellipsoid model (7) obeys the ODE dz(t)

dt = −2
(

Q−1C−1
0 +2tI

)−1
z(t) and its solution is given

by
z(t) = Q−1C−1

0

(

Q−1C−1
0 + 2tI

)−1
z0. (56)

Proof. Since the ODE regarding dz(t)
dt has been already derived in Eq. (50), it remains to insert

the solution (56) into both sides of (50) and to show their equality. To this end, (56) is expressed
in terms of the D matrix defined in (50)

z(t) = −1
2
Q−1C−1

0 Dz0. (57)

Let us first calculate the lhs of (50) by making use of (45) (replacing B by D)

lhs =
dz(t)

dt
= −1

2
Q−1C−1

0

dD
dt
z0 =

1
2
Q−1C−1

0 D
dD−1

dt
Dz0. (58)

7This assumption and also the formal integration step presented below will get their justification by finally proving
that the resulting solution fulfills (50).
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Since
dD−1

dt
=

d
dt

(

−1
2
(

Q−1C−1
0 + 2tI

)

)

= −I,

one gets for (58)

lhs = −1
2
Q−1C−1

0 DDz0. (59)

The rhs of (50) yields

rhs = Dz = −1
2
DQ−1C−1

0 Dz0. (60)

Equality of (59) and (60) is proven if Q−1C−1
0 D is equal to DQ−1C−1

0 . This transfers to their
inverses, i.e. D−1C0Q and C0QD−1. Direct calculation yields

D−1C0Q = −1
2
(

Q−1C−1
0 + 2tI

)

C0Q = −1
2
(

I + 2tC0Q
)

, (61a)

C0QD−1 = −1
2
C0Q

(

Q−1C−1
0 + 2tI

)

= −1
2
(

I + 2tC0Q
)

. (61b)

Since (61a) and (61b) agree, Eqs. (59) and (60) agree as well and thus, lhs = rhs completes the
proof.

3.3 Discussion
Let us have a closer look at Eq. (56) and investigate the asymptotic t→∞ behavior

z(t) =
1
2t

Q−1C−1
0

(

Q−1C−1
0

2t
+ I
)−1

z0 =⇒ z(t) ' 1
2t

Q−1C−1
0 z0. (62)

This is a very astonishing result for the “natural gradient” ascent: The optimizer x̂ is approached
very slowly obeying an 1/t-law being in contrast to the exponential decay of the ordinary gra-
dient ascent given by Eq. (14). There is also another difference concerning the manner in which
the optimizer is approached: According to (62) the IGO flow follows a straight line the direction
of which is given by Q−1C−1

0 z0. That is, each component of the deviation vector z changes
in proportional manner. This can also be seen using (49) in conjunction with the asymptotic
Eq. (48) yielding

dz(t)
dt

' −1
t
z(t). (63)

This is in contrast to the ordinary gradient ascent dynamics (13) that locally transforms the ascent
direction by the Q matrix. The latter yields z(t) trajectories (14) being bended in the x space
while the “natural gradient” case produces a straight line. In that sense one could argue that in
the asymptotic limit the “natural gradient” ascent proceeds along a “geodesic” in a flat x-space.
Interestingly, the search behavior of (µ/µI , λ)-ES with σ-self-adaptation does also exhibit such
a search behavior when considering the expected value dynamics in the steady state, see Beyer
and Melkozerov (2013). However, following a geodesic does not necessarily guarantee a fast
approach to the optimizer x̂. While the (µ/µI , λ)-ES approaches x̂ exponentially fast (thus,
exhibiting linear convergence order in expectation), the IGO dynamics (42a) yields according
to (62) only a disappointingly slow 1/t behavior, i.e. sublinear convergence order. While this
result seems astonishing at first glance, it does not really come as a surprise when considering the
premises under which the “natural gradient” has been derived: The “natural gradient” direction
is a result of the constrained optimization problem (28) that “penalizes” the steepest ascent of
Ef (θ) such that the information gain (28b) is fixed at a small value ε. That is, constraining the
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information gain (24) results necessarily in a slowly changing search distribution (48). The real
surprise is, however, that using the “natural gradient” does change the convergence behavior in
such a drastic manner. Since state-of-the-art implementations of NESs do not exhibit such a
sublinear convergence behavior, another “ingredient” of these strategies comes into focus: the
application of “utility” functions.

4 NES/IGO Localized – On the Use of “Utility” Transforms

4.1 Assessing Utility by Individual Ranking
While the NES approach has a certain “scientific appeal,” taking it too literally, one ends up with
slowly converging algorithms on quadratic functions. Actually, even one of the first publications
on NES, Wierstra et al. (2008), did not literally implement the NES update (5) to perform the
maximization of the expected value (1). Instead, transformed fitness functions have been intro-
duced replacing f(x) in (1). This technique has been called fitness shaping in Wierstra et al.
(2008). In latter publications it was emphasized that the original NES algorithm “converges
slowly or even prematurely” (Glasmachers et al., 2010, p. 393), thus, supporting the new the-
oretical findings of Sect. 3 from the empirical perspective. In recent versions of NES, as e.g.
exponential NES, fitness shaping is realized by assigning utility values to the individuals sam-
pled, i.e. weights, reflecting the ranking of those individuals. Thus, NES became increasingly
similar to classical Evolution Strategies, see Beyer and Schwefel (2002); Hansen et al. (2003);
Beyer (2007). It is very important to stress once more: The use of fitness shaping techniques
cannot be deduced from the “natural gradient” ascent philosophy. It must be introduced in an ad
hoc manner. In literature, its use is mainly justified by rendering “the algorithm invariant under
monotonically growing (i.e. rank preserving) transformations of the fitness function” (Glas-
machers et al., 2010, p. 394). The same argument is used to explain the application of weighted
(µ, λ)-selection in CMA-ES, see Hansen (2006). Therefore, it does not come as a surprise that
in the fully-developed IGO framework, see Akimoto et al. (2012a), a rank-based utility function
Wf (x) replaces the f(x) in (1). Thus, (1) changes to

EW (θ) := E[W |θ] =
∫

Wf (x|θ)p(x|θ) dNx. (64)

Here, it is important to notice thatWf (x|θ) itself depends on the distribution parameters θ. That
is, the globally defined fitness function f(x) is replaced by a locally acting function Wf (x|θ).
The local character of this weighting function becomes immediately clear when looking at stan-
dard ES with (µ, λ)-truncation selection. There, λ offspring xl (l = 1, . . . , λ) are generated
according to the offspring distribution xl ∼ N (x,C). The best µ individuals (i.e. those with
the largest f -values in the case of maximization) are taken with weights 1/µ and the rest gets
weights equal to zero8, 9

Wf (x[m:λ]|θ) =
{

λ
µ , if λ− µ+ 1 ≤ m ≤ λ,
0, if 1 ≤ m ≤ λ− µ. (65)

This ranking depends clearly on the choice of the distribution parameters θ. That is, Wf (x|θ)
changes with every iteration step. Thus, in the continuous limit it becomes a function of time.
As a replacement for f(x), it can be regarded as some kind of local fitness. Climbing up

8Here, the concomitants notation [m : λ] of order statistics has been used where “m” indicates that individual with
the f -value being in the mth position of the ascendingly ordered λ f -values, see e.g. Arnold et al. (1992).

