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Abstract—By combination of successful constraint handling
techniques known within the context of Differential Evolution
with the recently suggested Matrix Adaptation Evolution Strategy
(MA-ES), a new Evolution Strategy for constrained optimiza-
tion is presented. The novel MA-ES variant is applied to the
benchmark problems specified for the CEC 2018 competition
on constrained single objective real-parameter optimization. The
algorithm is able to find feasible solutions on more than 80% of
the benchmark problems with high accuracy.

I. INTRODUCTION

The field of constrained optimization is concerned with
searching for the optimal solution of an objective function
with respect to certain limitations on the parameter vector
components. Constraints may arise from multiple sources,
e.g. limited resources of a problem, problem-specific trade-
offs or appropriate physical boundaries. The introduction of
constraints into an optimization task adds to the problem
complexity. This is particularly true in the context of black-box
optimization, where the analytical structure of the optimization
problem is unknown.

Organized during the IEEE Congress on Evolutionary Com-
putation (CEC), the competition on constrained real-parameter
optimization (2006, 2010, and 2017) introduced specific test
environments for evaluation and comparison of state-of-the-
art stochastic search algorithms. Apart from the competitions,
these test function environments turned out very popular for
benchmarking Evolutionary Algorithms (EA).

In particular, Differential Evolution (DE) proved itself suc-
cessful in a number of constrained settings that include but
are not limited to the CEC competitions on constrained real-
parameter optimization, see [1]. A survey of recent advances
in the field of DE is provided by [2]. DE variants encompass
various approaches to deal with constrained problems, e.g.
using different mutation and crossover schemes to find the
right balance between exploration and exploitation, aiming
at optimal control of the intrinsic strategy parameters [3],
treating infeasible solutions with diverse constraint handling
approaches [4], or even combinations of the mentioned prin-
ciples [5], [6].

The CEC competition results supported the suitability of
recent DE variants for constrained optimization. In contrast,

to our knowledge, Evolution Strategies (ES) abstained from
competing in the past CEC competitions on constrained real-
parameter optimization. While investigations concerning the
EA subclass of ES are scarce, a few studies have to be
mentioned. Among others, empirical studies on ES on con-
strained black-box problems involve the application of stochas-
tic ranking, penalty approaches, or the use of Deb’s constraint
handling method [7] together with a diversity mechanism
to preserve a number of infeasible candidate solutions with
predefined probability. An overview of constraint handling
techniques for ES can be found in [8]. These approaches were
evaluated on a set of test functions collected in [9]. An ES
variant that makes use of multi-objective techniques to deal
with constrained optimization problems is proposed in [10]
and evaluated on the CEC2006 benchmark functions [11].
Two ES variants were considered in [12], where a combination
of EAs was proposed to cope with constrained optimization
problems of different characteristics.

Examples of ES applications to constrained real-world prob-
lem include [13]. There, a novel penalty constraint handling
technique was incorporated into the CMA-ES [14] to solve
nonlinear constrained problems in the context of launcher sys-
tems. In [15] an ES variant has been published that deals with
a portfolio optimization task subject to mixed linear/nonlinear
constraints. The strategy is based on the CMSA-ES [16] and
relies on three specific techniques to fulfill the constraints.

Theoretical investigations on qualified constrained test prob-
lems also exist. In this context, the active-set ES [17] and the
augmented Lagrangian constraint handling approach [18] have
to be mentioned. While the former approach only assumes a
black-box objective function and known constraints, the latter
work concentrates on the case of linear constraints.

The present paper aims at solving the real-valued con-
strained optimization problems specified in [19] for the CEC
competition in 2018. For this purpose, constraint handling
methods approved within the context of Differential Evolution
are applied to a state-of-the-art Evolution Strategy, the Matrix
Adaptation Evolution Strategy (MA-ES) [20]. The MA-ES
represents an algorithmically reduced CMA-ES variant [14].
By use of an adequate transformation, the evolution path of
the covariance matrix update can be disregarded while the



performance is almost retained. The newly proposed εMAg-ES
handles box-constraints by reflecting exceeding components
into the predefined box. Additional in-/equality constraints
are dealt with by application of two constraint handling
techniques: ε-level ordering and a repair step that is based
on gradient approximation. The approach demonstrates the
mutual benefit of two related fields of research and substanti-
ates the use of the mentioned constraint handling mechanisms
within EA variants different from DE. The resulting εMAg-
ES algorithm turns out to be competitive on the CEC 2017
benchmarks [19].

A. The optimization problem

This paper considers constrained optimization problems of
the form

min f(y)

s.t. gi(y) ≤ 0, i = 1, ... , l,

hj(y) = 0, j = 1, ... , k,

y ∈ S ⊆ RN .

(1)

Without loss of generality, the optimization goal is the min-
imization of the real-valued objective function f(y). Here,
y ∈ S denotes the N -dimensional search space parame-
ter vector. The set S usually comprises a number of box
constraints specifying reasonable intervals of the parameter
vector components. We refer to the N -dimensional vectors that
specify the lower and upper box constraints of each parameter
component as y̌, and ŷ, respectively. Additionally, the feasible
region of the search space is restricted by m = l+k real-valued
constraint functions. These constraint functions are separated
into inequality constraints gi(y), i = 1, ... , l and equality
constraints hj(y), j = 1, ... , k. A vector y ∈ S that satisfies
all constraints simultaneously is called feasible. The set of all
feasible parameter vectors is denoted

M := {y ∈ S : gi(y) ≤ 0 ∧ hj(y) = 0,∀i, j} . (2)

The global optimum of (1) is denoted by y∗ ∈M . Note, that
the objective function f(y) subject to some constraints is also
referred to as constrained function.

