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Abstract—This paper applies an evolution strategy (ES) that
evolves rays to single-objective real-valued constrained opti-
mization problems. The algorithm is called Ray-ES. It was
proposed as an ad hoc optimization approach for dealing with the
unconstrained real-parameter optimization problem class called
HappyCat. To our knowledge, the application of the Ray-ES to
constrained problems is new. It serves as a simple alternative
to other approaches such as for example differential evolution
(DE). This paper describes how the Ray-ES can be applied
to a constrained setting. The algorithm is tested on a variety
of different test problems. Additionally, it is compared to DE
approaches.

I. INTRODUCTION

This paper presents a simple evolution strategy (ES) for

constrained optimization. It is based on an idea presented

in [1]: the so-called Ray-ES. The Ray-ES evolves ray direc-

tions starting from a fixed point in the search domain and

evaluates them using (simple) line searches. The line search for

a particular ray tries to find the best objective function value

on this ray. The idea is to find a ray direction that contains the

optimum [1]. The Ray-ES is based on the (µ/µI , λ)-σ-Self-

Adaptation-ES ((µ/µI , λ)-σSA-ES) [2].

In [1], the Ray-ES was proposed to deal with the so-called

HappyCat function. The HappyCat function was introduced

in [1]. The motivation for the HappyCat function came from

the ridge function. For the ridge function, once the ridge

direction has been learnt, a straight path has to be followed

to reach the optimum. The HappyCat function is constructed

with the ridge in mind: the path to follow is not straight

but spherical. It has been shown in [1] that the Covariance

Matrix Adaptation (CMA) ES [3], [4], differential evolution

(DE) algorithms [5], [6], [7] and particle swarm optimization

(PSO) algorithms [8], [9] do not perform well on this function.

Hence, the Ray-ES was proposed for dealing with this special

function class in an ad hoc manner.

To our knowledge, this idea has not yet been considered

for constrained optimization. Therefore, it is of interest to

understand how the approach performs on optimization prob-

lems with constraints. The idea is particularly interesting

because it is simple and it is applicable to the given problem

constraints without any pre-processing. Moreover, there is no

assumption on the constraints. The algorithm supports non-

linear constraints natively. We only consider the simplest form

of the Ray-ES as introduced in [1] (with a slight variation for

the line search). As a consequence we present first results. The

approach has potential for extension.

The rest of the paper is organized as follows. Section II

describes the optimization problem under consideration. Then,

we describe the Ray-ES algorithm in Section III. In Section IV

we describe the experimental setup and present the experimen-

tation results. Finally, Section V contains a conclusion and an

outlook.

Notations Boldface x ∈ R
N is a column vector with N

real-valued components and xT is its transpose. xn and

equivalently (x)n denote the n-th element of a vector x. x(k:N)

and equivalently (x)(k:N) are the order statistic notations, i.e.,

they denote the k-th smallest of the N elements of the vector

x. ||x|| =
√

∑N

n=1 xn
2 denotes the euclidean norm (ℓ2 norm).

X is a matrix, XT its transpose. 0 is the vector or matrix

(depending on the context) with all elements equal to zero.

I is the identity matrix. N (µ,C) denotes the multivariate

normal distribution with mean µ and covariance C, N (µ, σ2)
the normal distribution with mean µ and variance σ2.

II. OPTIMIZATION PROBLEM

We consider single-objective real-valued constrained opti-

mization problems of the form

f(x)→ min! (1a)

s.t. ∀n = 1, . . . , N : x̌n ≤ xn ≤ x̂n, (1b)

∀i = 1, . . . ,K : gi(x) ≤ 0. (1c)

Equation (1a) states the optimization goal (here minimization)

and the objective function f : RN → R. The set of objective

parameters is x ∈ R
N where N is the search space dimen-

sionality. Box constraints (Equation (1b)) provide bounds for

the objective parameters where x̌ and x̂ contain the lower

and upper bounds, respectively. Inequality constraints (Equa-

tion (1c)) are functions that depend on the objective parameters

and delimit the search space. This formulation can be done

without loss of generality because a maximization problem

can be turned into an equivalent minimization problem. Non-

zero right hand sides for the constraints can be moved to

the left hand sides. Opposite inequalities can be dealt with



by multiplication with −1. And strict inequality constraints

gi(x) < 0 can be handled as gi(x) ≤ 0−ǫ =⇒ gi(x)+ǫ ≤ 0
for a small ǫ ∈ R with ǫ > 0.