9Note, in the first line of (65) λ/µ has been written instead of 1/µ. This guarantees that the corresponding Monte-
Carlo approximation (4) yields a update formula for the x-vectors that agrees with the intermediate multi-recombination
used in standard (µ/µI , λ)-ES.
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the expected value landscape (1) is therefore governed by the θ gradient acting on the density
function p(x|θ) exclusively. That is, instead of the IGO differential equation (34), one now has
to consider

dθ
dt

= I−1(θ)∇θEW (θ)|θ=θ(t) (66)

(Ollivier et al., 2011) and the gradient must be evaluated according to

∇θEW (θ) =
∫

Wf (x|θ)∇θp(x|θ) dNx. (67)

That is, the gradient operator must not act on Wf (x|θ).
Besides (µ, λ)-selection (65), rank-based weights putting non-linear emphasis on the best

individuals are state-of-the-art in CMA-ES. For example, Hansen (2006) proposed the heuristic
formula

Wf (x[m:λ]) =

{

λ ln(µ+1)−ln(λ−m+1)
∑µ
m=1

(

ln(µ+1)−ln(m)
) , if λ− µ+ 1 ≤ m ≤ λ,

0, if 1 ≤ m ≤ λ− µ.
(68)

that puts different weights on the µ best individuals (i.e., those with the largest f -values). More-
over, ES theory even allows for the determination of optimal weights based on asymptotical
sphere model assumptions. Arnold (2006) has shown for ESs with isotropic mutations that
choosing

Wf (x[m:λ]) = E[zm:λ], z ∼ N (0, 1), (69)

guarantees maximal progress towards the optimizer provided that the mutation strength is con-
trolled correctly. Here the lhs in (69) is the expected value of the mth order statistics of the
standard normal variate given by the integral

E[zm:λ] =
λ!

(m− 1)!(λ−m)!

∫ ∞

−∞
zφ(z)[Φ(z)]m−1[1− Φ(z)]λ−m dz, (70)

where φ(z) and Φ(z) are the pdf and cdf of the standard normal variate, respectively. For large
λ (i.e. large sample sizes), (70) can be expressed asymptotically (Arnold et al., 1992, p. 128,
Eq. (5.5.2))

E[zm:λ] ' Φ−1

(

m

λ+ 1

)

, (71)

where Φ−1 is the quantile function of the standard normal variate. These optimal weights are
different to the heuristic weights (65) in that each of the λ individuals gets a weight and not only
the best µ individuals. Unlike (68) and (65) the weight equation (69) yields also negative weights
for individuals those f -values are below the median of f . The weights are anti-symmetric about
the median, i.e. it holds Wf (x[k:λ]) = −Wf (x[λ+1−k:λ]).

In the remaining part of this section, the effect of the local weight models on the dynamics
of ES will be investigated considering linear and quadratic fitness models (7). It turns out that
using optimal weights results in surprisingly simple expressions that allow for closed solutions
of the IGO differential equation.

4.2 Asymptotic Fitness Distributions and Search Gradients
In order to investigate the dynamics of IGO with local weighting, one first has to calculate the
search gradient (67) – a rather difficult task due to the N -dimensional integral. Taking into
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account, however, that the local weight function depends only on the f -values, (67) can be
transformed to an one-dimensional integral by the mapping x 7→ f . Thus, (67) changes to

∇θEW (θ) =
∫

Wf (f |θ)∇θp(f |θ) df. (72)

This integral is tractable provided that the pdf p(f |θ) can be expressed by simple expressions,
e.g. in terms of a Gaussian distribution

p(f |θ) =
1√

2πσf (θ)
exp

[

−1
2

(

f − f(θ)
σf (θ)

)2
]

. (73)

This holds exactly for linear fitness functions f(x) = aTx. Provided that the eigenvalue spec-
trum of Q of the quadratic fitness function (7) does not contain singularly dominating eigen-
values, (73) holds also for the quadratic case if N → ∞, due to the central limit theorem of
statistics. In order to proceed under these assumptions, the expected value f and the variance
Var[f ] = σ2

f must be determined. To this end, the local fitness function is considered that
follows from (7) by substituting x = x+ z and z ∼N (0,C)

f(z + x) = aT(x+ z)− (x+ z)TQ(x+ z)
= aTx− xTQx+

(

aT − 2xTQ
)

z − zTQz. (74)

Since E[z] = 0, one only has to consider −E[zTQz] that yields −Tr[QC] (Beyer, 2001,
p. 122). Thus, one gets

f(θ) = aTx− xTQx− Tr[QC]. (75)

As for the variance of (74) it is noted that constant terms do not contribute to the variance of a
random variate. Therefore

Var[f ] = Var
[ (

aT − 2xTQ
)

︸ ︷︷ ︸

:=ãT

z − zTQz
]

(76)

Making use of the standard deviation formula (4.59) in (Beyer, 2001, p. 123), one finds mutatis
mutandis

σf (θ) =
√

(

aT − 2xTQ
)

C
(

a− 2Qx
)

+ 2Tr[(QC)2]. (77)

Note, Eq. (77) contains also the case of linear fitness as special case by setting Q = 0 yielding√
aTCa.

The next step concerns the calculation of the gradient in (72). To this end, it is noted that
∇θp(f |θ) = p(f |θ)∇θ ln p(f |θ). Thus (72) changes to

∇θEW (θ) =
∫

Wf (f |θ)∇θ ln p(f |θ) p(f |θ) df. (78)

Taking the logarithm of (73), one gets

ln p(f |θ) = −1
2

ln 2π − lnσf (θ)− 1
2

(

f − f(θ)
σf (θ)

)2

(79)

and applying the θ gradient calculation yields

∇θ ln p(f |θ) =
1
σf

[

−∇θσf +
(

f − f
σf

)

∇θf +
(

f − f
σf

)2

∇θσf

]

. (80)
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In order to complete (80), the gradients of f and σf are to be calculated. Comparing (75) with
(8) taking (9) into account, one immediately gets

∇xf = a− 2Qx and ∇Cf = −Q. (81)

Straightforward calculation using (77) yields

∇xσf = − 2
σf

QC
(

a− 2Qx
)

. (82)

Concerning the C gradient, a detailed component-wise calculation is presented:

∂σf
∂Cmn

=
1
2

1
σf

∂

∂Cmn





∑

i,j,k,l

(ai − 2xkQki)Cij(aj − 2xlQlj) + 2QijCjkQklCli





=
1
2

1
σf

∑

i,j,k,l

(

(ai − 2xkQki)
1
2

(δimδjn + δinδjm)(aj − 2xlQlj)

+Qij(δjmδkn + δjnδkm)QklCli +QijCjkQkl(δlmδin + δlnδim)
)

=
1
2

1
σf

∑

k,l

(

(am − 2xkQkm)(an − 2xlQln) + 4QmkCklQln
)

(83)

Rewriting in matrix vector notation yields

∇Cσf =
1
2

1
σf

(

(a− 2Qx)(a− 2Qx)T + 4QCQ
)

. (84)

The results obtained are to be inserted into (80) and then into (72). Since the final substitution
step depends on the weighting function Wf , it will be performed in separate sections focussing
on optimal weights (71) and truncation selection weights (65), respectively.