When considering problem (1) a measure of infeasibility is
useful for ranking potentially infeasible candidate solutions.
To this end, we compute the constraint violation ν(y) of a
candidate solution y as

ν(y) =

l∑
i=1

Gi(y) +

k∑
j=1

Hj(y), (3)

with functions Gi(y) and Hj(y) defined by

Gi(y) := max (0, gi(y)) , (4)

and

Hj(y) :=

{
|hj(y)|, if |hj(y)| − δ > 0

0, if |hj(y)| − δ ≤ 0
. (5)

In order to be able to satisfy the equality constraints, the δ
term introduces the necessary error margin. This paper con-
siders δ = 10−4. Further, the corresponding mean constraint
violation ν(y) is given by

ν(y) =

∑l
i=1Gi(y) +

∑k
j=1Hj(y)

l + k
. (6)

The remainder of this paper is organized as follows: Sec-
tion II introduces the εMAg-ES for constrained optimiza-
tion and its constraint handling techniques. The experimental
setup of the CEC 2018 competition on single-objective real-
parameter optimization as well as the used parameter settings
for the εMAg-ES are summarized in Sec. III. In Sec. IV the
respective results are presented as specified in [19]. The paper
concludes with a discussion of the observations.

II. ALGORITHM

This section introduces the εMAg-ES for constrained real-
parameter optimization. Its pseudo code is displayed in Al-
gorithm 1. The strategy is based on the MA-ES [20] which
represents an algorithmically simplified CMA-ES variant with
comparable performance in unconstrained environments. In
order to deal with problem (1), constraint handling techniques
are incorporated into the MA-ES.

Given the black-box scenario of the competition, the al-
gorithm has no knowledge about the appropriate step-size
at a random location in the search space. Instead of start-
ing from a single point, the algorithm initially samples a
uniformly distributed population P of λ candidate solutions
yj ∈ RN , j = 1, ... , λ within the predefined box-constraints
y̌ and ŷ, respectively. This is performed in lines 2 to 5 of
Alg. 1. There, u(0, 1) denotes an N -dimensional vector with
uniformly distributed components in (0, 1). The initial parental
recombinant y(0) is then obtained by weighted recombination
of the µ best candidate solutions in line 9. Notice, that ym:λ

denotes the mth best out of λ candidate solutions with respect
to the order relation ≤ε, see Eq. (8). The standard weights wi
of the MA-ES as described in Sec. III are used. Regarding the
vectors z

(g)
l and d

(g)
l , the vector that contributes to the mth

best candidate solution ym:λ is considered the mth best, i.e.
zm:λ and dm:λ, respectively. The comparison of the candidate
solutions always involves the evaluation of the constrained
problem and consumes function evaluations. We account one
function evaluation per evaluation of a constrained problem,
i.e. including the objective function and all related constraint
functions (cf. line 8).

The starting population is also used to determine the initial
ε(0) value in line 6, and the associated parameter γ, in
line 7, that controls the ε(g) decrease. Here, θt specifies the
percentage of considered candidate solutions and b·c denotes
the floor function. The relation ≤ε is described in more detail
in Sec. II-A. In line 10, the best individual of the initial
population y1:λ becomes the best-found solution so far ybsf.

Contrary to CMA-ES, the MA-ES replaces the covariance
matrix update as well as the adaptation of the related search
path by an updated transformation matrix M (g). Within the



Algorithm 1 Pseudo code of the MA-ES algorithm variant for
constrained real-parameter optimization: the εMAg-ES.

1: Initialize: µ, λ, σ(0), p(0)
σ ← 0 , M (0) ← I

2: for j ← 1: λ do
3: yj ← y̌ + (ŷ − y̌) ◦ u(0, 1)
4: P ← P ∪ {yj}
5: end for
6: ε(0) ←

∑bθtλc
i=1 ν(yi:λ)/bθtλc

7: γ ← max
(
γmin, (−5− log(ε(0)))/ log(0.05)

)
8: fevals← λ
9: y(0) ←

∑µ
i=1 wiyi:λ according to ≤ε

10: ybsf ← y1:λ

11: g ← 0
12: while fevals < fevalsmax do
13: M−1 ← PseudoInverse(M (g))
14: Reset M (g) ← I if PseudoInverse(M (g)) fails
15: for l← 1: λ do
16: z

(g)
l ← N (0, I)

17: d
(g)
l ←M (g)z

(g)
l

18: ȳ ← y(g) + σ(g)d
(g)
l

19: y
(g)
l ← KeepRange(ȳ)

20: fevals← fevals+ 1
21: if mod(g,N) = 0 ∧ u(0, 1) < θp then
22: h← 1
23: while h ≤ θr ∧ ν(y

(g)
l ) > 0 do

24: h← h+ 1
25: ỹ ← GradientBasedRepair(y

(g)
l )

26: y
(g)
l ← KeepRange(ỹ)

27: fevals← fevals+N + 1
28: end while
29: end if
30: if ȳ 6= y

(g)
l then

31: d
(g)
l ←

(
y

(g)
l − y(g)

)
/σ(g)

32: z
(g)
l ←M−1d

(g)
l

33: end if
34: end for
35: if y(g)

1:λ ≤ε ybsf then
36: ybsf ← y

(g)
1:λ

37: end if
38: y(g+1) ← y(g) + σ(g)

∑µ
i=1 wid

(g)
i:λ

39: p
(g+1)
σ ← (1− cσ)p

(g)
σ +

√
µwcσ(2− cσ)

µ∑
i=1

wiz
(g)
i:λ

40: M (g+1) ←M (g) + c1
2 M (g)

(
p

(g)
σ (p

(g)
σ )> − I

)
...