III. ALGORITHM

A. Core Ray-ES

Algorithm 1 shows the algorithm in pseudo-code. An in-

dividual al is represented as a tuple al = (fl,xl, rl, σl)
containing the fitness fl, the individual’s object parameter

vector xl, the ray direction rl, and the mutation strength σl.

Parameters are initialized in Line 1. The ray origin o and

the initial ray direction vector r are initialized in Lines 2

to 4. The individual and the generation for the best-so-far

(bsf) tracking are initialized in Line 5 and the generation

counter in Line 6. Then, the generation loop is entered in

Line 7. In every generation λ offspring are created and the

feasible offspring are gathered in a list (Lines 8 to 19). The

offspring’s mutation strength is generated from the parental

mutation strength using a log-normal distribution (Line 10). A

new ray is computed using this mutation strength in Line 11.

The ray vector is normalized (Line 12) and the line search

for the current offspring is called (Line 13). The parameters

to the line search are, respectively, the normalized ray r̃l, the

maximal line search ray length L, the number of line partition

segments k, the origin o, the stopping segment size ǫ, the

objective function f , the inequality constraint function g, the

lower bound vector x̌, and the upper bound vector x̂. If at

least one feasible point on the line is found1, the offspring

individual is appended to the list of feasible offspring and the

bsf is updated (Lines 13 to 18). After the offspring generation

loop, the number of feasible offspring is determined (Line 20).

If there are feasible offspring, they are ranked according to the

order relation

al ≻ am ⇔ f(x̃l) < f(x̃m) (2)

in Line 22. The parental r and σ for the next generation

are updated in Lines 24 to 26, respectively, and finally the

generation counter is incremented in Line 28. The centroid

computation for the update of r and σ takes into account

the feasibility. That is, the number of feasible offspring can

potentially be smaller than the parameter µ. If this is the

case, only all the feasible offspring are considered for the

centroid generation. Otherwise, the centroid computation is

done as usual using the µ best offspring. The generation loop

is terminated if the maximum number of generations is reached

or the σ value decreases below a threshold. Additionally, the

bsf is taken into account. If it has not been updated for the

previous Glag generations, the generation loop is terminated as

well. (Line 29).

An essential part of the Ray-ES is the line search. The line

search evaluates a ray by optimizing the objective function

along this particular ray. The fitness for a ray is the best

1Note that the algorithm is kept general such that infeasible ray origins are
supported. The “foundFeasible” variable would not be necessary if we would
always start with a feasible origin.

Algorithm 1 Ray-ES.

1: Initialize parameters µ, λ, σ, τ,Glag, genstop, σstop, L, k, ǫ
2: Initialize o

3: r← N (0, I) ⊲ Initialize random ray direction

4: r← r

||r|| ⊲ Normalize random ray direction

5: (absf, genbsf)← ((∞,0, r, σ), 0)
6: gen← 0
7: repeat

8: feasibleOffspring← empty list

9: for l← 1 to λ do

10: σ̃l ← σeτNl(0,1)

11: ỹl ← r+ σ̃lNl(0, I)
12: r̃l ← ỹl

||ỹl||

13: (x̃l, f̃l, foundFeasible)←
LineSearch(r̃l, L, k, o, ǫ, f , g, x̌, x̂)

14: if foundFeasible then

15: ãl ← (f̃l, x̃l, r̃l, σ̃l)

16: (absf, genbsf)←
{

(ãl, gen+ 1) if ãl ≻ absf

(absf, genbsf) otherwise

17: Append ãl to feasibleOffspring

18: end if

19: end for

20: nfeasible ← number of elements in list feasibleOffspring

21: if nfeasible > 0 then

22: rankOffspringPopulation(feasibleOffspring)

according to “≻” (Equation (2))