4.3 Dynamics of IGO with Arnold’s Optimal Weights
In order to analyze the IGO flow (66) it shall be recalled that this differential equation describes
an infinite population model, i.e., λ → ∞. That is, in expectation the rank m of an individual
can be directly inferred from its f -value, i.e., mf = λP (f |θ) where P (f |θ) is the (local)
cumulative distribution function of the fitness samples. Assuming normality given by (73), this
transfers to

mf = λ Φ
(

f − f(θ)
σf (θ)

)

. (85)

Plugging this into Arnold’s optimal (sphere) weight formula (69) using the asymptotically exact
version (71), one ends up with the surprisingly simple expression (for λ→∞)

Wf (f |θ) =
f − f(θ)
σf (θ)

. (86)

That is, Arnold’s optimal weights transform to a utility function being simply the local stan-
dardization of f(x) in the infinite population size model. This result shares also a similarity
with the so-called fitness baseline method found in older versions of NES, see Wierstra et al.
(2008). However, the standardization by σf (θ) is missing there. As we will see below, this is a
difference that causes considerable differences in the convergence behavior of the ES.
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The calculation of the gradient (78) can be completed now. First, using (80) and (73) one
gets

∇θEW =
1√

2πσ2
f

∫

Wf (f |θ)

[

−∇θσf +
(

f − f
σf

)

∇θf +
(

f − f
σf

)2

∇θσf

]

× exp

[

−1
2

(

f − f
σf

)2
]

df. (87)

Inserting the result (86), one obtains

∇θEW =
1√

2πσ2
f

∫

f − f
σf

[

−∇θσf +
(

f − f
σf

)

∇θf +
(

f − f
σf

)2

∇θσf

]

× exp

[

−1
2

(

f − f
σf

)2
]

df. (88)

Performing a variable transformation t := (f − f)/σf , (88) changes to

∇θEW =
1
σf

1√
2π

∫ ∞

−∞

(

−∇θσf t+∇θf t2 +∇θσf t3
)

exp
(

−1
2
t2
)

dt. (89)

Since the integrals over odd t powers vanish, one obtains

∇θEW =
1

σf (θ)
∇θf(θ). (90)

Using (81) one gets

∇θEW (θ) =
(

∇xEW
∇CEW

)

=
1

σf (θ)

(

a− 2Qx
−Q

)

. (91)

Now, the IGO differential equations (66) can be set up using (41) (replacing Ef by EW )

dx(t)
dt

=
C(t)

(

a− 2Qx(t)
)

σf
(

x(t),C(t)
) , (92a)

dC(t)
dt

= −2
C(t)QC(t)
σf
(

x(t),C(t)
) , (92b)

where σf is given by (77). Finding a closed solution to the non-linear ODE system (92) seems
generally excluded. However, an asymptotic solution for large t→∞ can be derived.

4.3.1 Solving the Quadratic Fitness Case
In a first step, it is again noticed that (92a) has a fixed point where dx(t)

dt = 0. This fixed point
is the optimizer x̂ of the quadratic fitness function f(x). This is fully analogous to (10a) and
(42a). Therefore, Eq. (92a) can be changed to an ODE system describing the evolution of the
distance vector z to the optimizer defined by (12). Using a − 2Qx = −2Qz it follows (see
also Eq. (49))

dz
dt

= −2CQz
σf

, (93a)

dC
dt

= −2CQC
σf

, (93b)
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where σf , Eq. (77), changes to

σf =
√

4zTQCQz + 2Tr[(QC)2]. (94)

As the next step, a functional connection between z(t) and C(t) will be derived. To this end,
Eq. (93b) is multiplied by C−1z from the right yielding

dC
dt

C−1z = −2CQz
σf

(93a)
=

dz
dt
. (95)

Multiplying (95) with C−1 from the left yields

C−1 dC
dt

C−1z = C−1 dz
dt
. (96)

Taking the identity

C−1 dC
dt

C−1 = − dC−1

dt
(97)

into account (compare the inverse case, Eq. (45)), one gets

− dC−1

dt
z = C−1 dz

dt
=⇒ dC−1

dt
z + C−1 dz

dt
= 0. (98)

This leads immediately to

d
dt
(

C−1z
)

= 0 =⇒ C−1z = b, (99)

where b is a constant vector to be determined below. Solving (99) for z, one gets

z(t) = C(t)b. (100)

This is a very simple dependence showing that the evolution of the distance vector to the opti-
mizer is governed by the evolution of the covariance matrix. The constant vector b is obtained
by applying the initial conditions z0 = z(0) and C0 = C(0) to (100) yielding z0 = C0b.
Solving for b yields

b = C−1
0 z0 (101)

and reintroduced into (100), one obtains the

Lemma 1 (Optimal weight IGO z-dynamics are governed by C-evolution). Consider the
IGO dynamics with locally fitness standardized weights (86) andN (x(t),C(t)) offspring sam-
pling acting on a general quadratic fitness model (7) that generates normally distributed fitness
values. Let z be the vector representing the distance of x(t) to the optimizer x̂ according to
(12). Let C0 = C(0) and z0 = x(0) − x̂ be the initial values. Then the z-dynamics are given
by

z(t) = C(t)C−1
0 z0. (102)

Proof. See the derivation given above.

The simple result of Lemma 1 obtained from the ODE system (93) is remarkable if one
takes into account that the ODE system is non-linear. Unfortunately, the next step calculating
the C dynamics seems intractable in general. Therefore, one has to settle for an asymptotic
solution of (93b) that describes the evolution of C for t → ∞. To this end, (93b) is multiplied
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from both the left and the right with C−1 taking (97) into account. Furthermore, z is substituted
in σf , Eq. (94), by (100) yielding

dC−1

dt
=

2Q
√

4bTCQCQCb+ 2Tr[(QC)2]
. (103)

Multiplying from the right with Q−1, one obtains using the abbreviation

D := C−1Q−1 = (QC)−1 (104)

dD
dt

=
I

√

bTQ−1D−3b+ 1
2Tr[D−2]

(105)

That is, all off-diagonal elements of D must be constants since according to (105) dDij
dt = 0.