+
cµ
2 M (g)

(∑µ
i=1 wiz

(g)
i:λ (z

(g)
i:λ )> − I

)
41: σ(g+1)← min

(
σ(g)exp

[
cσ
2

(
‖p(g+1)

σ ‖2
N − 1

)]
, σmax

)
42: g ← g + 1
43: if g < T then
44: ε(g) ← ε(0)(1− g

T )γ

45: else ε(g) ← 0
46: end if
47: end while
48: return [ybsf, f(ybsf), ν(ybsf)]

offspring procreation loop of each generation g, λ offspring are
generated out of the recombined µ best candidate solution of
the previous generation. To this end, the mutation vector d(g)

l

of each offspring is obtained by multiplication of this matrix
M (g) and a vector z

(g)
l with standard normally distributed

components, lines 16 and 17. By adding the product of the
mutation strength σ(g) and d(g) to the recombinant y(g) of
the previous generation, an offspring is generated in line 18.

In cases where offspring individuals are generated outside
the box constraints, these candidate solutions are reflected into
the box. According to Eq. (7), the routine KeepRange(.)
recomputes each offspring that does not satisfy all box
constraints. This step is performed in line 19 before each
evaluation of the constrained function.

As suggested by [4], in generations g that are multiples of
the dimensionality N , an additional repair step is performed
with probability θp (lines 21 to 29). In this scenario, infeasible
offspring candidate solutions y

(g)
l are repaired by application

of a step that involves the approximation of the gradient.
The repair step requires N function evaluations per execution
plus one single evaluation of the repaired candidate solution.
While this step is rather costly, it can potentially guide the
search into a beneficial region of the search space, or pro-
mote the final step towards the optimizer, respectively. While
GradientBasedRepair(.) does not provide a feasible
solution, the repair step is repeated θr times.

If an offspring candidate solution y
(g)
l has been adjusted

by KeepRange(.) or GradientBasedRepair(.), it will
differ from the originally sampled ȳ in at least one component.
The corresponding mutation vector d(g)

l and z
(g)
l of y(g)

l have
to be readjusted in order to adequately take into account the
correct quantities in the update of the transformation matrix
M . This readjustment is executed in lines 31 and 32 of Alg.1.
While the repair of d

(g)
l is straight forward, that of z

(g)
l

involves the inverse of the transformation matrix M (g). Since
M (g) has no fixed properties, it can easily become singular.
Hence, the pseudo inverse M−1 of M (g) is used in line 32.
It is computed in line 13 at the beginning of each generation.

In the event that the transformation matrix update results in
a matrix M (g) that is ill-suited for the determination of the
pseudo inverse M−1, a regularization step has to be applied
in line 14 to prevent the algorithm from breaking off due to
numerical instabilities. As a first workaround, we simply reset
the transformation matrix to I . This way the transformation
matrix adaptation can begin anew in the current location of
the search space. Notice, that other regularization approaches
may be conceivable and need to be evaluated in the future.

After the computation of all λ offspring, the best offspring is
compared to the best-found solution so far ybsf in line 35. The
parental recombinant y(g) is updated in line 38. The update
involves the selection of the best µ mutation vectors with
respect to ≤ε. In line 39, the εMAg-ES adapts the search
path p

(g)
σ known from CMA-ES [14]. Its length indicates

whether the mutation strength σ(g) should be decreased or
increased in the next generation. Further, it contributes to the



transformation matrix update which is performed in line 40.
The corresponding strategy parameters are chosen according
to the recommendations in [20]. The mutation strength σ(g)

is then updated in line 41. It is bounded from above by the
parameter σmax. On the one hand, this is motivated simply
due to empirical observations where the εMAg-ES began
to gradually increase the mutation strength towards infinity
on some constrained test functions. This behavior might be
explained with a certain shape of the feasible region, but
this requires further examinations. On the other hand, the
box constraints bound the range of suitable mutation strength
values in any case. That is, the appropriate σmax can be
estimated based on the box constraints.

Finally, the ε(g)-threshold is gradually decreased in lines 43
to 46 until it reaches zero, or a predefined number of genera-
tions T is reached, respectively. For g > T , ε(g) is directly set
to zero. This procedure continuously increases the accuracy
with which the ≤ε order relation distinguishes feasible from
infeasible candidate solutions (see Eq. (8) below).

These steps are repeated until fevals exceeds the budget
of function evaluations fevalsmax. After termination, the
algorithm returns the best-found solution ybsf together with
its objective function value f(ybsf), and the corresponding
constraint violation ν(ybsf), respectively.

A. Constraint handling approaches

The proposed εMAg-ES algorithm uses multiple techniques
to adequately deal with the constraints of problem (1).

a) Treatment of box-constraints: The ES variant uses
a reflection method to ensure that the box-constraints are
satisfied by every single candidate solution y ∈ RN that is
evaluated in the search process. Regarding the upper and lower
parameter bounds (ŷ, y̌ ∈ RN ) of a constrained function, each
exceeding component i ∈ {1, ... , N} of y is reflected into the
box according to

yi =


y̌i +

(
(y̌i − yi)−

⌊
y̌i−yi
ωi

⌋
ωi

)
, if yi < y̌i,

ŷi −
(

(yi − ŷi)−
⌊
yi−ŷi
ωi

⌋
ωi

)
, if yi > ŷi,

yi, else,

(7)

with ωi = (ŷi − y̌i) referring to the component-wise distance
between ŷ, and y̌. In Alg. 1, repair of parameter vector com-
ponents according to Eq. (7) is denoted by KeepRange(.).

b) The ε-level ordering: The population is driven towards
the optimum of (1) by variation and selection. Regarding selec-
tion, the generated offspring individuals of a single generation
have to be ranked. Feasible solutions are considered superior to
infeasible solutions. The usual lexicographic ordering primar-
ily ranks two candidate solutions according to their constraint
violations and secondly with respect to their objective function
values. The εMAg-ES uses another ordering relation: the ε-
level order relation introduced by [21] in the context of DE.
The ε-level ordering represents a relaxation that enables the
algorithm to treat infeasible candidate solutions with constraint
violation below a specific ε(g) value as feasible. A candidate
solution y is said to be ε-feasible, if its constraint violation

ν(y) does not exceed a predefined constraint violation thresh-
old ε(g) in generation g. The threshold ε(g) is continuously
reduced to zero with the number of generations. Hence, the
strategy is able to move outside the feasible region within the
early phase of the search process which can potentially support
the convergence to the optimizer y∗.