23: µadapted ← min(µ, nfeasible)
24: r← 1

µadapted

∑µadapted

m=1 r̃m;nfeasible

25: r← r

||r||

26: σ ← 1
µadapted

∑µadapted

m=1 σ̃m;nfeasible

27: end if

28: gen← gen+ 1
29: until gen > genstop ∨ σ < σstop ∨ gen− genbsf ≥ Glag

objective function value that is found along the direction of

this ray assuming a pre-defined maximal length. Algorithm 2

shows the pseudo-code for the LineSearch algorithm. The line

starting at position o in search space with direction r and

maximal length L is searched for the minimum by first probing

it at 2k + 1 positions (k positions in the negative direction, k
positions in the positive direction and the origin itself). The

∆r is the length of one partition segment. The best of the

feasible positions is taken for the next iteration. For the next

iteration ∆r is divided by k. This loop continues as long as the

∆r is larger than some threshold ǫ with the result of getting

to the best value on the line with increasing level of detail.

The best position that was found is returned in the end.

B. Modified LineSearch

The LineSearch algorithm (Algorithm 2) potentially re-

quires unnecessary constraint and objective function evaluation

budget by querying infeasible points. To overcome this, we

propose a different line search. It is outlined in Algorithm 3.



Algorithm 2 LineSearch.

1: function LineSearch(r, L, k, o, ǫ, f , g, x̌, x̂)

2: assert(||r|| = 1)

3: xbest ← o

4: fxbest
← f(xbest)

5: foundFeasible ← false

6: ∆r ← L
k

7: while ∆r > ǫ do

8: xcurrbest ← xbest

9: fcurrbest ← fxbest

10: for p← 1 to 2k + 1 do

11: xp ← xbest +∆r · (p− k − 1) · r
12: if xp is feas. acc. to eqs. (1b) and (1c) then

13: foundFeasible ← true

14: fp ← f(xp)
15: if fp < fcurrbest then

16: fcurrbest ← fp
17: xcurrbest ← xp

18: end if

19: end if

20: end for

21: xbest ← xcurrbest

22: fxbest
← fcurrbest

23: ∆r ← ∆r
k

24: end while

25: return(xbest, fxbest
, foundFeasible)

26: end function

The parameters (Line 1) include ray information (ray direction

r and the ray origin o), termination criteria (step size threshold

ǫ and maxIter), step size information (the initial step size αinit,

the step size increase factor αinc, and the step size decrease

factor αdec), the objective function f , the constraints (the

inequality constraint function g, the lower bound vector x̌,

and the upper bound vector x̂), and the searchDirections. The

main idea is to search along the ray r starting at the origin o.

The search directions are specified by the set searchDirections

which can contain -1, 1, or both (Lines 9 to 36). The search

step size α is initially set to αinit. Using the current step size,

the search is done along the line as long as the particular

point corresponding to the current step is feasible, better as

the previous query point, and the difference in the objective

function value between the current and the previous query

point is greater than 10−10. If one of these conditions is

violated, we decrease the step size and repeat the process

starting at the previous feasible point. The intuition behind this

is to get to the optimum with high precision. If the step size

decreases below some threshold ǫ or the maximum number of

iterations is reached, we stop. In addition, we increase the step

size every time a newly queried point is feasible and better

than the previous one. The idea behind this is that multiple

successes indicate that larger steps can be beneficial. The best

point found during the whole process is tracked and finally

returned (Lines 4, 6, 7, 28 to 30, and 37). Note that we indicate

the “short-circuit and” by the and keyword. By making use

of this, we can avoid some objective function evaluations.

Algorithm 3 Modified LineSearch.

1: function ModifiedLineSearch(r, o, ǫ, maxIter, αinit, αinc,

αdec, f , g, x̌, x̂, searchDirections)

2: assert(||r|| = 1)

3: assert(searchDirections ⊆ {−1, 1})
4: foundFeasible ← false

5: fo ← f(o)
6: xbest ← o

7: fbest ← fo
8: isFeasibleo ← true⇔ eqs. (1b) and (1c) hold for o

9: for d ∈ searchDirections do

10: isFeasiblex ← isFeasibleo
11: xprev ← o

12: fxprev
← fo

13: α← αinit

14: iter← 0
15: while α > ǫ and iter < maxIter do

16: x← xprev

17: fx ← fxprev

18: repeat ⊲ Search loop with current step size

19: xprev ← x

20: fxprev
← fx

21: x← x+ dαr
22: isFeasiblex ←

true⇔ eqs. (1b) and (1c) hold for x

23: if isFeasiblex then

24: fx ← f(x)
25: end if

26: if isFeasiblex and fx < fbest then

27: α← ααinc

28: foundFeasible ← true

29: xbest ← x

30: fbest ← fx
31: end if

32: until ¬(isFeasiblex and fx < fxprev

and |fx − fxprev
| > 10−10)