Therefore, ∀i 6= j : Dij(t) = Dij(0). Furthermore, all diagonal elements of dDij
dt have the

same scalar function on the rhs in (105). As a result ∀i : Dii(t) = Dii(0) + q(t), where q(t) is
a function to be determined. To summarize, the general solution to (105) reads

D(t) = D(0) + q(t)I. (106)

Inserting this into (105), one obtains

dq
dt

= q
1

√

1
qb

TQ−1
(

D(0)
q + I

)−3

b+ 1
2Tr

[

(

D(0)
q + I

)−2
]

. (107)

Since the denominator in (105) is σf (t)/2 and σf (0) > 0, it holds ∀i : dDii
dt > 0. By virtue

of (106) it follows that dq
dt ≥ 0 and q(0) = 0. Thus, q(t) ≥ 0 is a monotonously increasing

unbounded function and for t→∞ : q(t)→∞. Therefore, an asymptotically exact solution to
(107) can be constructed by letting q(t)→∞ in the denominator of (107) leading to the simple
differential equation

dq
dt

=
1

√

1
2Tr[I]

q =

√

2
N
q. (108)

The solution of which is
q(t) = eγt − 1 ' eγt, (109)

with the inverse time constant

γ =

√

2
N
. (110)

Equating (106) with (104) and resolving for C yields

C(t) = Q−1 (D(0) + q(t)I)−1 =
1
q(t)

Q−1

(

1
q(t)

D(0) + I
)−1

. (111)

Now inserting the asymptotic solution (109) in (111), one obtains

C(t) ' Q−1e−γt. (112)

This result gives rise to
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Theorem 3 (Optimal weight IGO asymptotic dynamics). Consider the IGO dynamics gov-
erned by (93) for t → ∞ with locally fitness standardized weights (86) and N (x(t),C(t))
offspring sampling acting on a general quadratic fitness model (7) that generates normally dis-
tributed fitness values. Let z be the vector representing the distance of x(t) to the optimizer x̂
according to (12). Let C0 = C(0) and z0 = x(0)− x̂ be the initial values. Then the asymptotic
C-dynamics are given by

C(t) ' Q−1e−
√

2
N t (113)

and the asymptotic z-dynamics obey

z(t) ' Q−1C−1
0 z0e−

√
2
N t. (114)

Proof. As for Eq. (113), the proof is obtained by following the derivation presented above
yielding (112) and finally inserting (110). In order to prove Eq. (114) one has to make use
of Lemma 1, Eq. (102). Inserting Eq. (113) into (102) already yields (114).

The results obtained are remarkable. At first, (114) shows that IGO approaches the op-
timizer exponentially fast, thus providing linear convergence order. The rate of approach is
determined by the time constant

τIGO =
√

N/2 (115)

that depends on the search space dimension N only with an unexpected square root law and
no dependency on Q. While the latter might seem as a surprise, one should recall that we
have derived the asymptotical t → ∞ solution to (93). According to (113), the covariance
matrix gets proportional to the inverse of Q. That is, the IGO ES “sees” effectively a sphere
model. Therefore, asymptotically, the IGO ES has transformed the ellipsoidal level sets of f into
spherical ones and the dependencies on Q vanish. Note, according to (111) also the influence
of the initially chosen covariance matrix C(0) = C0 vanishes exponentially fast.

The
√
N -law in (115) is somewhat peculiar. Considering the performance of isotropic

(µ/µI , λ)-ES with σ mutation strength control using self-adaptation or cumulative step-size
adaptation on the sphere model, Arnold and Beyer (2004) and Meyer-Nieberg and Beyer (2005),
respectively, found time constants ∝ N . That is, the expected running time for a fixed relative
improvement in f -values is proportional to N whereas for the IGO ODE it grows only with the
square root of the search space dimensionality. It is currently an open question whether this
square root law indicates a general lower N bound for algorithms derived from the IGO ODE
taking into account that the IGO ODE is an infinite population size model.

Considering (113), one sees that the covariance matrix adapts to the desired behavior (23)
exponentially fast. That is, we have proven that this type of IGO approximates the inverse
of Q up to a scalar factor. Such a behavior has been observed in real ES using covariance
matrix adaptation, as e.g. the evolutionary gradient search ES (Arnold and Salomon, 2007,
p. 492, Footnote 3). A similar result has been derived in Akimoto (2012) using difference
equations. Where it was shown that C evolves up to a scalar factor to the inverse of the Hessian
of f(z) = zTQz. In that work, a specially tailored IGO NES has been considered that deviates
from the model (93). It relies on an ad hoc constructed time-dependent step-size scaling factor
that uses eigenvalue information taken from the actual C(t) matrix.

Comparing the results of Theorem 3 with those of Theorems 1 and 2 regarding NES without
local utility transformation, one sees that the rank-based weighting yields qualitatively better
performance on quadratic fitness models. Having a closer look at the governing ODEs (42) and
(92) one notices the σf terms in the denominator of the latter. Getting closer to the optimizer,
σf gets smaller, thus, counteracting the decrease of the numerators in the rhs of (92a) and (92b)
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with the result of larger derivatives. Tracing back the additional σf terms, one finds that these
are due to the Wf (f |θ) term (86) in the integral (88). That is, the linear convergence order of
this IGO version is clearly a result of that (sphere) optimal rank-based weighting (69) leading to
the locally standardized utility function (86).

4.3.2 The Linear Fitness Case
The investigation of the behavior of IGO with weights (86) and linear fitness f(x) = aTx is a
special case of (7) assuming Q = 0. If introduced in (92) and (77) one obtains the IGO system

dx
dt

=
Ca√
aTCa

, (116a)

dC
dt

= 0. (116b)

This IGO ODE system is exact in that it does not require the condition of fitness normality.
Given x ∼N (0,C), the linear function f(x) = aTx yields always normally distributed fitness
values. Solving (116) is trivial, one immediately gets for (116b)

C(t) = C0. (117)

If inserted in (116a), this yields

x(t) = x0 +
C0a√
aTC0a

t. (118)

That is, x increases linearly in time. If the initial covariance matrix is chosen isotropically, i.e.
C0 = I, then the evolution is in direction of the gradient a.

4.4 Dynamics of IGO with (µ, λ)-Truncation Selection
Truncation selection, aka (µ, λ)-selection, in Evolution Strategies is the standard selection that
takes (in the case of maximization) those µ individuals x out of the sample of λ offspring
individuals that produce the µ greatest fitness values f(x). In the infinite population model that
means that only individuals above the (1− ϑ) f -quantile f1−ϑ are used in the calculation of the
θ gradient (67). Let ϑ be the truncation ratio

ϑ :=
µ

λ
, (119)

then the local weighting function (65) returns 1/ϑ for f values f ≥ f1−ϑ and zero otherwise
(for λ→∞)

Wf (x|θ) =
{

1
ϑ , if f(x) ≥ f1−ϑ(θ)
0, otherwise. (120)

Assuming normally distributed fitness values f , the pdf is given by (73). Therefore, the f1−ϑ-
quantile obeys the equation

Φ
(

f1−ϑ − f
σf

)

= 1− ϑ. (121)

That is, the first line in (120) is fulfilled for f(x) values that fulfill

f − f(θ)
σf (θ)

≥ Φ−1(1− ϑ), (122)
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where Φ−1 is the inverse of the cdf (i.e. the quantile function) of the standard normal variate.
Now, plugging (120) into (87) yields

∇θEW =
1√

2πσ2
f

∫ ∞

f=f1−ϑ

1
ϑ

[

−∇θσf +
(

f − f
σf

)

∇θf +
(

f − f
σf

)2

∇θσf

]

× exp

[

−1
2

(

f − f
σf

)2
]

df. (123)

Change of the integration variable f to t := (f − f)/σf and noting that (122) transforms to
t ≥ Φ−1(1− ϑ) yields