Let yi ∈ RN and yj ∈ RN denote two candidate solutions
of problem (1) and let the pair (fi, νi) =

(
f(yi), ν(yi)

)
,

and (fj , νj) respectively, represent the corresponding objective
function values as well as the related constraint violations. The
ε-level order relation denoted by ≤ε is then defined by

yi ≤ε yj ⇔

fi ≤ fj , if (νi ≤ ε(g)) ∧ (νj ≤ ε(g)),
fi ≤ fj , if νi = νj ,
νi < νj , otherwise.

(8)

Note, that <ε is defined analogously. Candidate solutions are
compared according to the following criteria: Two ε-feasible
solutions are ranked with respect to their objective function
values. Two ε-infeasible solutions are ordered on the basis of
their constraint violations. Ties are resolved by considering the
objective function values.

The initial ε(0) is determined as the average constraint
violation of θt (percent) of the best candidate solution within
the initial population (see Alg. 1, line 6). During the search
process, it is gradually reduced with each generation until it is
set to zero after a fixed number of generations T . For ε = 0,
the ε level ordering is equal to the lexicographic ordering
mentioned above.

c) Gradient-based repair: In addition to ε-level order
relation, the εMAg-ES makes use of a gradient-based repair
approach. Both approaches, the ε-level ordering and gradient
based repair, are adopted from successful DE variants. To-
gether with an archive of inferior candidate solutions, both
approaches are part of the εDEga strategy [4]. The εDEga
shows good performance on constrained black-box optimiza-
tion problems and is the winning strategy of the CEC 2010
competition on constrained real-parameter optimization [22].

Let the vector of all m constraint values according to
problem (1) be denoted by

C(y) = (g1(y), ... , gl(y), h1(y), ... , hk(y))
>
. (9)

By determining the degree of violation of an infeasible can-
didate solution y, the vector of constraint violations reads

∆C(y) =(
max(0, g1(y)), ... ,max(0, gl(y)), h1(y), ... , hk(y)

)>
.

(10)

The infeasible candidate solution y can then be repaired by
addition of a correction vector ∆y

ỹ = y + ∆y. (11)

The term ∆y is calculated by solving the linear system

∇C(y)∆y = −∆C(y). (12)

To this end, the Jacobian matrix ∇C(y) with respect to C(y)
has to be determined. Since constrained black-box optimiza-
tion is considered, the Jacobian needs to be approximated, e.g.



by using finite differences. Equation (12) can approximately
be solved by making use of the pseudo inverse ∇C(y)−1

∆y = −∇C(y)−1∆C(y). (13)

In the case that no feasible solution is found after the cor-
rection, the gradient-based repair step is repeated at most θr
times. Usually, the constraint violation is gradually decreased
with every repair step. If the strategy cannot find a feasible
solution, the last infeasible candidate solution is considered as
the new offspring candidate solution.

III. EXPERIMENTS

This section summarizes the experimental setup of the CEC
competition and provides the parameter settings used by the
εMAg-ES, Alg. 1, to solve the related problems.

All experiments are carried out on the constrained bench-
mark problems, and according to the specifications, provided
in [19]. Consequently, the algorithm executes 25 independent
runs on each test problem i ∈ {1, ... , 28} and in each
dimension N = {10, 30, 50, 100}. During the runs, equality
constraints are considered to be satisfied if the absolute devia-
tion is below the error margin of δ = 10−4, cf. Eq. (5). In order
to fully provide the required statistics, the algorithm returns
the objective function value, as well as the mean constrained
violation (6), of the best candidate solution so far after having
consumed 10%, 50%, and 100% of the allowed budget of
fevalsmax = 2 · 104 ·N function evaluation.

The εMAg-ES uses the standard parameters recommended
for the MA-ES in [20]. The recombination weights are

wi =
ln(µ+ 0.5)− ln i∑µ

j=1(ln(µ+ 0.5)− ln j)
, for i ∈ {1, ... , µ} (14)

and the corresponding effective population size is given as
µw = 1/

∑µ
i=1 w

2
i . The learning rates of the mutation strength,

the search path, and the transformation matrix update are
specified as

cσ =
µw + 2

N + µw + 5
(15)

c1 =
2

(N + 1.3)2 + µw
, and (16)

cµ = min

[
1− c1,

2(µw − 2 + 1/µw)

(N + 2)2 + µw

]
(17)

In contrast to the standard choice the population size param-
eters λ and µ receive different values. The εMAg-ES uses
offspring population size of λ = 4N . The parental population
size is set to µ = bλ/3c. This choice is motivated by empirical
observations of inferior performance of the εMAg-ES when
using the standard population sizes.

Regarding the parameters of the constrained handling tech-
niques used, the recommendations in [4] are considered. The ε-
threshold of ≤ε is gradually reduced during the first T = 1000
generations of the search, see line 44 of Alg. 1. The parameter
γ is computed in line 7 by use of γmin = 3. The initial ε-
threshold is determined with respect to θt = 0.9, i.e. according
to the mean constraint violation of the best 90% candidate

Table I
PC CONFIGURATION AND ALGORITHM COMPLEXITY

PC: Intel Haswell Desktop
CPU: Intel Core i7-4770 3.40GHz×8
RAM: 16 GB
Language: Matlab (2017b)
Algorithm: εMAg-ES

Computational complexity

Dimension T1(s) T2(s) (T2− T1)/T1

N = 10 0.1752 0.5365 2.0623
N = 30 0.2252 0.5973 1.6525
N = 50 0.2795 0.6393 1.2873
N = 100 0.4353 0.7280 0.6724

solutions in the initial population. The gradient-based repair
is applied at most θr = 3 times with probability θp = 0.2
every N th generation.