33: α← α/αdec

34: iter← iter + 1
35: end while

36: end for

37: return(xbest, fbest, foundFeasible)

38: end function

For the Ray-ES with the different LineSearch we distinguish

two cases. The first case is the ES in adapting phase and the

second case is a more converged ES. This means that while

in the former case the ray directions between two generations

can have larger deviations, in the latter case we assume the

rays to be approximately parallel (within some threshold). We

make use of this by calling the line search in a different way.

In the first case we call it with αinit = 2|(x̂)(N :N)− (x̌)(1:N)|.
Intuitively, this means that we make sure to search the whole

line across the box constraints. In the second case we make



use of the similarity between the rays of two subsequent

generations gen (parental generation) and gen+ 1 (offspring

generation) and only search in the proximity of the best point

of the ray in generation gen. Technically, we measure the

similarity, say s, using the dot product s = r(gen)
T
r(gen+1).

If |s− 1| < ǫs (directions parallel within some threshold ǫs),

we say that we are in case two. Then we project the best

point on r(gen) (that we already know from the line search of

the previous generation) onto r(gen+1). Because the rays are

almost parallel and have the same origin (by definition of the

algorithm) we assume the optimal point for the new ray to be

somewhere in the same area. Therefore, we call the Modified

LineSearch with the projected best point as the origin and a

small initial step size. Algorithm 4 shows the pseudo code of

this case distinction.

Algorithm 4 Modified LineSearch case distinction.

1: assert(||r(gen)|| = 1)

2: assert(||r(gen+1)|| = 1)

3: s← r(gen)
T
r(gen+1)

4: if |s− 1| < ǫs then

5: l← (x
(gen)
best − o)T r(gen+1)

6: xbestprojected ← o+ lr(gen+1)

7: Call ModifiedLineSearch with xbestprojected

as the origin and a small step size.

8: else

9: Call ModifiedLineSearch with o as origin and L
as the initial step size.

10: end if

A further optimization for the first case is to switch to

searching in either -1 or 1 direction, but not both. The key

observation for this is that after some generations of the ES,

all the offspring of a particular generation gen have the same

search direction d. The algorithm can identify such a situation

and in generation gen+ 1 only search in direction d.

IV. EXPERIMENTAL EVALUATION

The Ray-ES is tested with the BBOB COCO frame-

work [10]. The experiments were run on a cluster with 5

nodes. Every node has an Intel 8-core Xeon E5420 2.50GHz

processor with 8GiB of RAM running a GNU/Linux system.

The post-processing tool with slight adjustments was used to

generate the figures. The algorithm’s parameters are set as

summarized in Table I 2. The choice of the learning parameter

τ = 1/
√
2N is motivated by the τ -scaling rule τ ∝ 1/

√
N

that has been theoretically derived for the σSA-ES applied to

the sphere model (see [11, Section 7.4.2.2]). The chosen value

L = 2|(x̂)(N :N)−(x̌)(1:N)| is motivated by the box constraints

of the problem. This value makes sure that a particular line

is searched across the whole box. The value for the origin

o has been set to a feasible point provided by the BBOB

COCO framework. Because the Modified LineSearch requires

2We provide our code that we used for the experiments in the GitHub
repository https://github.com/patsp/Ray-ES.

λ 4N

µ ⌊λ

4
⌋

σ (initial value) 1
√

N

τ 1
√

2N
Glag 50N
genstop 100000
σstop 10−6

L 2|(x̂)(N :N) − (x̌)(1:N)|, i.e.,
twice the absolute value of the
difference between the largest
upper bound of all the variables
and the smallest of the lower
bounds of all the variables.

k 2
ǫ 10−10

ǫs 10−3

maxIter 100
αinc 1.5
αdec 10
o For the BBOB COCO problems

o is set to the feasible initial
solution that the BBOB COCO
framework provides to the opti-
mization algorithm.