∇θEW =
1
ϑ

1
σf

1√
2π

∫ ∞

t=Φ−1(1−ϑ)

(

(t2 − 1)∇θσf + t ∇θf
)

exp
(

−1
2
t2
)

dt. (124)

The t integration can be performed using integral formula (A.16) and (A.17) in (Beyer, 2001,
p. 331). One gets

h1(ϑ) :=
1√
2π

∫ ∞

t=Φ−1(1−ϑ)

t exp
(

−1
2
t2
)

dt =
1√
2π

exp
[

−1
2
(

Φ−1(1− ϑ)
)2
]

(125)

and

1√
2π

∫ ∞

t=Φ−1(1−ϑ)

(t2 − 1) exp
(

−1
2
t2
)

dt

=
1√
2π

exp
[

−1
2
(

Φ−1(1− ϑ)
)2
]

Φ−1(1− ϑ) = h1(ϑ)h2(ϑ), (126)

where
h2(ϑ) := Φ−1(1− ϑ). (127)

Thus, one obtains for (124)

∇θEW =
h1(ϑ)
ϑ

1
σf

(

∇θf + h2(ϑ)∇θσf
)

. (128)

Inserting the gradients w.r.t. x and C given by (81), (82), and (84) into (128) yields

∇xEW =
h1(ϑ)
ϑ

1
σf

[

(a− 2Qx)− h2(ϑ)
2
σf

QC
(

a− 2Qx
)

]

(129)

and

∇CEW =
h1(ϑ)
ϑ

1
σf

{

−Q +
h2(ϑ)

2
1
σf

[

(a− 2Qx)(a− 2Qx)T + 4QCQ
]

}

. (130)

The IGO ODE system (41) becomes (replacing Ef by EW )

dx
dt

=
h1(ϑ)
ϑ

1
σf

[

C(a− 2Qx)− h2(ϑ)
2
σf

CQC
(

a− 2Qx
)

]

(131)

and

dC
dt

=
h1(ϑ)
ϑ

1
σf

{

−2CQC +
h2(ϑ)
σf

[

C(a− 2Qx)(a− 2Qx)TC + 4CQCQC
]

}

. (132)

Its asymptotic solution will be investigated in the next section.
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4.4.1 Dynamics of the Quadratic Fitness Case
Comparing (92a) with (131) and (93a), one sees that (a − 2Qx) can be substituted again by
−2Qz. Thus, the variable transformation z = x(t) − x̂ is introduced in (131) and (132). This
leads to

dz
dt

= −h1(ϑ)
ϑ

2
σf

[

CQz − h2(ϑ)
2
σf

CQCQz
]

(133)

and
dC
dt

= −h1(ϑ)
ϑ

2
σf

[

CQC− 2
h2(ϑ)
σf

(

CQzzTQC + CQCQC
)

]

, (134)

where σf is again given by (94). Pulling CQz out of (133) and CQC out of (134) one obtains
the ODE system

dz
dt

=
h1(ϑ)
ϑ

[

I− 2h2(ϑ)
CQ
σf

](

−2CQz
σf

)

, (135a)

dC
dt

=
h1(ϑ)
ϑ

[

I− 2h2(ϑ)
CQ
σf

(

zzTC−1 + I
)

](

−2CQC
σf

)

. (135b)

This is a non-linear ODE system where closed-form solutions seem difficult to be obtained. Yet,
it shares similarities with (93). A direct asymptotic solution can be given for the special case of
truncation ratio ϑ = 1/2. Due to (127), the second term in the brackets of (135) vanish and the
resulting ODE system gets proportional to the ODE system (93) with the factor h1(ϑ)/ϑ. That
is, time t undergoes a linear transformation t 7→ t h1(ϑ)/ϑ. This is equivalent to a change of the
inverse time constant γ, Eq. (110), to γ′ = γ h1(ϑ)/ϑ. Thus, the asymptotic dynamics can be
taken from Theorem 3, Eq. (113) and (114), yielding

ϑ =
1
2

: C(t) ' Q−1 exp
(

− 2√
πN

t

)

, (136a)

z(t) ' Q−1C−1
0 z0 exp

(

− 2√
πN

t

)

, (136b)

where h1(1/2) was calculated using (125). As for this special case, we have shown that the IGO
ODE exhibits linear convergence order. Considering ϑ 6= 1/2 is much more involved and not
completely solved up until now. Therefore, we will first discuss the qualitative behavior of the
ODE system when changing ϑ 6= 1/2 and afterwards, we will derive a solution that holds in the
vicinity of ϑ = 1/2.

Considering the different matrix terms in (135b), one notices that all these single terms are
positive definite, i.e. it holds for t <∞ that CQC > 0, CQCQC > 0, and CQzzTQC > 0.
As for the latter case this becomes clear by substitution y := CQz and noting that yyT is
positive definite.

First, consider the ϑ = 1/2 case in (135b). The term with the h2 factor vanishes because
h2(1/2) = 0. The remaining expression in the bracket is positive definite, i.e. CQC > 0. Due
to the negative sign in front of the bracket, the remaining ODE describes the contraction of the
covariance matrix C. The dynamics of which is given by (113).

Increasing the truncation ratio, i.e. ϑ > 1/2, it holds h2 < 0 and CQCQC and
CQzzTQC increase the positiveness of the square bracket resulting in a faster contraction
of the covariance matrix C. If, however, the contraction rate is too fast, the contraction of the z
vector cannot keep pace with that evolution. In such a case, the ODE system describes permature
convergence of the IGO algorithm.

Conversely, decreasing the truncation ratio, i.e. ϑ < 1/2, it holds h2 > 0. In that case the
positiveness of the square bracket is decreased compared to CQC. Actually, the expression in
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the square bracked can become negative definite. As a result, the covariance matrix expands.
This behavior is desirable to a certain extend, especially in cases where the initial covariance
matrix C(0) = C0 was chosen too small. However, it can also result in an uncontrolled growth.

While a quantitative analysis of the contraction/expansion behavior depending on ϑ re-
mains still to be done, the behavior of the ODE system in the vicinity of ϑ = 1/2 can be derived
by some kind of continuation. To this end, the solution (136) for ϑ = 1/2 is used as an Ansatz
with an unknown inverse time constant γ̃

C(t) = Q−1e−γ̃t, (137a)

z(t) = Q−1C0z0e−γ̃t, γ̃ > 0. (137b)

This Ansatz is inserted into the ODE system (135) in order to determine γ̃. At first, the
zzTC−1 + I term in (135b) is considered. This term becomes I for t → ∞ as one can easily
check by inserting (137)

zzTC−1 + I = Q−1C−1
0 z0z

T
0 C−1

0 e−γ̃t + I ' I. (138)

As the next step, the expression CQ/σf in (137) is investigated. Using (94), one obtains

CQ
σf

=
Q−1Qe−γ̃t

√

4zT
0 C−1

0 Q−1QQ−1QQ−1C−1
0 z0e−3γ̃t + 2Tr[(QQ−1)2]e−2γ̃t

=
I

√

4e−γ̃tzT
0 C−1

0 Q−1C−1
0 z0 + 2N

' 1√
2N

I (139)