Considering the mutation strength of the εMAg-ES, we use
σ(0) = 1 and limit the growth of σ(g) to σmax = 100. The
maximal mutation strength represents a compromise solution
suitable for the considered benchmark problems.

IV. RESULTS

This section presents the results of the εMAg-ES on the
benchmarks specified in [19] for the CEC competition on
constrained single objective real-parameter optimization.

According to the guidelines, information on the PC con-
figuration and the measured computational complexity of the
εMAg-ES are presented in Table I. There, T1 represents the
mean computation time of 104 objective function evaluations
of a single candidate solution averaged over all 28 test func-
tions. The average computation time needed by the complete
εMAg-ES for 104 function evaluations is represented by T2.
For each search space dimensionality N ∈ {10, 30, 50, 100},
the algorithm complexity is identified with the relative differ-
ence (T2−T1)/T1 of these quantities. It can be observed that
T1 and T2 are both increasing with the dimension N . But as
the time consumed by the εMAg-ES is increasing less quickly,
the algorithm complexity is decreasing with the dimension N .

The experimentally obtained statistics of 25 independent
εMAg-ES runs on all 28 constrained benchmark problems are
made available in Tables II to V. Each table displays the final
results after fevalsmax function evaluations with respect to a
predefined dimensionality N . The corresponding results after
10%, and after 50%, of the function evaluation budget are
provided in electronic form.

The collected statistics involve the best, median, mean (with
standard deviation), and worst objective function value of
the 25 independent algorithm runs on a single constrained
problem. To this end, the globally best-found solutions are
primarily ranked according to their constrained violation, and
secondly with respect to their objective function value. In
addition to the objective function value of the median solution,
the corresponding mean constraint violation ν and the triplet
c are monitored. The latter provides the number of unsatisfied
constraints with constraint violation larger than 1, 10−2, and



10−4, respectively. Furthermore, the feasibility rate (FR) of the
algorithm is computed for each problem and each dimension.
It is obtained as the ratio of the number of algorithm runs in
which at least one feasible solution is found and the total
number of algorithm runs. Finally, vio displays the mean
constraint violation of all the solutions obtained in the 25 runs.

Regardless of the dimension, the εMAg-ES found feasible
solutions with feasibility rate FR = 100% on at least 20 of
28 constrained problems. Disregarding N = 100, this number
increases to 22. Taking into account dimension N = 10 and
N = 30, only for the five problems C15, C17, C19, C26,
and C28 no feasible median solution could be computed.
Considering N = 50 and N = 100, only C17, C19, C26,
and C28 were not solved with high reliability. These four
problems present the biggest challenge for the εMAg-ES.
Comparing the εMAg-ES results to those of the CEC2017
competition winner strategy, namely LSHADE44 [6], one
observes superior performance particularly on the last seven
constrained problems that are subject to search space rotations.

V. DISCUSSION

The paper introduces a novel Evolution Strategy for con-
strained real-parameter optimization. The εMAg-ES combines
the Matrix Adaptation Evolution Strategy for unconstrained
optimization with well-known constraint handling techniques
approved in the context of Differential Evolution. Being ap-
plied to the constrained benchmark problems of the CEC 2018
competition on constrained real-parameter optimization, our
approach exhibits decent performance on most of the test prob-
lems. Only 4 problems could never be solved satisfactorily.
Further investigations will be concerned with the evaluation of
their difficulties and the treatment of these problems. As the
εMAg-ES adopts mostly standard parameters from the context
of unconstrained optimization and Differential Evolution, pa-
rameter tuning might improve the algorithm performance and
should be considered in future work.
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Table II
RESULTS OF 25 INDEPENDENT ALGORITHM RUNS AFTER 2× 105

FUNCTION EVALUATIONS IN DIMENSION N = 10.

C01 C02 C03 C04
Best 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00
Median 0.00000e+00 0.00000e+00 0.00000e+00 3.18942e+01
c (0,0,0) (0,0,0) (0,0,0) (0,0,0)
ν 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00
Mean 1.65316e-30 0.00000e+00 4.73317e-31 2.97766e+01
Std 7.57588e-30 0.00000e+00 1.73430e-30 1.75954e+01
Worst 3.78653e-29 0.00000e+00 7.88861e-30 6.46720e+01
FR 100 100 100 100
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

C05 C06 C07 C08
Best 0.00000e+00 0.00000e+00 -4.37159e+02 -1.34840e-03
Median 0.00000e+00 0.00000e+00 -2.97522e+02 -1.34840e-03
c (0,0,0) (0,0,0) (0,0,0) (0,0,0)
ν 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00
Mean 0.00000e+00 3.57689e+01 -3.17339e+02 -1.34840e-03
Std 0.00000e+00 3.82482e+01 8.31863e+01 0.00000e+00
Worst 0.00000e+00 9.23767e+01 -1.69987e+02 -1.34840e-03
FR 100 100 100 100
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

C09 C10 C11 C12
Best -4.97525e-03 -5.09647e-04 -1.68819e-01 3.98790e+00
Median -4.97525e-03 -5.09647e-04 -1.68819e-01 3.98790e+00
c (0,0,0) (0,0,0) (0,0,0) (0,0,0)
ν 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00
Mean -4.97525e-03 -5.09647e-04 -1.67792e-01 6.99570e+00
Std 0.00000e+00 0.00000e+00 5.12778e-03 7.03324e+00
Worst -4.97525e-03 -5.09647e-04 -1.43178e-01 2.27853e+01
FR 100 100 100 100
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