TABLE I: Parameter settings for the Ray-ES experiments.

a feasible origin, this has been done in this way such that

both, the Standard LineSearch and the Modified LineSearch,

can be run with the same parameters. The results are therefore

comparable. Another option would have been to perform a pre-

processing step of searching for a feasible solution. The values

for λ, µ, initial σ, Glag, genstop, σstop k, ǫ, ǫs, maxIter, αinc, and

αdec have been empirically determined in manual experiments.

To this end, different values for those parameters have been

chosen. The Ray-ES has then been tested on the BBOB COCO

problems and the best parameters have been chosen for the

final experiments. The results of these final experiments are

presented in this section.

As a first step linear constraints are considered. And as a

second step non-linear perturbations are considered as pro-

vided by the BBOB COCO framework. The adapted frame-

work3 is based on the code in the branch development4

in [12]. A documentation can be found in [13] under docs/

bbob-constrained/functions/build after building

it according to the instructions.

The BBOB COCO framework provides a test suite for

constrained black-box optimization benchmarking. It con-

tains 48 constrained functions with dimensions N ∈
{2, 3, 5, 10, 20, 40}. For every problem, random instances can

3We provide the adapted code in a GitHub fork of the BBOB COCO
framework, https://github.com/patsp/coco. The changes are in the new branch
development-sppa-2. This branch is based on the development

branch of https://github.com/numbbo/coco with changes up to and in-
cluding Dec 10, 2017. A list of the changes is also provided in
the supplementary material (Section VI-B). The supplementary material
can be found in the GitHub repository https://github.com/patsp/Ray-ES
(rayes_supplementary_material.pdf.xz).

4Because the bbob-constrained suite is still under development, we
provide a fork. This makes our results reproducible. Even though it is still
under development, this suite gives a good indication of the algorithm’s
performance in comparison to other methods.



be generated. The 48 problems are constructed by combining

8 functions of the standard BBOB COCO suite for single-

objective optimization with 6 different numbers of constraints,

namely 1, 2, 6, 6+N/2, 6+N , and 6+ 3N constraints. The

8 functions are Sphere, Separable Ellipsoid, Linear Slope, Ro-

tated Ellipsoid, Discus, Bent Cigar, Sum of Different Powers,

and the Separable Rastrigin. The constraints are linear with

nonlinear perturbations and defined by their gradient. These

constraints are generated by sampling their gradient vectors

from a normal distribution and ensuring that the feasible region

is not empty. The generic algorithm of generating a constrained

problem is outlined in [13], docs/bbob-constrained/

functions/build. The preference of the BBOB COCO

framework over, e.g., the CEC 2017 constrained optimization

competition benchmark problems [14] is two-fold. One reason

has been the aim to compare the Ray-ES on linear constraints

and non-linear constraints. Another reason has been that the

search for an initial feasible point for the origin can be

expensive for some CEC 2017 problems caused by a “small”

feasible region.

The optimization problem in the BBOB COCO framework

is stated as

f(x)→ min! (3a)

s.t. g(x) ≤ 0 (3b)

x̌ ≤ x ≤ x̂ (3c)

where f : R
N → R and g : R

N → R
K . Note that this

problem formulation is equivalent to Equation (1). The Ray-

ES can therefore be applied directly on this problem.

In the following sections we present bootstrapped empirical

cumulative distribution functions (ECDFs) of runs of algo-

rithms for all the constrained problems of the BBOB COCO

bbob-constrained test suite aggregated5 for dimensions 2, 3,

5, 10, 20, 40. For these, the performance of the algorithm

is evaluated on 15 independent randomly generated instances

of each constrained test problem. Based on the observed run

lengths, ECDF graphs are generated. These graphs show the

percentages of function target values reached for a given

budget of function and constraint evaluations6 per search

space dimensionality. The function target values used are the

standard BBOB ones: fopt + 10k, k ∈ {−8, . . . , 2}.

A. Experimental Results for the Algorithm with the Standard

LineSearch

1) Linear Constraints without Non-Linear Perturbations:

Figure 1a shows the ECDF plots for the Ray-ES with the

Standard LineSearch on the BBOB COCO problems. The

results are aggregated over all the functions in the BBOB

COCO constrained suite with the non-linear perturbations

turned off.