Plugging (138) and (139) into (135), one gets a simplified ODE system that holds for large t

dz
dt

= g(ϑ)
(

−2CQz
σf

)

, (140a)

dC
dt

= g(ϑ)
(

−2CQC
σf

)

(140b)

with

g(ϑ) :=
h1(ϑ)
ϑ

(

1− h2(ϑ)

√

2
N

)

. (141)

Now, the linear time transformation
t̃ := g(ϑ)t (142)

can be applied to (140a) and (140b) yielding the ODE system

dz
dt̃

= −2CQz
σf

, (143a)

dC
dt̃

= −2CQC
σf

. (143b)

This ODE system is similar to the system (93) except the time parameter. Therefore, Theorem 3
can be applied using t̃, Eq. (142), instead of t in Eqs. (113) and (114). Thus, the exponent in

(113) and (114) becomes −
√

2
N t̃ = −

√

2
N g(ϑ)t. That is, writing γ̃ =

√

2
N g(ϑ), one gets for

the inverse time constant using (141), (125), and (127)

γ̃(ϑ,N) =
1√
πN

1
ϑ

exp
[

−1
2
(

Φ−1(1− ϑ)
)2
]

(

1−
√

2
N

Φ−1(1− ϑ)

)

(144)
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and the asymptotic dynamics become

C(t) ' Q−1e−γ̃t, (145a)

z(t) ' Q−1C0z0e−γ̃t. (145b)

The special case (136) is contained in (145) as can be checked by inserting ϑ = 1/2 in (144)
and (145) and comparing with (136). Concerning ϑ 6= 1/2 values, it should be pointed out that
the validity range of ϑ in (145) cannot be determined by the calculations presented. Further
research is needed to determine the ϑ range for (145) that guarantees linear convergence order.

An alternative convergence proof for IGO using the special case of isotropic mutations has
been presented by Glasmachers (2012). However, in that work “the existence of a linear con-
vergence rate” was only claimed without proof. Another approach proving convergence to the
optimizer using Lyapunov’s stability analysis was proposed by Akimoto et al. (2012a). How-
ever, that analysis did not provide any assertions concerning the convergence order. Therefore,
it does not contribute to the question why and how a local weighting function Wf is needed for
efficiently working ESs.

Considering (145a), one sees that the covariance matrix gets asymptotically similar to the
inverse of the Hessian of f(x), i.e., the Q-matrix of the quadratic model (7). This is a proof
of the long-conjectured property of CMA-ES like algorithms using truncation selection (for the
case ϑ ≈ 1/2) that is empirically observed when running such algorithms on goal functions that
can be locally approximated by quadratic functions (see Arnold and Salomon (2007)).

4.4.2 The Linear Fitness Case
The IGO ODEs can be directly obtained from the quadratic case (131), (132), and (77) for
Q = 0. This yields

dx
dt

=
h1(ϑ)
ϑ

Ca√
aTCa

, (146a)

dC
dt

=
h1(ϑ)h2(ϑ)

ϑ
︸ ︷︷ ︸

κ(ϑ)

CaaTC
aTCa

. (146b)

This system hold for all linear fitness functions. In order to derive the solution, Eq. (146b) is
multiplied by aT 6= 0T from the left. This yields

daTC
dt

= κ(ϑ)
aTCaaTC
aTCa

= κ(ϑ)aTC =⇒ dC
dt

= κ(ϑ)C. (147)

Therefore, one immediately obtains

C(t) = C0eκ(ϑ)t. (148)

Plugging this result into (146a), one gets

dx
dt

=
h1(ϑ)
ϑ

C0a√
aTC0a

exp
(

κ(ϑ)
2

t

)

. (149)

The solution to (149) is easily obtained, it reads

x(t) = x0 +
2h1(ϑ)
ϑκ(ϑ)

C0a√
aTC0a

[

exp
(

κ(ϑ)
2

t

)

− 1
]

, (150)
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as can be easily checked by inserting (150) into (149). Taking the definition of κ(ϑ) in (146b)
into account and (127), one finally obtains

x(t) = x0 +
2

Φ−1(1− ϑ)
C0a√
aTC0a

[

exp
(

κ(ϑ)
2

t

)

− 1
]

, (151)

where

κ(ϑ) =
1
ϑ

1√
2π

exp
[

−1
2
(

Φ−1(1− ϑ)
)2
]

Φ−1(1− ϑ). (152)

As one can see, the behavior of IGO with truncation selection on linear functions is qualitatively
influenced by the truncation ratio ϑ. For ϑ > 1/2 it follows that κ < 0 and according to (148)
the covariance matrix C shrinks exponentially fast. Thus, one observes premature convergence.
In the opposite case ϑ < 1/2 one gets an exponential growth of C and x increases exponentially
fast. Since aTC0a > 0, the f(t) = aTx dynamics increase exponentially as well. It should be
mentioned that the influence of the truncation ratio on the convergence behavior has also been
found by Glasmachers (2012) considering IGO with isotropic mutations, i.e. for the special case
C = σ2I.

5 Conclusions

Deriving Evolutionary Algorithms (EAs) from first principles is a tempting approach to put
EA engineering on a sound scientific base. In an attempt to provide such an approach, the
so-called “natural evolution strategies” have been proposed at the end of the last decade. A
closer look at the premises of that approach reveals a paradigm that might be condensed into an
information gain constrained gradient ascent in the expected value fitness landscape. According
to Amari (1998), the resulting ascend direction is referred to as the “natural gradient” being
the “steepest direction”. However, as have been shown in this paper, considering quadratic
objective functions, the “natural gradient” ascent when applied to expected fitness landscapes
results in a slowly (but) converging information geometric flow towards the optimizer. The
approach to the optimizer obeys an 1/t-law, Eq. (48). While Amari’s claim concerning the
steepest descent direction is not wrong, because this is the best direction one can get given the
constraints imposed on the information gain, “natural gradient” ascent alone does not necessarily
yield efficient EAs.

Satisfactorily, however, is the desired result concerning the covariance matrix C evolution.
In all cases investigated that rely on “natural gradient” ascent it has been proven that in the
case of convergence C gets asymptotically proportional to the inverse of the Hessian of f . This
behavior is desirable since it counteracts degeneration tendencies of the search distribution in
subspaces.

The slow convergence behavior of the original NES is due to the combination of two prop-
erties of the original NES approach: On the one hand, the optimization of the objective function
f is transformed into a globally defined expected value landscape. On the other hand, fast
changes of the search distribution are suppressed by the “natural gradient”. Since returning
to ordinary gradient descent causes problems for some distribution parameterizations (as have
been shown in Sect. 2.1), the remaining option is to localize the evaluation. That is, the utility
of candidate solutions must be evaluated in a time-local manner.

As might have become clear in the above given discussion, the NES/IGO ODE design
contains two decisions, which are rather independent:

(a) the choice of an appropriate statistical manifold and an ascent or descent principle, respec-
tively,
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(b) the choice of a utility function that transforms the original objective function.