C13 C14 C15 C16
Best 0.00000e+00 2.37633e+00 2.35619e+00 0.00000e+00
Median 0.00000e+00 2.37633e+00 8.63012e+00 0.00000e+00
c (0,0,0) (0,0,0) (0,1,0) (0,0,0)
ν 0.00000e+00 0.00000e+00 6.54538e-03 0.00000e+00
Mean 1.59463e-01 2.87425e+00 7.61357e+00 0.00000e+00
Std 7.97316e-01 7.63259e-01 6.47258e+00 0.00000e+00
Worst 3.98658e+00 3.89289e+00 2.11560e+00 0.00000e+00
FR 100 72 28 100
vio 0.00000e+00 7.93954e-02 2.86476e-02 0.00000e+00

C17 C18 C19 C20
Best 1.08556e-02 3.65977e+01 0.00000e+00 3.65636e-01
Median 9.85734e-01 3.65977e+01 0.00000e+00 1.31802e+00
c (1,0,0) (0,0,0) (1,0,0) (0,0,0)
ν 5.50000e+00 0.00000e+00 6.63359e+03 0.00000e+00
Mean 7.35195e-01 3.65977e+01 1.12033e+00 1.16962e+00
Std 3.22377e-01 1.65017e-05 2.34063e+00 3.92899e-01
Worst 9.14715e-01 3.65978e+01 6.91572e+00 1.61705e+00
FR 0 100 0 100
vio 5.84982e+00 0.00000e+00 6.63487e+03 0.00000e+00

C21 C22 C23 C24
Best 3.98790e+00 3.46248e-27 2.37633e+00 2.35616e+00
Median 3.98790e+00 3.95606e-27 2.37633e+00 5.49779e+00
c (0,0,0) (0,0,0) (0,0,0) (0,0,0)
ν 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00
Mean 4.41294e+00 6.37853e-01 2.49894e+00 6.12609e+00
Std 2.12289e+00 1.49164e+00 3.27363e-01 2.22143e+00
Worst 1.46028e+01 3.98658e+00 3.94272e+00 8.63938e+00
FR 100 100 96 100
vio 0.00000e+00 0.00000e+00 9.44651e-04 0.00000e+00

C25 C26 C27 C28
Best 0.00000e+00 9.98017e-01 3.65977e+01 0.00000e+00
Median 0.00000e+00 8.02797e-01 3.65977e+01 6.80280e+00
c (0,0,0) (1,0,0) (0,0,0) (1,0,0)
ν 0.00000e+00 5.50000e+00 0.00000e+00 6.63925e+03
Mean 0.00000e+00 7.54398e-01 7.59099e+01 8.68373e+00
Std 0.00000e+00 3.24742e-01 1.37003e+02 8.52235e+00
Worst 0.00000e+00 7.37173e-01 5.83500e+02 2.35855e+01
FR 100 0 100 0
vio 0.00000e+00 5.41743e+00 0.00000e+00 6.64044e+03

Table III
RESULTS OF 25 INDEPENDENT ALGORITHM RUNS AFTER 6× 105

FUNCTION EVALUATIONS IN DIMENSION N = 30.

C01 C02 C03 C04
Best 2.11415e-28 1.74597e-28 3.16333e-28 2.78596e+01
Median 3.75498e-28 3.77532e-28 7.06819e-28 6.36771e+01
c (0,0,0) (0,0,0) (0,0,0) (0,0,0)
ν 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00
Mean 3.74522e-28 3.75972e-28 6.72867e-28 7.02885e+01
Std 7.20265e-29 7.26202e-29 1.07072e-28 3.11293e+01
Worst 4.85347e-28 5.51611e-28 8.34812e-28 1.51233e+02
FR 100 100 100 100
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

C05 C06 C07 C08
Best 0.00000e+00 6.60639e+01 -1.14275e+03 -2.83981e-04
Median 0.00000e+00 1.39392e+02 -6.56915e+02 -2.83981e-04
c (0,0,0) (0,0,0) (0,0,0) (0,0,0)
ν 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00
Mean 0.00000e+00 1.80493e+02 -7.00796e+02 -2.83981e-04
Std 0.00000e+00 9.95983e+01 2.32472e+02 3.94013e-16
Worst 0.00000e+00 4.52818e+02 -3.76968e+02 -2.83981e-04
FR 100 100 100 100
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

C09 C10 C11 C12
Best -2.66551e-03 -1.02842e-04 -9.24932e-01 3.98253e+00
Median -2.66551e-03 -1.02842e-04 -9.24932e-01 5.87889e+01
c (0,0,0) (0,0,0) (0,0,0) (0,0,0)
ν 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00
Mean -2.66551e-03 -1.02842e-04 -9.24932e-01 4.60940e+01
Std 0.00000e+00 0.00000e+00 7.02631e-15 2.97043e+01
Worst -2.66551e-03 -1.02842e-04 -9.24932e-01 9.97942e+01
FR 100 100 100 100
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

C13 C14 C15 C16
Best 6.17530e-30 1.45277e+00 2.35616e+00 0.00000e+00
Median 2.72256e-27 1.61165e+00 2.36424e+00 0.00000e+00
c (0,0,0) (0,0,0) (0,1,0) (0,0,0)
ν 0.00000e+00 0.00000e+00 5.68794e-03 0.00000e+00
Mean 2.89231e-27 1.62885e+00 6.75132e+00 0.00000e+00
Std 1.88720e-27 9.17065e-02 5.93960e+00 0.00000e+00
Worst 6.90002e-27 1.76746e+00 2.49031e+00 0.00000e+00
FR 100 100 28 100
vio 0.00000e+00 0.00000e+00 1.32767e-02 0.00000e+00