5We provide additional experimental results in the supplementary material
(Section VI-A). There, the results are presented in more detail. In particular,
the results are shown for every function separately.

6In the BBOB COCO framework one call to the constraint evaluation
function yields the values of all the constraints at the given query point.

2) Linear Constraints with Non-Linear Perturbations:

Figure 1b shows the ECDF plots for the Ray-ES with the

Standard LineSearch on the BBOB COCO problems. The

results are aggregated over all the functions in the BBOB

COCO constrained suite with the non-linear perturbations

turned on.

The plots show that the most difficult target is only reached

for the case of 2 dimensions. The performance decreases with

higher dimensions. We also see that the performance of the

Ray-ES for the case with non-linear perturbations is very

similar. This indicates that the Ray-ES is able to cope well

with the non-linear perturbations.

B. Experimental Results for the Algorithm with the Modified

LineSearch

1) Linear Constraints without Non-Linear Perturbations:

Figure 1c shows the ECDF plots for the Ray-ES with the

Modified LineSearch on the BBOB COCO problems. The

results are aggregated over all the functions in the BBOB

COCO constrained suite with the non-linear perturbations

turned off.

2) Linear Constraints with Non-Linear Perturbations:

Figure 1d shows the ECDF plots for the Ray-ES with the

Modified LineSearch on the BBOB COCO problems. The

results are aggregated over all the functions in the BBOB

COCO constrained suite with the non-linear perturbations

turned on.

The targets that are reached with the Modified LineSearch

are almost the same as for the Standard LineSearch. However,

we see that the targets are reached with less evaluations. For

example for the case of dimension 40. The proportion of

function and target pairs reached with ≤ 105 function and

constraint evaluations is about 0.7 for the Modified LineSearch

and slightly below 0.6 for the Standard LineSearch. This is

what we expect because the idea for the Modified LineSearch

is to avoid unnecessary evaluations. But we also see a disad-

vantage of the Modified LineSearch. The most difficult target

is not reached in every run. This can be seen by the crosses

that indicate the medians of the sum of objective function and

constraint evaluations of instances that did not reach the most

difficult target.

C. Comparison with other approaches

In order to compare the Ray-ES proposed in this work,

other algorithms are benchmarked in the same adapted

BBOB COCO suite. We have chosen two variants of DE:

“Self-adaptive Differential Evolution Algorithm for Con-

strained Real-Parameter Optimization” (conSaDE) [6] and

“Constrained Optimization by the ε Constrained Differential

Evolution with an Archive and Gradient-Based Mutation”

(εDEag) [7]. They showed promising results in competition

benchmarks. The εDEag won the CEC 2010 constrained

real-parameter optimization competition [15]. The conSaDE

achieved the third place (behind a version of εDE and a

PSO variant) in the CEC 2006 constrained real-parameter

optimization competition [16]. For both DE variants, the
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(b) Ray-ES with the Standard LineSearch (non-linear
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(c) Ray-ES with the Modified LineSearch (non-linear
perturbations turned off in the BBOB COCO constrained
suite).
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(d) Ray-ES with the Modified LineSearch (non-linear
perturbations turned on in the BBOB COCO constrained
suite).

Fig. 1: Bootstrapped empirical cumulative distribution of the number of objective function and constraint evaluations divided

by dimension for 51 targets with target precision in 10[−8..2] for all functions of the BBOB COCO constrained suite aggregated

for the dimensions 2, 3, 5, 10, 20, and 40. The horizontal axis shows the log10 of the sum of objective function and constraint

evaluations. The vertical axis shows the proportion of target objective function values reached with the given number of objective

function and constraint evaluations (horizontal axis). The crosses indicate the medians of the sum of objective function and

constraint evaluations of instances that did not reach the most difficult target.

implementations provided by the respective authors were used7

(adapted for the BBOB COCO framework). The algorithms for

the comparison were run with default parameters.

1) Linear Constraints without Non-Linear Perturbations:

Figure 2a shows the ECDF plots comparing the considered

approaches on the BBOB COCO constrained suite with the

non-linear perturbations turned off. I.e., the approaches con-

SaDE, εDEag, the newly proposed Ray-ES with the Standard

LineSearch (called “rayes” in the plot), and the newly pro-

posed Ray-ES with the Modified LineSearch (called “rayes

dif” in the plot) are shown.