The IGO ODE design choice (a) seems to be obviously fixed by the steepest ascent/descent in
accordance with the metric determined by the distribution family chosen. Apart from the fact
that the choice of the distribution family cannot be deduced from the IGO principle, real ES im-
plementations, e.g. xNES, see Glasmachers et al. (2010), also depart from the “natural gradient”
direction by introducing different learning rates for x and C. This is clearly for the sake of real
algorithm performance and marks limitations of the infinite population size assumption inherent
in the IGO ODE approach. Such implementational tweaks are hard to be deduced from the IGO
philosophy.

The same holds for the design choice (b) regarding the utility used. In order to get linear
convergence order in the IGO ODE framework, one has to localize the evaluation of the f -
values generated. There are different options to localize the evaluation. Arnold’s optimal weight
function derived for the (µ/µ, λ)-ES on the sphere model yields in the asymptotic population
limit a utility function that is just the locally standardized fitness. That is, f -values below
f(θ) get a negative evaluation. While a similar fitness baseline can already be found in early
NES versions, the local standard deviation σf in the denominator of the standardization formula
(86) makes the decisive difference. It ensures large utility “signals” when getting closer to the
optimizer. It would be interesting to implement this theoretical finding into a new NES version
and evaluate its performance on standard test beds. This new NES version would work without
ranking, similar to the evolutionary gradient search of Arnold and Salomon (2007).

As an alternative option, truncation selection has been considered. In the case of f -
maximization it accepts f -values above the local (1 − ϑ) quantile f1−ϑ(θ). That is, instead
of using the expected value of utility (86), one has to consider the expected value

EW (θ) =
1
ϑ

∫ ∞

f=f1−ϑ

p(f |θ) df =
1
ϑ

Pr[f ≥ f1−ϑ]. (153)

This quantity can be given the simple interpretation of being proportional to the probability of
f realizations that are greater than or equal to the local f1−ϑ quantile. Thus, gradient ascent is
aiming here at the increase of the probability of generating above f1−ϑ(θ) values. f1−ϑ(θ(t))
may be regarded as a threshold that changes with time. It gradually increases (in the case of
f -maximization) during the IGO flow. This again ensures – similar to the σf in the denominator
of (86) – that there is a large utility signal.

As we have seen, the choice of the utility function has a strong impact on the performance
of the IGO system. This performance also depends on the class of fitness functions considered.
For example, Arnold’s weight scheme yields an exponentially fast approach to the optimizer of
the ellipsoid model. However, as Eq. (118) shows, it performs rather slow on linear functions.
Truncation selection as an alternative option yields an exponential x growth (151), provided
that the truncation ratio is less than 1/2. Therefore, it is better suited for these linear functions.
It should be clear that it is impossible to draw general conclusions regarding the usefulness of
specific utility functions without fixing the objective function class to be optimized.

While all utility functions considered are f -compliant, i.e. they emphasize the selection of
locally better f -values, one yet can call this into question. As a matter of fact, f -compliance
can imply an emphasis on local search. Even the seemingly well-posed arguments regarding the
advantages of truncation selection ensuring the invariance under monotone f -transformations
can be challenged when considering demands of robust optimization, see Beyer and Sendhoff
(2007).

The theoretical investigations done in this paper concerned the performance of IGO on
linear and quadratic models. From this analysis one cannot draw reliable conclusions regarding
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optimization on multimodal objective functions. Considering global optimization, the question
arises whether utility functions that allow for non-f -compliance to a certain degree could be a
means to improve global search. To this end, IGO ODEs of simple multimodal test functions
should be considered in a future research program.

As has been shown in this paper, the use of localized function evaluations yields strong
enough utility signals to counteract the information conserving property of the “natural gradi-
ent”. As a result, one can obtain exponentially fast convergence to the optimizer in the case
of quadratic objective functions. Considering (114) and (145), one sees that the exponential
approach takes place with a time constant proportional to

√
N . The time constant does not de-

pend on Q. This is in contrast to the naive expected value maximization the dynamics of which
are given by Eq. (14). Obviously, using the “natural gradient” approach makes the dynamics
asymptotically independent of the shape of the ellipsoid model defined by Q. That is, using
the Fisher metric, the IGO framework asymptotically transforms (for t → ∞) the ellipsoidal
problem into a spherical one. While we have considered the choice of the metric and the utility
function as independent design choices, it yet seems remarkable that this transformation result
is independent of the three different utilities chosen. It raises the question, how sensitive this
result is w.r.t. other utility functions (e.g. non-f -compliant versions).

Let us consider the principal limitations of the IGO ODE theory. Due to the infinite pop-
ulation size it is hard – if not impossible – to get meaningful assertions w.r.t. the real behavior
of real NES implementations derived from IGO. Obviously, this concerns especially properties
that are related to the population size, as e.g. learning rates. However, it also concerns the pa-
rameterization used. While the IGO ODE theory is invariant w.r.t. θ parameter transformations
due to the differential geometry imposed by the Fisher metric, in real NES implementations the
choice of an appropriate parameterization of the distribution family seems to have considerable
influence on the performance of the NES, see e.g. Glasmachers et al. (2010). Furthermore,
in advanced NES versions, the direction of the IGO flow of the θ parameters departs from the
“natural gradient” in that different step-size factors (learning parameters) are assigned to the x
and the C gradients. That is, the flow vector does no longer point into the “natural gradient”
direction. However, such deviations could be incorporated into the IGO ODE framework. In
the simplest case this would lead to different factors in (93) and (135). Finding closed form
solutions to those ODEs might be a challenge for future research.

While the IGO ODE theory presented provides useful insights into the dynamic behavior of
such systems, one should be cautious when transferring these infinite population size results to
real NES implementations. As already pointed out, real NES implementation do usually deviate
considerably from the IGO ODE such that the original ODE does not correctly describe the real
ES. This concerns Monte-Carlo gradient estimations, explicit methods of step-size control and
evolution path cumulation (as used in CMA-ES, see Hansen et al. (2003)), and different learning
parameters. The current development of IGO theory cannot account for sampling aspects, path
cumulations, etc. Analyzing the convergence behavior of real NES poses the same problems
as in the case of classical ES theory and needs similar approaches and techniques as have been
developed for the ES in Beyer (2001). With regard to NES, a first treatise has been provided by
Schaul (2012).