C17 C18 C19 C20
Best 9.72432e-01 3.65203e+01 0.00000e+00 1.99567e+00
Median 9.74542e-01 3.65203e+01 8.14833e+00 7.82205e+00
c (1,0,0) (0,0,0) (1,0,0) (0,0,0)
ν 1.55000e+01 0.00000e+00 2.13803e+04 0.00000e+00
Mean 9.71519e-01 3.65482e+01 7.59850e+00 7.66346e+00
Std 1.74694e-02 1.39410e-01 9.07569e+00 1.23984e+00
Worst 1.02744e+00 3.72173e+01 3.30986e+01 8.69217e+00
FR 0 100 0 100
vio 1.55160e+01 0.00000e+00 2.13833e+04 0.00000e+00

C21 C22 C23 C24
Best 9.77517e+00 1.95451e-25 1.46426e+00 2.35619e+00
Median 5.87889e+01 2.45512e-25 1.64756e+00 1.17809e+01
c (0,0,0) (0,0,0) (0,0,0) (0,0,0)
ν 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00
Mean 4.84465e+01 2.47154e-25 1.65017e+00 9.14202e+00
Std 1.58282e+01 2.96830e-26 8.73119e-02 3.91965e+00
Worst 5.87889e+01 3.06252e-25 1.82715e+00 1.17810e+01
FR 100 100 100 100
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

C25 C26 C27 C28
Best 0.00000e+00 9.80793e-01 3.65203e+01 8.57150e+00
Median 0.00000e+00 9.83960e-01 3.65203e+01 5.35723e+01
c (0,0,0) (1,0,0) (0,0,0) (1,0,0)
ν 0.00000e+00 1.55000e+01 0.00000e+00 2.14284e+04
Mean 0.00000e+00 9.77687e-01 3.65761e+01 5.84051e+01
Std 0.00000e+00 1.77218e-02 1.93004e-01 2.32881e+01
Worst 0.00000e+00 1.02891e+00 3.72173e+01 8.15130e+01
FR 100 0 100 0
vio 0.00000e+00 1.55351e+01 0.00000e+00 2.14273e+04



Table IV
RESULTS OF 25 INDEPENDENT ALGORITHM RUNS AFTER 10× 105

FUNCTION EVALUATIONS IN DIMENSION N = 50.

C01 C02 C03 C04
Best 1.79260e-27 2.38675e-27 3.33151e-27 7.16366e+01
Median 2.85451e-27 2.76832e-27 3.94976e-27 1.13425e+02
c (0,0,0) (0,0,0) (0,0,0) (0,0,0)
ν 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00
Mean 2.86649e-27 2.89158e-27 4.05510e-27 1.18904e+02
Std 3.95654e-28 3.62945e-28 3.58307e-28 2.80329e+01
Worst 3.49875e-27 3.69957e-27 5.05699e-27 1.94016e+02
FR 100 100 100 100
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

C05 C06 C07 C08
Best 0.00000e+00 8.96798e+01 -1.78555e+03 -1.34535e-04
Median 0.00000e+00 2.44139e+02 -1.43726e+03 -1.34535e-04
c (0,0,0) (0,0,0) (0,0,0) (0,0,0)
ν 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00
Mean 0.00000e+00 2.87077e+02 -1.37452e+03 -1.34535e-04
Std 0.00000e+00 1.31115e+02 3.40376e+02 1.22963e-16
Worst 0.00000e+00 6.00815e+02 -1.52561e+02 -1.34535e-04
FR 100 100 100 100
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

C09 C10 C11 C12
Best -2.03709e-03 -4.82664e-05 -2.01060e+00 3.98145e+00
Median -2.03441e-03 -4.82664e-05 -2.00941e+00 6.21667e+01
c (0,0,0) (0,0,0) (0,0,0) (0,0,0)
ν 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00
Mean 6.65930e-01 -4.82658e-05 -3.70107e+00 5.05710e+01
Std 1.87113e+00 1.82543e-09 8.28813e+00 2.04558e+01
Worst 6.76956e+00 -4.82589e-05 -3.69191e+01 6.21667e+01
FR 100 100 76 100
vio 0.00000e+00 0.00000e+00 2.25814e-06 0.00000e+00

C13 C14 C15 C16
Best 9.13945e-28 1.25625e+00 8.63931e+00 0.00000e+00
Median 1.34380e-25 1.34727e+00 1.49225e+01 0.00000e+00
c (0,0,0) (0,0,0) (0,0,0) (0,0,0)
ν 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00
Mean 2.94609e+02 1.34236e+00 1.45443e+01 0.00000e+00
Std 4.43651e+02 3.73854e-02 1.00708e+01 0.00000e+00
Worst 1.18276e+03 1.40323e+00 2.33669e+00 0.00000e+00
FR 100 100 68 100
vio 0.00000e+00 0.00000e+00 2.04615e-03 0.00000e+00

C17 C18 C19 C20
Best 1.03777e+00 3.64693e+01 1.07504e+00 1.38740e+01
Median 1.03025e+00 3.64693e+01 7.12232e+00 1.52590e+01
c (1,0,0) (0,0,0) (1,0,0) (0,0,0)
ν 2.55000e+01 0.00000e+00 3.61220e+04 0.00000e+00
Mean 1.03467e+00 3.65879e+01 1.25226e+01 1.51521e+01
Std 6.11782e-03 5.93037e-01 9.73061e+00 5.50861e-01
Worst 1.04324e+00 3.94345e+01 4.07398e+01 1.59346e+01
FR 0 100 0 100
vio 2.55000e+01 0.00000e+00 3.61280e+04 0.00000e+00

C21 C22 C23 C24
Best 3.98317e+00 9.99546e-25 1.25578e+00 8.63938e+00
Median 6.21667e+01 1.14227e+03 1.33507e+00 1.17810e+01
c (0,0,0) (0,0,0) (0,0,0) (0,0,0)
ν 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00
Mean 5.52513e+01 9.76091e+02 1.34299e+00 1.21579e+01
Std 1.68432e+01 6.05679e+02 4.51597e-02 1.88494e+00
Worst 6.21667e+01 2.21972e+03 1.41518e+00 1.49226e+01
FR 100 100 100 100
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