7εDEag: http://www.ints.info.hiroshima-cu.ac.jp/%7Etakahama/download/
eDEa-2010.0430.tar.gz, conSaDE: http://web.mysites.ntu.edu.sg/epnsugan/
PublicSite/Shared%20Documents/Codes/2006-CEC-Const-SaDE.rar.

2) Linear Constraints with Non-Linear Perturbations:

Figure 2b shows the ECDF plots comparing the considered

approaches on the BBOB COCO constrained suite with the

non-linear perturbations turned on. I.e., the approaches con-

SaDE, εDEag, the Ray-ES with the Standard LineSearch

(called “rayes” in the plot), and the Ray-ES with the Modified

LineSearch (called “rayes dif” in the plot) are shown.

We can see that the non-linear perturbations are handled

by the DE algorithms as well as the Ray-ESs. The per-

formance is similar for both cases (with and without non-

linear perturbations). The DE algorithms clearly outperform

the Ray-ES for small dimensions. For dimension 40 we see

that the Ray-ES achieves more targets than the εDEag. The

performance of the conSaDE is the best for dimension 40.

An in-depth analysis revealed that the main reason for the



superior performance of conSaDE can be attributed to the local

search algorithm fmincon (Matlab) used. If this is switched off,

conSaDE exhibits inferior performance compared to the Ray-

ES for higher dimensions. A detailed look at the performance

plots for the different functions shows the following. The

performance of both Ray-ES variants decreases with higher

number of constraints. In particular for the case with 6 + 3N
constraints. In this case the number of targets that are reached

with the Ray-ESs is low. This trend is not visible for the DE

algorithms.

Having a closer look at Figure 2, there is the remarkable

observation that the Ray-ES does not show markedly perfor-

mance differences between the linear and the non-linear test-

bed. This is in contrast to the DE versions benchmarked where

the non-linear cases exhibit certain performance degradations.

Given this peculiarity of the Ray-ES one might speculate

whether further algorithmic improvements regarding the per-

formance of the linear case transfers also to the non-linear

cases.

One weakness of the current Ray-ES approach is due to the

fixed choice of the ray origin. In our experiments, this origin

has been chosen equal to the feasible starting point provided

by the BBOB COCO benchmark environment. Especially in

the case of a high number of constraints, this special ray

origin might introduce a bias in the search process. A more

elaborated version of the Ray-ES should evolve the ray origin

as well.

V. CONCLUSION

We have shown how the Ray-ES can be applied to con-

strained optimization problems. The Ray-ES was first intro-

duced for dealing with a specially constructed function class

called HappyCat. It has been tested on different constrained

test problems and compared to DE approaches. It does not

perform as well as certain elaborated DE algorithms that rely

- at least partially - on sophisticated non-evolutionary local

optimization routines. Nevertheless, the approach is a simple

alternative. It is also worth noting that the Ray-ES presented in

this paper is intentionally kept simple. There is potential for

extension in future work. One possible extension is a more

sophisticated line search. Another idea is to evolve not only

the ray direction but also the ray origin. Furthermore, in this

paper we have only considered isotropic mutations. In future

work, it is of interest to analyze the Ray-ES with a kind

of covariance matrix adaptation. Moreover, as we have only

presented empirical results, a theoretical analysis is a topic for

future work.
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(a) Non-linear perturbations turned off in the BBOB
COCO constrained suite.
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(b) Non-linear perturbations turned on in the BBOB
COCO constrained suite.

Fig. 2: Bootstrapped empirical cumulative distribution of the number of objective function and constraint evaluations divided by

dimension for 51 targets with target precision in 10[−8..2] for all the functions and dimension of the BBOB COCO constrained

suite: comparison of all the approaches. The horizontal axis shows the log10 of the sum of objective function and constraint

evaluations. The vertical axis shows the proportion of target objective function values reached with the given number of objective

function and constraint evaluations (horizontal axis). The crosses indicate the medians of the sum of objective function and

constraint evaluations of instances that did not reach the most difficult target.