Probably the most important benefit of the IGO philosophy lies in its “inspiring power” for
deriving new EA variants on a scientifically grounded base. Even though final implementations
do (most often) considerably deviate from the pure theory, the IGO philosophy can provide new
starting points for research. One such starting point (proposed by one of the reviewers of this
paper) could concern the combination of evolutionary methods, system dynamics, and time-
series analysis that tracks the evolution of θ to make predictions for θ(t+ 1). Future will show
whether this idea leads to improved ES algorithms.
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A An alternative derivation of the C-related part of Fisher information, Eq. (38)

According to Eq. (27) the C-related part of the Fisher information is given as the expected value

I(α1α2),(β1β2) = E
[

(

∇C ln p(x|x,C)
)

α1α2

(

∇C ln p(x|x,C)
)

β1β2

]

(154)

where x ∼ N (x,C) and
(

∇C ln p(x|x,C)
)

ab
= ∂

∂Cab
ln p(x|x,C). Starting from

ln p(x|x,C) = −N
2

ln(2π)− 1
2

ln det C− 1
2

(x− x)TC−1(x− x) (155)

for the N -dimensional Gaussian, one obtains (for a derivation, see Appendix B)

∇C ln p(x|x,C) = −1
2
C−1 +

1
2
C−1(x− x)(x− x)TC−1. (156)

Thus, one reads

(

∇C ln p(x|x,C)
)

α1α2
= −1

2
C−1
α1α2

+
1
2

∑

i,k

C−1
α1i

(xi − xi)(xk − xk)C−1
kα2

(157)

(

∇C ln p(x|x,C)
)

β1β2
= −1

2
C−1
β1β2

+
1
2

∑

l,m

C−1
β1l

(xl − xl)(xm − xm)C−1
mβ2

(158)

Inserting this in (154), one gets

E
[

(

∇C ln p)α1α2

(

∇C ln p
)

β1β2

]

=
1
4

E
[

C−1
α1α2

C−1
β1β2

]

−1
4
C−1
α1α2

∑

l,m

C−1
β1l

E
[

(xl − xl)(xm − xm)
]

C−1
mβ2

−1
4
C−1
β1β2

∑

i,k

C−1
α1i

E
[

(xi − xi)(xk − xk)
]

C−1
kα2

+
1
4

∑

i,k,l,m

C−1
α1i
C−1
β1l

E
[

(xi − xi)(xk − xk)(xl − xl)(xm − xm)
]

C−1
kα2

C−1
mβ2

. (159)

Noting that E
[

(xa − xa)(xb − xb)
]

= Cab and E
[

(xi − xi)(xk − xk)(xl − xl)(xm − xm)
]

=
CilCmk + ClmCik + CklCim, see (Beyer, 2001, p. 357), one obtains

I(α1α2),(β1β2) =
1
4
C−1
α1α2

C−1
β1β2

−1
4
C−1
α1α2

∑

l,m

C−1
β1l
ClmC

−1
mβ2
− 1

4
C−1
β1β2

∑

i,k

C−1
α1i
CikC

−1
kα2

+
1
4

∑

i,k,l,m

C−1
α1i
C−1
β1l

(

CilCmk + ClmCik + CklCim
)

C−1
kα2

C−1
mβ2

(160)
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and further taking the symmetry of C−1 into account, it follows

I(α1α2),(β1β2) =
1
4
C−1
α1α2

C−1
β1β2
− 1

4
C−1
α1α2

∑

l

C−1
β1l
δlβ2 −

1
4
C−1
β1β2

∑

i

C−1
α1i
δiα2

+
1
4

∑

i,k,l

C−1
α1i
C−1
β1l

(

Cilδkβ2 + δβ2lCik + Cklδiβ2

)

C−1
kα2

=
1
4
C−1
α1α2

C−1
β1β2
− 1

4
C−1
α1α2

C−1
β1β2
− 1

4
C−1
β1β2

C−1
α1α2

+
1
4

∑

i,k

C−1
α1i

(

δβ1iδkβ2 + C−1
β1β2

Cik + δβ1kδiβ2

)

C−1
kα2

= −1
4
C−1
α1α2

C−1
β1β2

+
1
4

∑

i

C−1
α1i

(

δβ1iC
−1
β2α2

+ C−1
β1β2

δiα2 + δiβ2C
−1
β1α2

)

= −1
4
C−1
α1α2

C−1
β1β2

+
1
4
(

C−1
α1β1

C−1
β2α2

+ C−1
α1α2

C−1
β1β2

+ C−1
α1β2

C−1
β1α2

)

=
1
4
C−1
α1β1

C−1
α2β2

+
1
4
C−1
α1β2

C−1
α2β1

. (161)

B Derivation of Eq. (156)

A calculation of the gradient of (155) w.r.t. the symmetric matrix C will be sketched without
explicitly relying on partial derivatives. The idea (see Boyd and Vandenberghe (2010)) is based
on calculating the differential df of a function f depending on matrix X and identifying the
derivative in the inner product of the linear part of the corresponding Taylor expansion

f(X + dX) = f(X) +
∑

ik

∂f

∂Xik
dXik, (162)

thus,

df(X) = f(X + dX)− f(X) =
∑

ik

∂f

∂Xik
dXik

df(X) =
∑

ik

(

∇Xf
)

ik
dXik (163)

Recalling the definition of the trace of a matrix applied to a matrix product ATB

Tr[ATB) =
∑

k

(ATB)kk =
∑

k

(

∑

i

(AT)ki(B)ik

)

=
∑

ki

AikBik (164)

Eq. (163) can be expressed as

df(X) = Tr[(∇Xf)T dX]. (165)

It is now the goal to calculate the differential of (155) by transforming the expressions in such
a manner that one obtains trace expressions that allow for identification of the matrix gradient.
To this end, ln det C is considered first

d ln det C = ln det(C + dC)− ln det C = ln
(

det(C + dC)(det C)−1
)

= ln
(

det(C + dC) det
(

C−1
))

= ln det
(

(C + dC)C−1
)

= ln det
(

I + dCC−1
)

' ln
(

1 + Tr[ dCC−1]
)

' Tr[ dCC−1] = Tr[C−1 dC]. (166)
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Here, the fourth line has been obtained by recalling the definition of a determinant specified for
det(I + dY) as the sum of the signed products of all permutations of mutually excluding row
and column indexed matrix entries. As for (I + dY), except for the product of the diagonal
elements, all products are at least of 2nd order differential products. Considering the product of
the diagonal elements one has (1 + dY11)(1 + dY22) · · · (1 + dYNN ) = 1 + dY11 + dY22 +
. . . dYNN +higher order terms = 1+Tr[ dY]+higher order terms. Using the first order Taylor
approximation of ln(1 + x) ' x one obtains (166) and comparing with (165) one finally gets

∇C ln det C = (C−1)T = C−1. (167)

In order to determine ∇C of the third term in (155) one has

d(x− x)TC−1(x− x) = (x− x)T
(

C + dC
)−1(x− x)− (x− x)TC−1(x− x). (168)

Considering

(C + dC)−1 =
(

C(I + C−1 dC)
)−1

= (I + C−1 dC)−1C−1

' (I−C−1 dC)C−1

= C−1 −C−1 dCC−1. (169)

Here, the first order Taylor expansion has been used in order to get the third line. Inserting this
result in (168) yields

d(x− x)TC−1(x− x) = −(x− x)TC−1 dCC−1(x− x). (170)

A quadratic form yTBy (y - vector, B - matrix) can be expressed by a trace operation, it holds
yTBy = Tr[(yyT)B]. Identifying y := C−1(x− x) and B = dC one gets

d(x− x)TC−1(x− x) = −Tr
[

C−1(x− x)(x− x)TC−1 dC
]

= −Tr
[

(

C−1(x− x)(x− x)TC−1
)T

dC
]

(171)

and comparing with (165) one finally obtains

∇C(x− x)TC−1(x− x) = −C−1(x− x)(x− x)TC−1. (172)

Using this result and (167), the matrix gradient of (155) is obtained as (156).
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