C25 C26 C27 C28
Best 0.00000e+00 1.02647e+00 3.64693e+01 2.65416e+01
Median 0.00000e+00 1.03637e+00 3.64693e+01 9.10592e+01
c (0,0,0) (1,0,0) (0,0,0) (1,0,0)
ν 0.00000e+00 2.55000e+01 0.00000e+00 3.62007e+04
Mean 0.00000e+00 1.03259e+00 3.64693e+01 9.52777e+01
Std 0.00000e+00 7.26148e-03 5.15651e-06 4.42570e+01
Worst 0.00000e+00 1.02529e+00 3.64693e+01 2.08776e+02
FR 100 0 100 0
vio 0.00000e+00 2.55000e+01 0.00000e+00 3.62026e+04

Table V
RESULTS OF 25 INDEPENDENT ALGORITHM RUNS AFTER 20× 105

FUNCTION EVALUATIONS IN DIMENSION N = 100.

C01 C02 C03 C04
Best 3.23317e-26 3.10296e-26 3.68397e-26 2.16900e+02
Median 4.10676e-26 4.01605e-26 4.41296e-26 2.44759e+02
c (0,0,0) (0,0,0) (0,0,0) (0,0,0)
ν 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00
Mean 3.97567e-26 3.98324e-26 4.42639e-26 2.50768e+02
Std 4.38169e-27 3.90338e-27 4.76039e-27 2.27963e+01
Worst 4.68313e-26 4.78019e-26 5.39501e-26 3.09431e+02
FR 100 100 100 100
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

C05 C06 C07 C08
Best 2.57032e+01 2.76009e+02 -3.39138e+03 -4.73405e-05
Median 2.68480e+01 9.78040e+02 -2.64807e+03 -4.60526e-05
c (0,0,0) (0,0,0) (0,0,0) (0,0,0)
ν 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00
Mean 2.68528e+01 8.05511e+02 -2.48247e+03 -4.55131e-05
Std 5.17808e-01 3.99321e+02 7.89462e+02 1.32142e-06
Worst 2.82252e+01 1.29612e+03 -2.80746e+02 -4.20729e-05
FR 100 100 100 100
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

C09 C10 C11 C12
Best 3.46265e-05 -5.39999e-06 -5.73016e+00 1.88577e+01
Median 2.16310e+00 -1.66908e-06 -5.72868e+00 3.15768e+01
c (0,0,0) (0,0,0) (0,0,0) (0,0,0)
ν 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00
Mean 3.03527e+00 -1.15932e-06 -6.67039e+00 3.00505e+01
Std 3.81979e+00 2.34224e-06 6.10239e+00 4.21847e+00
Worst 1.63674e+01 3.17053e-06 -3.57517e+01 3.15768e+01
FR 92 100 96 100
vio 1.28972e-02 0.00000e+00 2.47649e+01 0.00000e+00

C13 C14 C15 C16
Best 4.02130e+01 9.03602e-01 2.35612e+00 0.00000e+00
Median 4.08579e+01 9.57591e-01 1.49225e+01 0.00000e+00
c (0,0,0) (0,0,0) (0,0,0) (0,0,0)
ν 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00
Mean 4.14351e+01 9.58110e-01 8.63968e+00 0.00000e+00
Std 1.39174e+00 2.68118e-02 6.01542e+00 0.00000e+00
Worst 4.62473e+01 1.00418e+00 2.36038e+00 0.00000e+00
FR 100 100 88 100
vio 0.00000e+00 0.00000e+00 2.32818e-04 0.00000e+00

C17 C18 C19 C20
Best 1.09505e+00 3.63770e+01 3.37320e+01 3.39085e+01
Median 1.09592e+00 3.63770e+01 5.18906e+01 3.55781e+01
c (1,0,0) (0,0,0) (1,0,0) (0,0,0)
ν 5.05000e+01 0.00000e+00 7.30388e+04 0.00000e+00
Mean 1.09382e+00 3.63770e+01 8.98566e+01 3.54396e+01
Std 1.97660e-03 3.50005e-06 6.75222e+01 7.24673e-01
Worst 1.09284e+00 3.63770e+01 2.34440e+02 3.64781e+01
FR 0 100 0 100
vio 5.05000e+01 0.00000e+00 7.30676e+04 0.00000e+00

C21 C22 C23 C24
Best 3.15768e+01 2.79549e+03 9.36578e-01 2.35612e+00
Median 3.15768e+01 3.99373e+03 9.63368e-01 8.63941e+00
c (0,0,0) (0,0,0) (0,0,0) (0,0,0)
ν 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00
Mean 3.15768e+01 4.23137e+03 9.67335e-01 9.39332e+00
Std 5.60796e-14 1.04096e+03 1.78701e-02 4.99044e+00
Worst 3.15768e+01 6.53606e+03 1.00702e+00 1.49226e+01
FR 100 100 100 100
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

C25 C26 C27 C28
Best 0.00000e+00 1.09087e+00 3.63770e+01 1.27127e+02
Median 0.00000e+00 1.09636e+00 3.63770e+01 1.73367e+02
c (0,0,0) (1,0,0) (0,0,0) (1,0,0)
ν 0.00000e+00 5.05000e+01 0.00000e+00 7.31194e+04
Mean 4.23913e-14 1.09461e+00 7.67704e+01 1.71016e+02
Std 1.30290e-13 1.89628e-03 2.01967e+02 2.03571e+01
Worst 4.80650e-13 1.09292e+00 1.04621e+03 2.07738e+02
FR 100 0 96 0
vio 0.00000e+00 5.05000e+01 8.64869e-01 7.31208e+04


